博碩士論文 103426012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:64 、訪客IP:3.140.195.8
姓名 何寬鴻(Kuan-Hong-Ho)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 類似Kiva系統之Pod分配於揀貨工作站的相關問題探討
相關論文
★ 佈置變更專案工程的執行研究 -以H公司研發單位為例★ MIL-STD-1916、MIL-STD-105E與結合製程能力指標之抽樣檢驗計畫
★ 建構客戶導向的製造品質資訊系統--以某筆記型電腦專業代工廠商為例★ GMP藥廠設施佈置規劃的探討--以E公司為研究對象
★ 應用Fuzzy c-Means演算法之物流中心位址決策模式研究★ 品質資訊系統之規劃與建構 -- 以某光碟製造公司為研究對象
★ 從製程特性的觀點探討生產過程中SPC管制圖監控運用的適切性 -- 以Wafer Level 封裝公司為例★ 六標準差之應用個案研究-以光學薄膜包裝流程改善為例
★ 利用六標準差管理提昇中小企業之製程品質-以錦絲線添加防銹蠟改善為例★ 專業半導體測試廠MES 系統導入狀況、成果及問題之探討-以A 公司為例
★ 以RFID技術為基礎進行安全管理導入-以A公司為例★ 如何提昇產品品質及降低成本—以光碟壓片廠A公司為例
★ ERP導入專案個案分析—以半導體封裝廠A公司為例★ 石英元件製造業之延遲策略應用— 以T公司為研究對象
★ 十二吋晶圓廠自動化搬運系統規劃與導入—以A公司為例★ 半導體封裝產業之生產革新改善活動-A半導體股份有限公司導入經驗探討-
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) Kiva 系統採用了分佈式智能的概念,通過使用獨特的物料處理設備和軟件
來執行訂單,最終形成了一個完整的貨到人的倉儲自動化系統,既節省了大量人
力,在提高速度、準確率和靈活性的同時,也提升了作業效率;Kiva 系統提供一
種新型的自動化訂單履行方案,通過使用數以百計的移動機器人、可移動的貨架、
工作站和複雜的控制軟件,進行揀選、包裝和輸送作業。
本研究針對使用Kiva 系統作業環境,Kiva 系統中當訂單抵達揀貨工作站後,
即會開始分派訂單放入揀貨工作站中的儲存架空格內,此時,理貨作業也會同時
進行。本研究在此處的流程分為兩階段,第一階段處理Pod 分配之揀貨工作站挑
選問題與要將Pod 指派到哪個揀貨工作站的問題,第二階段則是處理Pod 分派
問題,並分別提出Pod 分配之揀貨工作站挑選法則、Pod 分派法則、Pod 要求條
件情況,並透過模擬實驗,期望在此環境中找出最佳的法則組合,能提升績效表
現,並針對總系統執行時間、總Pod 旅行距離這兩種績效指標下,找出何種組合
對作業效率有較顯著的提升。
摘要(英) Kiva system uses the concept of distributed intelligence to execute orders through
a unique of material handling equipment and software, forming a complete stock-topicker
system, saving a lot of manpower, improve the speed, accuracy and flexibility,
enhance operating efficiency; Kiva system provides a novel automated order fulfillment
solutions.Through the use of hundreds of mobile robots, Pod, workstations, and
Automatic software to pick, package and delivery.
In this study, focusing on the Kiva system, when the order arrived and picking
workstations will begin dispatch orders placed in the workstation,at the same time,
system will begin.
In this study, We propose three decision problems“the selection rules of
workstation”, “the selection rules of which Pod to workstation”, We analyze the
performance index such as total system time(TST), total Pod travel distance(TPD)
in our environment. Finally, the best combinations of rules under different performance
index are discovered.
It’s observed that the best combination under performance index, TST and TPD,
would be PSIOAO× HNSOP2. And the best combination under performance index
of TPD would be PSIOAO× HNSOP2, which can make the best enhancement in the
system.
關鍵字(中) ★ 物流中心
★ Kiva System
★ 貨至人揀貨系統
★ Pod 分配之揀貨工作站挑 選法則
★ Pod 分派法則
關鍵字(英) ★ Distribution Center
★ Kiva System
★ Stock-to-Picker
★ Pod Slection Rule
★ Workstation Slection Rule
論文目次 摘要 ........................................................................................................................................... I
圖目錄 ...................................................................................................................................... V
表目錄 .................................................................................................................................... VII
第一章 緒論.............................................................................................................................. 1
1.1 研究背景 ..................................................................................................................... 1
1.2 研究動機 ..................................................................................................................... 2
1.3 研究目的 ..................................................................................................................... 2
1.4 研究環境 ..................................................................................................................... 3
1.5 研究問題說明 ............................................................................................................. 3
1.6 論文架構 ..................................................................................................................... 5
第二章 文獻探討 ...................................................................................................................... 7
2.1 物流 ............................................................................................................................. 8
2.2 揀貨作業 ................................................................................................................... 14
2.3 智慧工廠 ................................................................................................................... 22
2.4 Kiva 介紹................................................................................................................... 32
第三章 研究方法 .................................................................................................................... 42
3.1 各研究議題之方法整理 ........................................................................................... 42
3.2 Kiva 系統流程說明 ................................................................................................... 44
3.3 Pod 要求條件 ............................................................................................................ 51
3.4 Pod 分配之揀貨工作站挑選法則 ............................................................................ 51
3.5 Pod 分派法則 ............................................................................................................ 61
第四章 實驗結果與分析 ........................................................................................................ 66
4.1 實驗設計 ................................................................................................................... 66
4.2 統計分析 ................................................................................................................... 71
4.3 實驗結論 ................................................................................................................... 88
第五章 結論與後續研究建議 ................................................................................................ 90
5.1 研究結論 ................................................................................................................... 90
IV
5.2 未來研究建議 ........................................................................................................... 91
中文文獻 ................................................................................................................................. 93
英文文獻 ................................................................................................................................. 96
參考文獻 中文文獻
1. 王孔政、褚志鵬,2007,「供應鏈管理」,華泰文化,台北,初版。
2. 吳美蘭,2009,「RFID 應用於低溫食品物流之研究」,長庚大學資訊管理
研究所,碩士論文。
3. 吳詩涵,2011,「在同步分區揀貨倉庫之合作揀貨探討」,國立中央大學工業
管理研究所,碩士論文。
4. 吳豐全,2001,「多載量AGV的控制方法」,碩士論文,國立中央大學工業管
理研究所,桃園。
5. 均豪精密,2014,「物流供應鏈之整合度研究」,智慧自動化產業期刊,第一
卷,第十期,第32 頁。
6. 李孟青,2008,「零工型工廠AGV 派車法則對工件派工法則績效之影響」,
國立交通大學工業管理研究所,碩士論文。
7. 李宗儒、周宣光、林正章,2009「當代物流管理:理論與實務」,滄海書
局,台中,四版。
8. 周曉光、張喜妹、劉玉坤,2015,「一種基於移動機器人的配送中心柔性揀
選系統」,北京郵電大學,北京。
9. 林宏益,1991,「以投標法則分析無人搬運車指派問題」,國立交通大學工業
工程與管理研究所碩士論文。
10. 林鴻鈞,2006,「揀貨中心揀貨策略與訂單選取之研究」,國立中央大學工業
管理研究所,碩士論文。
11. 致茂科技,2012,工業4.0 MES 智能工廠解決方案,2016/1/26,取自:
http://www.chroma.com.tw/page/industry40_tc。
12. 張智陽,2008,「模擬導入RFID 應用於物流倉儲作業流程之研究」,逢甲
大學交通工程與管理學系碩士班,碩士論文。
94
13. 張簡復中,2010,「物流管理」,新文京開發,台北,二版。
14. 張福榮,2005,「物流管理」,五南圖書出版股份有限公司,台北。
15. 陳志賢,1998,「物流供應鏈之整合度研究」,黎明學報,第十一卷,第一期,
47~55 頁。
16. 陳景松,2014,「佈局智慧工廠之主要業者動態」,MIC 研究報告。
17. 陳暉江,2004,「具兩條以上橫向走道之物流中心揀貨路徑規劃研究」,國立
中央大學工業管理研究所,碩士論文。
18. 黃仲宏, 2014,「物流供應鏈之整合度研究」,智慧自動化產業期刊,第一
卷,第十期,第4 頁。
19. 黃惠煐,1996,「物流經營管理實務」,經濟部商業司,台北,初版。
20. 楊清峰,2003,「多載量無人搬運車(AGV)運送派車法則的探討」,國立中央
大學工業管理研究所,碩士論文。
21. 雷鋒網,2015,雙11 送貨慢?如果有這些機器人幫忙就好了,2016/1/26,
取自:
http://big.hi138.com/jisuanji/hulianwangyanjiu/201511/464707.asp#.VqjKn_l96
Ul。
22. 廖韋昌,2002,「模糊投標式多載量 AGV 之控制方法」,國立中央大學工業
管理研究所,碩士論文。
23. 劉顥程,2004,「在封閉式系統下多載量AGV之載取派車法則與負載揀取法
則的研究」,國立中央大學工業管理研究所,碩士論文。
24. 賴杉桂,1984,中華民國商業自動化專案計畫現況及未來展望,商業教育自
動化觀摩與研討會。
25. 賴順良,2009,「物流中心之訂單選取與揀貨路徑規劃的研究」,國立中央大
學工業管理研究所,碩士論文。
95
26. 錢尚樸,2003,「揀貨中心之儲位配置與揀貨策略的研究」,國立中央大學工
業管理研究所,碩士論文。
27. 顏憶茹、張淳智,2001,「物流管理︰ 原理、方法與實例」,前程企管,台
北,三版。
28. 蘇雄義,2000,「物流與運籌管理」,華泰文化事業公司,台北,初版。
96
英文文獻
1. “Is Kiva Systems a Good Fit for Your Distribution Center?” An Unbiased
Distribution Consultant Evaluation? An Unbiased Consultant Evaluation, MWPVL,
http://www.mwpvl.com/html/kiva_systems.html (last visited Nov. 17,2015).
2. Bozer, Y. A., and Yen, C. K., 1996, “Intelligent dispatching rules for trip-based
material handling systems”, Journal of Manufacturing Systems, vol.15, no.4, pp.
226-239.
3. Le Pape, C.. , 1990, “A combination of centralized and distributed methods for multiagent
planning and scheduling.”In Proceedings of the IEEE International
Conference on Robotics and Automation, vol.1, no.1, pp. 488–493.
4. Ronald Kube, C. and Eric Bonabeau., 2000, “Cooperative transport by ants and
robots. Robotics and Autonomous Systems”, vol.30, no.1-2, pp. 85–101.
5. De Koster, R., Le-Duc, T., & Roodbergen, K. J. (2007). Design and control of
warehouse order picking: A literature review. European Journal of Operational
Research, vol.182, no.2, pp. 481-501.
6. Dobson, G., 1982,“Worst-case analysis of greedy heuristics for integer programming
with nonnegative data. ” Mathematics of Operations Research , vol.7, no.4, pp. 515–
531.
7. Egbelu, P. J. and Tanchoco, J. M. A., 1984, “Characterization of automatic guided
vehicle dispatching rules,” International Journal of Production Research, vol.22,
no.3, pp. 359-374.
8. Egbelu, P. J., 1987a, “Pull versus push strategy for automated vehicle load
movement in a batch manufacturing system”, Journal of Manufacturing System, Vol.
97
6, no.3, pp. 271-280.
9. Egbelu, P. J., 1987b, “The use of non-simulation approaches in estimating vehicle
requirements in an automated guided vehicle base transport System,” Material Flow,
vol.2, no.2, pp.17-32.
10. Egbelu, P. J., and Tanchoco, J. M. A., 1984, “Characterization of automatic guided
vehicle dispatching rules,” International Journal of Production Research, vol.22,
no.3, pp. 359-374.
11. Enright,J.J ; and Wurman,P.R. 2011, “Optimization and Coordinated Autonomy in
Mobile Fulfillment Systems,” Automated Action Planning for Autonomous Mobile
Robots: Papers.
12. Gaskins, R. J., and Tanchoco, J. M. A., 1987, “Flow path design for automated
guided vehicle systems,” International Journal of Production Research, vol.25, no.5,
pp. 667-676.
13. Goetz, William G. and Egbelu, P. J., 1990, “Guide path design and location of load
pick-up/drop-off points for an automated guided vehicle system,” International
Journal of Production Research, vol.28, no.5, pp. 927-941.
14. Guizzo, E. 2008, “Three engineers, hundreds of robots, one warehouse,” IEEE
Spectrum, vol.45, no.7, pp. 22-29.
15. Ho, Y. C. and Chien, S. P., 2006, “A comparison of two zone-visitation sequencing
strategies in a distribution centre,” Computers andIndustrial Engineering, vol.50, no.
4, pp. 426-439.
16. Ho. Y. C., and Moodie, C., L., 1996, “Solving cell formation problems in a
manufacturing environment with flexible processing and routeing capabilities,”
98
International Journal of Production Research, vol.34, no.10, pp. 2901-2923.
17. Hodgson, T. J., R. E.,Monteith, S.K., and Schultz, S.R., 1987, “Developing control
rules for an AGVs using Markov decision processes,” Material Flow, vol.4, no.24,
pp. 85-96.
18. Hong, S., Johnson, A. L., & Peters, B. A. (2012a). Large-scale order batching in
parallel aisle picking systems. IIE Transactions, vol.44, no.2, pp. 88-106.
19. Hong, S., Johnson, A. L., & Peters, B. A. (2012b). Batch picking in narrow-aisle
order picking systems with consideration for picker blocking. European Journal of
Operational Research, vol.221, no.5, pp. 557–570.
20. Hong, S., Johnson, A. L., & Peters, B. A. (2013). A note on picker blocking models
in a parallel-aisle order picking system. IIE Transactions, vol.45, no.12, pp. 1-11.
21. Hu, Q., Arun K. and Zhang S., 2001, “A bidding decision model in multi-agent
supply chain planning,” International Journal of Production Research, vol.39, no.15,
pp. 3291-3301.
22. Hwang, H. and Kim, S. H., 1998, “Development of dispatching rules for automated
guided vehicle systems,” Journal of manufacturing systems, vol.17, no.2, pp. 137-
143.
23. Lao, S. I., Choy, K. L., Ho, G. T. S., Tsim, Y. C., Poon, T. C. and Cheng, C. K.,
2012, “A real time food safety management system for receiving operations in
distribution centers,” Expert Systems with Applications, vol. 39, no. 3, pp. 2532-2548.
24. Lin, G.. Y., 1993, “A Distributed Production Control For an Intelligent
Manufacturing Systems,” Ph. D. Thesis, vol.5, no.5, pp. 290-299.
25. Liu, C. M., and Duh, S. H., 1992, “Study of AGVs design and dispatching rules by
99
analytical and simulation methods,” International Journal of Computer Integrated
Manufacturing, vol.5, no.4&5, pp. 290-299.
26. Liu, S., Chan, F. T. S. and Chung, S.H, 2011, “A study of distribution center location
based on the rough sets and interactive multi. objective fuzzy decision theory,”
Robotics and Computer –Integrated Manufacturing, vol. 27, no. 2, pp. 426-433.
27. Maxwell, W. L. and Muckstadt, J. A., 1982, “Design of automatic guided vehicle
systems,” IIE Transaction, vol.14, no.2, pp. 114-124.
28. Newton, D., 1985, “Simulation model calculates how many automated guided
vehicle are needed,”Industrial Engineering, vol.8, no.2, pp. 68-77.
29. Occena, L. G. and Yokota, T., 1991,“ Modeling of an automated guided vehicle
system(AGVs) in a just-in-time (JIT) environment,” International Journal of
Production Research, vol.29, no.3, pp. 495-511.
30. Pan, J., & Shih, P.-H. (2008). Evaluation of the throughput of a multi-picker order
picking system with congestion consideration. Computers & Operations Research,
vol.55, no.8, pp. 379-389.
31. Pan, J., & Wu, M.-H. (2012). Throughput analysis for order picking system with
multiple pickers and aisle congestion considerations. Computers & Operations
Research, vol.39, no.6, pp. 1661-1672.
32. Pan, J., Shih, P.-H., & Wu, M.-H. (2012). Storage assignment problem with travel
distance and blocking considerations for a picker-to-part order picking system.
Computers & Industrial Engineering, vol.62, no.6, pp. 527-535.
33. Parikh, P. J. and Meller, R. D., 2008, “Selecting between batch and zone order
picking strategies in a distribution center,” Transportation Research Part E:
100
Logistics and Transportation Review, vol.44, no. 5, pp. 696-719.
34. Parikh, P. J., & Meller, R. D. (2009). Estimating picker blocking in wide-aisle order
picking systems. IIE Transactions, vol.41, no.3, pp. 232-246.
35. Petersen II, C. G., 1997, “An evaluation of order picking routeing policies,”
International Journal of Operations & Production Management, vol. 17, no. 11, pp.
1098-1111.
36. Rajagopalan, S., and Vazirani, V. 1993,“ Primal-dual RNC approximation
algorithms for (multi)-set (multi)-cover and covering integer programs,”In
Proceedings of the 1993 IEEE 34th Annual Foundations of Computer Science, pp.
322–331.
37. Rajotia, S., Shanker, K., and Batra, J. L., 1998, “Determination of optimal AGV fleet
size for an FMS,”International Journal of Production Research, vol.36, no.5, pp.
1177-1198.
38. Ratliff, H. D. and Rosenthal, A. S., 1983, “Order-picking in a rectangular warehouse:
a solvable case of the traveling salesman problem,” Operations Research, vol. 31,
no 3, pp. 507-521.
39. Sabuncuoglu, I. And Hommertzheim, D. L., 1992, “Dynamic dispatching algorithm
for scheduling machines and automated guided vehicles in a flexible manufacturing
system,” International Journal of Production Research, vol.30, no.5, pp. 1059-1079.
40. Tompkins, J. A., White, J. A., Bozer, Y. A., Frazelle, E. H., and Tanchoco, J. M. A.,
2003, Facilities Planning, John Wiley & Sons, New York, 3rd Edition.
41. Wurman, P.R. &Andrea.R., 2008, “Future challenges of coordinating hundreds of
autonomous vehicles in distribution facilities,” In International IEEE Conference on
101
Technologies for Practical Robot Applications , vol.2, no.4, pp. 80-83.
指導教授 何應欽(Ying-Ching-Ho) 審核日期 2016-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明