以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:16 、訪客IP:18.116.85.108
姓名 蔡一豪(YI-HAO TSAI) 查詢紙本館藏 畢業系所 土木工程學系 論文名稱 顆粒堆積體受重力及地震力作用下 之運動模擬與驗證 相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 土石邊坡受到外力產生的崩落、破碎、運動、堆積等過程,對坡地的居民帶來生命財產的危險。本研究以實驗及數值分析探討在重力和地震力兩種不同的外力作用下,顆粒堆積體的運動特性並進行比較,即藉由PFC-3D數值模擬程式來驗證實驗並比對相似度,來做進一步的探討。本研究實驗除了觀察顆粒外部的流動特性,如顆粒堆幾何變化、流動高度、流動面分布、前段速度、表面角度衰減等,也有觀察其內部流動特性,如流場變化,而PFC-3D 數值模擬則可觀察其內部的接觸力、不平衡力、流動動能、摩擦耗能之變化。結果顯示實驗與模擬的物理流動特性相似,而實驗速度值較模擬值為高;顆粒堆受振動後,其表面角度衰減與理論值產生的偏差則來自顆粒性能及邊壁摩擦。 摘要(英) Rock falls, Rock avalanches and debris flows are devastating processes for residents living in the slope areas, which are due to the external driving forces such as gravity or seismic acceleration. Both gravity and seismic forces on the collapse of granular piles are examined in this study by numerical simulation ( PFC-3D) and experimental study. The experimental properties of granular flow characteristics such as granular pile geometry, the flow depth, shear layers, the front speed of flow and surface angle were obstained. On the other hand, the internal flow characteristics were examined by employing the PFC-3D numerical model, which is capable of finding the contact force, unbalanced force, the flow of kinetic energy and friction energy of the granular flow. The numerical results depict similar physical flow characteristics of the experiment study. However the experimental velocities were slightly greater than numerical simulation. The attenuation of surface angle of the granular pile during oscillation depends on both particle properties and side wall friction. 關鍵字(中) ★ 顆粒流
★ 崩塌
★ 水平振動
★ DEM
★ PFC-3D關鍵字(英) ★ particle flow
★ avalanche
★ horizontal vibration
★ DEM
★ PFC-3D論文目次 摘要………………………………………………………………….........I
致謝……………………………………………………………………..III
目錄…………………………………………………………………......IV
圖目錄………………………………………………………………….VII
表目錄…………………………………………………………………..XI
第一章 緒論……………………………………………………………. 1
1.1前言………………………………………………………………..1
1.2研究動機與目的…………………………………………………. 2
1.3研究方法…………………………………………………………..2
1.4論文架構…………………………………………………………..3
第二章 文獻回顧………………………………………………………..5
2.1離散元素法之顆粒接觸力模型…………………………………..5
2.2傾斜渠槽顆粒堆受重力作用下的流動型態 …………………….7
2.2.1流動層厚度…………………………………………………...7
2.2.2速度分佈……………………………………………………...8
2.3顆粒堆受振動力作用下的流動型態 …………………………...10
2.3.1表面角度衰減……………………………………………….10
2.3.2整理流動…………………………………………………….12
2.3.3速度分佈…………………………………………………….14
2.3.4流體-固體轉變………………………………………………14
第三章 模擬配置與方法………………………………………………16
3.1模擬配置…………………………………………………………16
3.2顆粒材料介紹……………………………………………………18
3.3 PFC-3D…………………………………………………………...20
3.4模擬步驟及分析方法……………………………………………22
第四章 模擬結果與討論………………………………………………26
4.1傾斜渠槽之實驗與PFC的顆粒流動型態……………………...26
4.1.1主體輪廓圖的幾何變化…………………………………….26
4.1.2各斷面之流動高度………………………………………….33
4.1.3顆粒堆積體之流動面分布………………………………….41
4.1.4前端崩塌速度……………………………………………….49
4.1.5力量傳遞鏈之分布變化…………………………………….52
4.1.6速度場分布………………………………………………….53
4.1.7平均接觸力………………………………………………….54
4.1.8平均不平衡力…………………………………………….…55
4.1.9流動動能………………………………………………….…56
4.1.10摩擦耗能…………………………………………………...57
4.2振動床模擬與比對………………………………………………58
4.2.1表面角度衰減……………………………………………….59
4.2.2流場分布…………………………………………………….63
第五章 結論與建議……………………………………………………66
5.1結論………………………………………………………………66
5.2建議………………………………………………………………67
參考文獻………………………………………………………………..68參考文獻 [1] 李璟芳(2009),「邊界條件與材料組成對顆粒流堆積型態及流動 特性之效應」,國立中央大學,博士論文。
[2] 張駿(2015),「土石流地聲與流動特性之室內實驗與現地監測」,國立中央大學,碩士論文。
[3] 張欽舜(2014),「顆粒流對垂直平板撞擊力之數值模擬」,國立中央大學,碩士論文。
[4] 蔡輝平(2013),「不同含水條件下堆積顆粒塊體崩塌過程之實驗 與數值模擬」,國立中央大學,碩士論文。
[5] 美國工程工具箱網站 http://www.engineeringtoolbox.com/
[6] Bagnold R. A., F.R.S. (1954), “Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear”, Proceedings of the Royal Society of London. Series A, Mathematical and Physical, Vol. 225, No. 1160, pp. 49-63.
[7] Bakhshinejad A., Zamankhan P. (2012), “Swirling flows in horizontally vibrated beds of dense granular materials”, Particuology, 10, pp.683-691.
[8] Bose M., Rhodes M. (2007), “Dynamics of an intruder in a shaken granular bed”, Powder Technology, 179, pp.25-30.
[9] Chou H.T., Lee C.F., Chung Y.C., Hsiau S.S.(2012), “Discrete element modelling and experimental validation for the falling process of dry granular steps”, Powder Technology, 231, pp.122-134.
[10] Chung Y.C., Liao H.H., Hsiau S.S.(2013), “Convection behavior of non-spherical particles in a vibrating bed: Discrete element modeling and experimental validation”, Powder Technology, 237, pp.53-66.
[11] Chung Y.C., Ooi J.Y. (2012), “Linking of discrete element modelling with finite element analysis for analysing structures in contact with particulate solid” , Powder Technology, 217, pp. 107-120.
[12] Daisuke Takagi, McElwaine J. N., Huppert H. E. (2011)“Shallow granular flows”, PHYSICAL REVIEW E, vol. 83, 031306
[13] G. D. R Midi (2004), “On dense granular flows” , CNRS, GDR2181,France
[14] Golovanevskiy V.A., Arsentyev V.A., Blekhman I.I., Vasilkov V.B.(2011), “Vibration-induced phenomena in bulk granular materials”, International Journal of Mineral Processing, 100, pp.79-85.
[15] Hunt M. L., Zenit R., Campbell C. S., Brennen C. E.(2002), “Revisiting the 1954 suspension experiments of R. A. Bagnold”, J. Fluid Mech., vol. 452, pp. 1–24.
[16] HSIAU S.-S., OU M.-Y., TAI C.-H.(2002), “The flow behavior of granular material due to horizontal shaking”, Advanced Powder Technol., Vol. 13, No. 2, pp. 167–180.
[17] Hunt M.L., Weathers R.C., Lee A.T., Brennen C.E., Wassgren C.R.(1999), “Effects of horizontal vibration on hopper flows of granular materials”, PHYSICS OF FLUIDS, vol. 11, number 1.
[18] Metcalfe G., Tennakoon S.G.K., Kondic L., Schaeffer D.G., Behringer R.P.(2002), “Granular friction, Coulomb failure, and the fluid-solid transition for horizontally shaken granular materials”, PHYSICAL REVIEW, vol. 65, 031302.
[19] Raihane A., Bonnefoy O., Gelet J.L., Chaix J.M., Thomas G. (2009) “Experimental study of a 3D dry granular medium submitted to horizontal shakink”, Powder Technology, 190, pp.252-257.
[20] Tsuji Y., Tanaka T., Ishida T.(1992), “Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe”, Powder Technology, 71, pp.239-250.
[21] Tsuji Y., Kawaguchi T., Tanaka T. (1993), “Discrete particle simulation of 2-dimensional fluidized-bed”, Powder Technology ,77, pp. 79-87.指導教授 周憲德(Hsien-Ter Chou) 審核日期 2016-7-22 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare