摘要(英) |
Diaphragm wall construction equipment and technologies develop with time. The barrettes are frequently used for supporting high rise buildings to replace pile foundations in recent years. There are more and more cases that barrette replaces the big diameter cast-in-place pile. The barrette shape and construction methods are different from those adopted for cast-in-place piles. The understandings of vertical loading behavior and mechanism of deformation are required. In this research, a instrumented circular pile with diameter (D) of 20 mm and three instrumented barrettes with different length-width ratios (L/B=1:1, 2:1, 4:1) but the circular pile and barrettes have the same area of cross section to perform a series of the pile load centrifuge model test.
Test results give the following conclusion. 1. The bearing capability of barrette with L/B=2 is better than that of L/B=1 barrette, and the bearing capacity of L/B=1 barrette is better than L/B=4 bearing capability, and the bearing capability of L/B=4 barrette is better than circle pile bearing capability. 2. The unit frictions on the barrette of L/B=4 start to grow until reaching one of limit loading. This phenomenon seem from the static friction force changing to kinetic friction force. 3. The ratio of circular pile skin friction and the end bearing on the circular pile are 4:6. The ratio of barrette skin friction and the end bearing are 1:3. 4. The developed plastic zone of circular pile is bigger than those developed on the barrette. 5. The circular pile plastic zone are 5 times pile diameter in long side of rigid box and three times pile diameter in short side of rigid box. |
參考文獻 |
[1] API, “Recommended practice for planning, designing, and construction fixed offshore platforms-working stress design,”( 2000)
[2] Canadian Geotechnical Society (1992),”Canadian Foundation Engineering Manual”,3 rd Edition.
[3] Davission, M.T.(1972),”High Capacity Piles”, Proc., Lecture Series, Innovations in Foundation Construction, ASCE, Illinois Section, 52pp.
[4] Meyerhof, G. G.(1951,”The Ultimate Bearing Capacity of Foundations”,Geotechnique,Vol..2,No.4,pp.301~332.
[5] Prandtl,L.(1921),’’Anwendungsbeispiele zu Einem Henchyschen Satz Ueber das Plasticsche Gleichgewicht’’ Z. Angew. Math., Vol.3
[6] Seed, H. B. and Reese, L. C.(1957),“The Action of Soft Clay Along Friction Piles”, Transaction, ASCE, Vol.122, pp.731-754.
[7] Terzaghi, K.(1942),”Discussion of the Progress Report of the Committee on the Bearing Value of the Pile Foundation”, Proc. , ASCE, Vol.68, pp.331-323.
[8] Tomlinson, M.J. (1977),’’Pile Design and Construction Practice”, Rainbow-Bridge Book Co.,Ltd.
[9] Winterkorn, H.F. and Fang, H.Y. (1976),”Foundation Engineering Handbook”,Van Nostrand Reinhold Company, U.S.
[10] Van Der Veen, C.(1953),’’The Bearing Capacity of A Pile’’,Proc., 3 rd , ICSMFE, Zurich, Vol.2, pp.84-90.
[11] Chin, F. K. (1970),”Estimation of the Ultimate Load of Piles not Carried to Failure”, Proc., 2 nd Southeast Asian Conf. on Soil Engineering, pp.81-90.
[12] 朱亭昌,「壁樁受壓載重之行為評估」,碩士論文,中原大學土木工程學系研究所,中壢(2013)。
[13] 朱文彬,「基樁軸向垂直載重試驗之極限承載力詮釋方法之探討」,碩士論文,朝陽科技大學營建工程系,台中(2003)。
[14] 林杰慶,「場鑄樁之載重-位移關係及底承力分析」,碩士論文,中原大學土木工程學系研究所,中壢(2014)。
[15] 郭致均,「以離心機模型試驗模擬基樁抗壓及抗拔樁行為」,碩士論文,國立中央大學土木工程學研究所,中壢(2008)。
[16] 周廷韋,「以離心模型試驗模擬基樁反覆抗壓及抗拉拔之行為」,碩士論文,國立中央大學土木工程學研究所,中壢(2008)。
[17] 葉品毅,「煤灰地盤樁基礎乘載行為之研究」,碩士論文,國立中央大學土木工程學研究所,中壢(2016)。
[18] 蔡晨暉,「以離心模型試驗模擬沉箱式碼頭之受震行為」,碩士論文,國立中央大學土木工程學系,中壢(2010)
[19] 陳家漢,「砂土中深基礎承載力形狀因子之探討」,碩士論文,國立台灣大學土木工程學研究所,台北(2001)。
[20] 陳楚文,「以數值模擬方法探討黏土中深基礎承載力」,碩士論文,國立台灣大學土木工程學研究所,台北(2003)。
[21] 黃韋綸,「以數值分析方法探討基礎之承載力形狀效應」,碩士論文,國立台灣大學土木工程學研究所,台北(2002)。
[22] 傅哲賢,「基樁抗壓及抗拉之模型試驗」,碩士論文,國立中央大學土木工程學研究所,中壢(2006)。
[23] 張博瑋,「基樁承壓與抗拉行為之研究」,碩士論文,國立台灣大學土木工程學研究所,台北(2001)。
[24] 蔡煜青,「壁樁垂直承載力試驗之案例分析」,碩士論文,台灣大學土木工程學系研究所,台北( 2006 )。
[25] 吳浩瑋,「樁基礎於排水土層之樁底承載力分析模式研究」,碩士論文,中原大學土木工程學系研究所,中壢(2010)。
[26] 富國技術股份有限公司,「忠孝東路正義國宅都更案基樁載重試驗成果報告書」
[27] 徐明志、簡進龍、高秋振、俞清瀚(2013),「第十五屆大地工程學術研究討論會論文集」 |