博碩士論文 103324011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:18.119.192.2
姓名 林奕暉(Yi-Huei Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱
(Crystal Engineering of Perovskites)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
★ 蔗糖的同質異構型構★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選
★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度
★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選
★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究★ 生命的起源與天門冬氨酸在水中的結晶
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 鈣鈦礦太陽能電池是近五年來發展最快,也是備受矚目的新興材料之一,在文獻回顧中,我們發現從結晶的角度可以為鈣鈦礦太陽能電池帶入新思維,此研究可區分為三個部分,第一個部分是將研磨法應用於鈣鈦礦的合成中,我們研磨了三種不同組成的鈣鈦礦:CH3NH3PbI3、(C6H5CH2NH3)2PbCl4和CH3NH3PbI2Cl,從X光繞射分析(XRD)的圖譜中可以了解到研磨出的三組鈣鈦礦結構的訊號是可以對應到單晶繞射圖或是有屬於鈣鈦礦的訊號出現,從此結果可以得知研磨法可以用來做為鈣鈦礦的新材料篩選以及新溶劑的篩選方式。第二部分則是針對CH3NH3PbI3鈣鈦礦去作探討,利用實驗室常用的25種溶劑在25oC環境下分別對甲基胺碘(CH3NH3I)和碘化鉛(PbI2)去做溶劑篩選,從溶劑的篩選結果可以得知25種溶劑中對於甲基胺碘和碘化鉛是好的溶劑(溶解度 ≥ 5 mg/mL)或是差的溶劑(溶解度 ≤ 5 mg/mL),對於甲基胺碘來說好的溶劑有13種、差的溶劑有12種,就碘化鉛而言,好的溶劑有3種,差的溶劑有22種,在實驗中可以選擇好的溶劑當成反應溶劑,而差的溶劑可以當成反溶劑去促使再結晶,試著去長出不含溶劑的鈣鈦礦,在第二部分的實驗中我們添加了甲基胺碘與碘化鉛共同的差溶劑去作為反溶劑,添加不同的反溶劑所得到的產物,經由FT-IR、PXRD、TGA和DSC鑑定後皆為CH3NH3PbI3鈣鈦礦的二甲基甲醯胺(DMF)的溶劑化物,最後,第三部分是探討退火的程序,觀察經由不同的升溫速率對CH3NH3PbI3鈣鈦礦結晶的影響,升溫速率分為快加溫(將CH3NH3PbI3鈣鈦礦的二甲基甲醯胺的溶劑化物放入已經預熱至100oC的烘箱)跟慢加溫(將CH3NH3PbI3鈣鈦礦的二甲基甲醯胺的溶劑化物放入30oC的烘箱中慢慢加熱至100oC,升溫速度為10oC/hr),經過OM、UV/vis和PL的檢測之後,可以發現到升溫速率是需要被注意且進一步去控制的,從第三部分的實驗可以得知緩慢升溫的過程中,可以從CH3NH3PbI3鈣鈦礦的二甲基甲醯胺的溶劑化物慢慢的移除掉二甲基甲醯胺而不使晶格破裂損壞,破裂的晶格會影響到膜的平滑程度而導致能量轉換效率降低。
摘要(英) Perovskite, has recently been notable as an organic-inorganic hybrid semiconductor material. In this work we divided in three parts. Firstly, we introduced a neat and liquid-assisted grinding method into perovskite system. Three types of perovskites: CH3NH3PbI3, (C6H5CH2NH3)2PbCl4 and CH3NH3PbI2Cl were ground. PXRD showed that the solids made by the grinding method revealed some characteristic perovskite peaks indicating that both neat and liquid-assisted grinding method could be used in perovskite and solvent screening. Even though neat grinding method works, we still used liquid-assisted grinding method to suit wet chemistry. New materials and solvents can be used to synthesize perovskite. Secondly, basic information about perovskite such as methylammonium lead iodide (CH3NH3PbI3) by using initial solvent screening were investigated. 25 kinds of solvents were used to dissolve PbI2 and CH3NH3I at 25oC to construct Form Spaces, respectively. These solvents were chosen because they were commonly used in the laboratory. Solvents were one of important factors in the synthesis of perovskite. A solvent suitable for synthesis must be selected. Form Spaces showed which were good solvents (solubility ≥ 5 mg/mL) or bad solvents (solubility ≤ 5mg/mL). Good solvents could be used as a reagent, and bad solvents could be used as an antisolvent. According to the Form Space, PbI2 had 3 good solvents and 22 bad solvents, and CH3NH3I had 13 good solvents and 12 bad solvents. We found that regardless of which antisolvents were used, the same intermediate phase was crystallized out repeatedly and determined to be CH3NH3PbI3・DMF solvate if DMF was used as the crystallization solvent as identified by FT-IR, PXRD, TGA and DSC. Pure CH3NH3PbI3 crystals could not be found directly by solution crystallization. Thirdly, the annealing process were studied by different heating rates, such as rapidly heating (place the sample directly into a preheated oven at 100oC) and gradually heating (heated from 30o to 100oC, heating rate was about: 10 oC/hr). The results from the OM images, UV-vis absorption and photoluminescence spectra showed that the heating rate had to be controlled during annealing process. If the heating rate was increased gradually, DMF could be removed without breaking the crystal lattice. The broken crystal lattice could influence on the film morphology, worsened the film morphology, and also led to poor energy conversion efficiency.
關鍵字(中) ★ 鈣鈦礦
★ 結晶工程
★ 溶劑篩選
★ 溶劑化物
★ 退火
關鍵字(英) ★ perovskites
★ crystal engineering
★ solvent screening
★ solvate
★ annealing
論文目次 摘要 i
Abstract iii
Acknowledgement v
List of Figures ix
List of Tables xiv
List of Schemes xv
Chapter 1 Introduction 1
1.1 Perovskite Solar Cells 1
1.2 Studies of Improving Morphology 5
1.3 Conceptual Framework 8
1.4 References 9
Chapter 2 Experimental Materials and Methods 18
2.1 Materials 18
2.1.1 Chemicals 18
2.1.2 Solvents 18
2.2 Experimental Procedures 23
2.2.1 Synthesis of (C6H5CH2NH3)2PbCl4 Perovskite Powders 23
2.2.2 Synthesis of CH3NH3PbI3 Perovskite Powders 23
2.2.3 Preparation of the CH3NH3PbI3 Perovskite film by Dip Coating 24
2.2.4 Synthesis of CH3NH3Cl 25
2.2.5 High Throughput Screening for Perovskites by Grinding Method 26
2.2.6 Initial Solvent Screening 27
2.2.7 CH3NH3PbI3・DMF Solvate Made by Adding Different Anti-Solvents on DMF Solution Containing PbI2 and CH3NH3I Mixture 30
2.2.8 CH3NH3PbI3・DMF Solvate Made by Evaporating DMF Solution Containing PbI2 and CH3NH3I Mixture 31
2.2.9 CH3NH3PbI3・DMF Solvate Made by Cooling DMF Solution Containing PbI2 and CH3NH3I Mixture 31
2.2.10 Annealing Process Effect by the Rate of Temperature Increase 32
2.3 Analytical Measurements 33
2.3.1 Optical Microscopy (OM) 33
2.3.2 Fourier Transform Infrared (FT-IR) Spectroscopy 33
2.3.3 Differential Scanning Calorimetry (DSC) 33
2.3.4 Thermal Gravimetric Analysis (TGA) 34
2.3.5 Powder X-ray Diffractometry (PXRD) 34
2.3.6 Ultraviolet and Visible (UV-vis) Spectrophotometry 35
2.3.7 Photoluminescence (PL) 35
2.4 References 36
Chapter 3 38
3.1 Introduction 38
3.2 Results and Discussion 44
3.2.1 Grinding Method Studies 44
3.2.2 Initial Solvent Screening and Antisolvent Studies 49
3.2.3 Annealing Process Studies 67
3.3 Conclusions 74
3.4 References 75
Chapter 4 Future Work 84
參考文獻 Chap. 1
1. Chapin, D. M.; Fuller, C. S.; Pearson, G. L. A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power. J. Appl. Phys. 1954, 25 (5), 676.
2. Amkreutz, D.; Müller, J.; Schmidt, M.; Hänel, T.; Schulze, T. F. Electron-Beam Crystallized Large Grained Silicon Solar Cell on Glass Substrate. Prog. Photovolt. Res. Appl. 2011, 19 (8), 937-945.
3. Zhao, J.; Wang, A.; Green, M. A.; Ferrazza, F. 19.8% Efficient “Honeycomb” Texture Multicrystalline and 24.4% Monocrystalline Silicon Solar Cells. Appl. Phys. Lett. 1998, 73 (14), 1991-1993.
4. Carlson, D. E.; Wronski, C. R. Amorphous Silicon Solar Cell. Appl. Phys. Lett. 1976, 28 (11), 671-673.
5. Britt, J.; Ferekides, C. Thin-Film CdS/CdTe Solar Cell with 15.8% Efficiency. Appl. Phys. Lett. 1993, 62 (22), 2851-2852.
6. Wada, T.; Kohara, N.; Nishiwaki, S.; Negami, T. Characterization of the Cu (In, Ga) Se2/Mo Interface in CIGS Solar Cells. Thin Solid Films. 2001, 387 (1-2), 118-122.
7. Lee, K. M.; Hu, C. W.; Chen, H. W.; Ho, K. C. Incorporating Carbon Nanotube in a Low-Temperature Fabrication Process for Dye-Sensitized TiO2 Solar Cells. Solar Energy Materials & Solar Cells. 2008, 92 (12), 1628-1633.
8. Lee, K. M.; Chen, P. Y.; Hsu, C. Y.; Huang, J. H.; Ho, W. H.; Chen, H. C.; Ho, K. C. A High-Performance Counter Electrode Based on Poly(3,4-alkylenedioxythiophene) for Dye-Sensitized Solar Cells. Power Sources. 2009, 188 (1), 313-318.
9. Burschka, J.; Pellet, N.; Moon, S. J.; Baker, R. H.; Gao, P.; Nazeeruddin, M. K.; Gräzel, M. Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells. Nature, 2013, 499 (7458), 316-319.
10. Mei, A.; Li, X.; Liu, L.; Ku, Z.; Liu, T.; Rong, Y.; Xu, M.; Hu, M.; Chen, J.; Yang, Y.; Grätzel, M.; Han, H. A Hole-Conductor-Free, Fully Printable Mesoscopic Perovskite Solar Cell with High Stability. Science, 2014, 345 (6194), 295-298.
11. National Renewable Energy Laboratory (NREL), http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.
12. Park, N. G. Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell. J. Phys. Chem. Lett. 2013, 4 (15), 2423-2429.
13. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chen. Soc. 2009, 131 (17), 6050-5051.
14. Wang, Z. X.; Liao, W. Q.; Ye, H. Y.; Zhang Y. Sequential Structural Transitions with Distinct Dielectric Responses in A Layered Perovskite Organic-Inorganic Hybrid Material: [C4H9N]2[PbBr4]. Dalton Trans. 2015, 44 (47), 20406-20412.
15. Im, J. H.; Lee, C. R.; Lee, J. W.; Park, S. W.; Park, N. G. 6.5% Efficient Perovskite Quantum-Dot-Sensitized Solar Cell. Nanoscale. 2011, 3 (10), 4088-4093.
16. Wolf, S. D.; Holovsky, J.; Moon, S. J.; Löper, P.; Niesen, B.; Ledinsky, M.; Haug, F. J.; Yum, J. H.; Ballif, C. Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. J. Phys. Chem. Lett. 2014, 5 (6), 1035-1039.
17. Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-Hole Diffusion Lengths Exceeding in an Organometal Trihalide Perovskite Absorber. Science. 2013, 342 (6156), 341-344.
18. Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z.; Tou, J.; Liu, Y.; Yang, Y. Interface Engineering of Highly Efficient Perovskite Solar Cells. Science. 2014, 345 (6196), 542-546.
19. Du, M. H. Efficient Carrier Transport in Halide Perovskites Theoretical Perspectives. J. Mater. Chem. A. 2014, 2 (24), 9091-9098.
20. Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Semiconducting Tin and Lead Iodine Perovskites with Organic Cations: Phase Transition, and Near-Infrared Photoluminescent Properties. Inorg. Chem. 2013, 52 (15), 9019-9038.
21. Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Chemical Management for Colorful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells. Nano. Lett. 2013, 13 (4), 1764-1769.
22. Deng, Y.; Peng, E.; Shao, Y.; Xiao, Z.; Dong, Q.; Huang, J. Scalable Fabrication of Efficient Organolead Trihalide Perovskite Solar Cells with Doctor-Bladed Active Layers. Energy Environ. Sci. 2015, 8 (5), 1544-1550.
23. Hwang, K.; Jung, Y. S.; Heo, Y. J.; Scholes, F. H.; Watkins, S. E.; Subbiah, J.; Jones, D. J.; Kim, D. Y.; Vak, D. Toward Large Scale Roll-to-Roll Production of Printer Perovskite Solar Cells. Adv. Mater. 2015, 27 (7), 1241-1247.
24. Barrows, A. T.; Pearson, A. J.; Kwak, C. K.; Dunbar, A. D. F.; Buckley, A. R.; Lidzey, D. G. Efficient Planar Heterojunction Mixed-Halide Perovskite Solar Cells Deposited via Spray-Deposition. Energy Environ. Sci. 2014, 7 (9), 2944-2950.
25. Liu, D.; Kelly, T. L. Perovskite Solar Cells with a Planar Heterojunction Structure Prepared Using Room-Temperature Solution Processing Techniques. Nature Photonics. 2014, 8 (2), 133-138.
26. Eperon, G. E.; Burlakov, V. M.; Docampo, P.; Goriely, A.; Snaith, H. J. Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells. Adv. Funct. Mater. 2014, 24 (1), 151-157.
27. Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Peroveskites. Science. 2012, 338 (6107), 643-647.
28. Li, F.; Bao, C.; Gao, H.; Zhu, W.; Yu, T.; Yang, J.; Fu, G.; Zhou, X.; Zou, Z. A Facile Spray-Assisted Fabrication of Homogenous Flat CH3NH3PbI3 Films for High Performance Mesostructure Perovskite Solar Cells. Maters. Lett. 2015, 157, 38-41.
29. Albero, J.; Asiri, A. M.; Gercia, H. Influence of the Composition of Hybrid Perovskites on Their Perormence in Solar Cells. J. Mater. Chem. A. 2016, 4 (12), 4353-4364.
30. Peng, Y.; Jing, G.; Cui, T. A Hybrid Physical-Chemical Deposition Process at Ultra-Low Temperatures for High-Performance Perovskite Solar Cells. J. Mater. Chem. A. 2015, 3 (23), 12436-12442.
31. Zhou, Z.; Wang, Z.; Zhou, Y.; Pang, S.; Wang, D.; Xu, H.; Liu, Z.; Padture, N, P.; Cui, G. Methylamine-Gas-Induced Defect-Healing Behavior of CH3NH3PbI3 Thin Films for Perovskite Solar Cells. Angew. Chem. Int. Ed. 2015, 54¬ (33), 9705-9709.
32. Zhou, Y.; Zhang, T.; Li, C.; Liang, Z.; Gong, L.; Chen, J.; Xie, W.; Xu, J.; Liu, P. Rapid Growth of High Quality Perovskite Crystal by Solvent Mixing. CrystEngComm. 2016, 18 (7), 1184-1189.
33. Wu, Y. Z.; Islam, A.; Yang, X. D.; Qin, C. J.; Liu, J.; Zhang, K.; Peng, W. Q.; Han, L. Y. Retarding the Crystallization of PbI2 for Highly Reproducible Planar-Structured Perovskite Solar Cells via Sequential Deposition. Energy Environ. Sci. 2014, 7 (9), 2934−2938.
34. Jacobsson, T. J.; Tress, W.; Correa-Baena, J. P.; Edvinsson, T.; Hagfeldt, A. Room Temperature as a Goldilocks Environment for CH3NH3PbI3 Perovskite Solar Cells: The Importance of Temperature on Device Performance. J. Phys. Chem. C. 2016, 120 (21), 11382-11393.
35. Dar, M. I.; Jalebi, M. A.; Arora, N.; Moehl, T.; Grätzel, M.; Nazeerudin, M. K. Understanding the Impact of Bromide on the Photovoltaic Performance of CH3NH3PbI3 Solar Cells. Adv. Mater. 2015, 27 (44), 7221-7228.
36. Zheng, E.; Wang, X. F.; Song, J.; Yan, L.; Tian, W.; Miyasaka, T. PbI2-Based Dipping-Controlled Material Conversion for Compact Layer Free Perovskite Solar Cells. ACS Appl. Mater. Interfaces. 2015, 7 (32), 18156-18162.
37. Ying, C.; Shi, C.; Wu, N.; Zhang, J.; Wang, M. A Two-Layer Structured PbI2 Film for Efficient Planar Perovskite Solar Cells. Nanoscale. 2015, 7 (28), 12092-12095.
38. Borchert, J.; Boht, H.; Fräzel, W.; Csuk, R.; Scheer, R.; Pistor, P. Structural Investigation of Co-Evaporated Methyl Ammonium Lead Halide Perovskite Films During Growth and Thermal Decomposition Using Different PbX2 (X= I, Cl) Precursors. J. Mater. Chem. A. 2015, 3 (39), 19842-19849.
39. Kara, K.; Kara, D. A.; Kırbıyık, C.; Ersoz, M.; Usluer, O.; Briseno, A. L.; Kus, M. Solvent Washing with Toluene Enhances Efficiency and Increases Reproducibility in Perovskite Solar Cells. RSC Adv. 2016, 6 (32), 26606-26611.
40. Vincent, B. R.; Robertson, K. N.; Cameron, T. S.; Knop, O. Alkylammonium Lead. Part 1. Isolated PbI64- Ions in (CH3NH3)4PbI6●2H2O. Can. J. Chem. 1987, 65 (5), 1042-1046.
41. Hao, F.; Stoumpos, C. C.; Ziu, Z.; Chang, R. P. H.; Kanatzidis, M. G. Controllable Perovskite Crystallization at a Gas-Solid Interface for Hole Conductor-Free Solar Cells with Steady Power Conversion Efficiency Over 10%. J. Am. Chem. Soc. 2014, 136 (46), 16411-16419.
42. Leguy, A. M. A.; Hu, Y.; Quiles, M. C.; Alonso, M. I.; Weber, O. J.; Azarhoosh, P.; Scilfgaarde, M. V.; Weller, M. T.; Bein, T.; Nelson, J.; Docampo, P.; Barnes, P. R. F. Reversibile Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells. Chem. Mater. 2015, 27 (9), 3397-3407.
43. Xiao. Z.; Dong, Q.; Bi, C.; Shao, Y.; Yuan, Y.; Huang, J. Solvent Annealing of Perovskite-Induced Crystal Growth for Photovolatic-Device Efficiency Enhancement. Adv. Mater. 2014, 26 (37), 6503-6509.
44. Liang, P. W.; Liao, C. Y.; Chueh, C. C.; Zuo, F.; Williams, S. T.; Xin, X. K.; Lin, J.; Jen, K. Y. Additive Enhanced Crystallization of Soiution-Processed Perovskite for Highly Efficient Planar-Heterojunction Solar Cells. Adv. Mater. 2014, 26 (22), 3748-3754.
45. Dualeh, A.; Tétreault, N.; Moehl, T.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Effect of Annealing Temperature on Film Morphology of Organic-Inorganic Hybrid Perovskite Solid-State Solar Cells. Adv. Funct. Mater. 2014, 24 (21), 3250-3258.
46. Zhang, T.; Yang, M.; Zhu, K. Controllable Sequential Deposition of Planar CH3NH3PbI3 Perovskite Films via Adjustable Volume Expansion. Nano Lett. 2015, 15 (6), 3959-3963.
47. Chiang, C. H.; Tseng, Z. L.; Wu, C. G. Planar Heterojunction Perovskite/PC71BM Solar Cells with Enhanced Open-Circuit Voltage via a (2/1)-Step Spin-Coating Process. J. Mater. Chem. A. 2014, 2 (38), 15897-15903.
48. Zhao, Y.; Zhu, K. CH3NH3Cl-Assisted One-Step Solution Growth of CH3NH3PbI3: Structure, Charge-Carrier Dynamics, and Photovoltaic Properties of Perovskite Solar Cells. J. Phys. Chem. C. 2014, 118 (18), 9412-9418.
49. Chang, C. Y.; Chu, C. Y.; Huang, Y. C.; Huang, C. W.; Chang, S. Y.; Chen, C. A.; Chao, C. Y.; Su, W. F. Tuning Perovskite Morphology by Polymer Additive for High Efficiency Solar Cell. ACS Appl. Mater. Interfaces. 2015, 7 (8), 4955-4961.
50. Lin, K. F.; Chang, S. H.; Wang, K. H.; Cheng, H. M.; Chiu, K. Y.; Lee, K. M.; Chen, S. H.; Wu, C. G. Unraveling the High Performance of Tri-Iodine Perovskite Absorber Based Photovoltaics with a Non-Polar Solvent Washing Treatment. Sol. Energy Mater. Sol. Cells. 2015, 141, 309-314.
51. Bi, D.; Zohry, A. M. E.; Hagfeldt, A.; Boschloo, G. Unraveling the Effect of PbI2 Concentration on Charge Recombination Kinetics in Perovskite Solar Cells. ACS Photonics. 2015, 2 (5), 589-594.
52. Kim, H. B.; Choi, H.; Jeong, J.; Kim, S.; Walker, B.; Song, S.; Kim, J. Y. Mixed Solvents for the Optimization of Morphology in Solution-Processed, Inverted-Type Perovskite/Fullerene Hybrid Solar Cells. Nanoscale. 2014, 6 (12), 6679-6683.
53. Wu, C. G.; Chiang, C. H.; Tseng, Z. L.; Nazeeruddin, M. K.; Hagfeldt, A.; Grätzel, M. High Efficiency Stable Inverted Perovskite Solar Cells Without Current Hysteresis. Energy Environ. Sci. 2015, 8 (9), 2725-2733.
54. Liu, M.; Johnston, M. B.; Snaith, H. J. Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition. Nature. 2013, 501 (7467), 395-398.
Chap. 2
1. Wei, Y. Synthesis and Optical Properties of Self-Assembled 2D Layered Organic-Inorganic Perovskites for Optoelectronics. PhD thesis. The Quantum and Molecular Photonics Laboratory. France 2012.
2. Nagao, K.; Kawano, N.; Koshimizu, M.; Asei, K. Resonance Effects of Wannier-Frenkel Excitons on Luminescence Properties of Layered Perovskite Compounds (C6H5CH2NH3)2PbClxBr4-x. Jpn. J. Appl. Phys. 2014, 53 (2S), 02BC21-1-02BC21-4.
3. Lin, K. F.; Chang, S. H.; Wang, K. H.; Cheng, H. M.; Chiu, K. Y.; Lee, K. M.; Chen, S. H.; Wu, C. G. Unraveling the High Performance of Tri-Iodine Perovskite Absorber Based Photovoltaics with a Non-Polar Solvent Washing Treatment. Sol. Energy Mater. Sol. Cells. 2015, 141, 309-314.
4. Maculan, G.; Sheikh, A. D.; Abdelhady, A. L.; Saidaminov, M. I.; Haque, M. A.; Murali, B.; Alarousu, E.; Mohammed, O. F.; Wu, T.; Baker, O. M. CH3NH3PbI3 Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector. J. Phys. Chem. Lett. 2015, 6 (19), 3781-3786.
5. Braga, D.; Grepioni, F. Reactions Between or Within Molecular Crystals. Angew. Chem. Int. Ed. 2004, 43 (31), 4002-4011.
6. Cinčić, D.; Friščić, T.; Jones, W. A Stepwise Mechanism for Mechanochemical Synthesis of Halogen-Bonded Cocrystal Architectures. J. Am. Chem. Soc. 2008, 130 (24), 7524-7525.
7. Lee, T.; Su, Y. C.; Hou, H. J.; Hsieh, H. Y. Initial Solvent Screening of Carbamazepine, Cimetidine, and Phenylbutazone: Part 1 of 2. Pharm. Technol. 2009, 33 (5), 62-72.
8. Lee, T.; Kuo, C. S.; Chen, Y. H. Solubility, Polymorphism, Crystalinity, and Crystal Habit of Acetaminophen and Ibuprofen. Pharm. Technol. 2006, 30 (10), 72-92.
9. Lee, T.; Su, Y. C.; Hou, H. J.; Hsieh, H. Y. Initial Solvent Screening of Carbamazepine, Cimetidine, and Phenylbutazone: Part 2 of 2. Pharm. Technol. 2009, 33 (6), 54-61.
Chap. 3
1. Albero, J.; Asiri, A, M.; Garcia, H. Influence of the Composition of Hybrid Perovskites on the Performance in Solar Cells. J. Mater. Chem. A. 2016, 4 (12), 4353-4364.
2. Zhou, Z.; Wang, Z.; Zhou, Y.; Pang, S.; Wang, D.; Xu, H.; Liu, Z.; Padture, N. P.; Cui, G. Methylamine-Gas-Induced Defect-Healing Behavior of CH3NH3PbI3 Thin Films for Perovskite Solar Cells. Angew. Chem. Int. Ed. 2015, 54 (33), 9705-9709.
3. Xie, F. X.; Zhang, D.; Su, H.; Ren, X.; Wong, K. S.; Grätzel, M.; Choy, W. C.H. Vacuum-Assisted Thermal Annealing of CH3NH3PbI3 for Highly Stable and Efficient Perovskite Solar Cells. ACS Nano. 2015, 9 (1), 639-646.
4. Li, C.; Guo, Q.; Qiao, W.; Chen, Q.; Ma, S.; Pan, X.; Wang, F.; Yao, J.; Zhang, C.; Xiao, M.; Dai, S.; Tan, Z. Efficient Lead Acetate Sourced Planar Heterojunction Perovskite Solar Cells With Enhanced Substrate Coverage via One-step Spin-coating. Organic Electronics. 2016, 33, 194-200.
5. Wu, Y. Z.; Islam, A.; Yang, X. D.; Qin, C. J.; Liu, J.; Zhang, K.; Peng, W. Q.; Han, L. Y. Retarding the Crystallization of PbI2 for Highly Reproducible Planar-Structured Perovskite Solar Cells via Sequential Deposition. Energy Environ. Sci. 2014, 7 (9), 2934−2938.
6. Zhou, Y.; Zhang, T.; Li, C.; Liang, Z.; Gong, L.; Chen, J.; Xie, W.; Xu, J.; Liu, P. Rapid Growth of High Quality Perovskite Crystal by Solvent mixing. CrystEngComm. 2016, 18 (7), 1184-1189.
7. Heo, J. H.; Song, D. H.; Han, H. J.; Kim, S. Y.; Kim, J. H.; Kim, D.; Shih, H. W.; Christoph Wolf, T. K. A.; Lee, T. E.; Im, S. H. Planar CH3NH3PbI3¬ Perovskite Solar Cells with Constant 17.2% Average Power Conversion Efficiency Irrespective of The Scan Rate. Adv. Mater. 2015, 27 (22), 3424-3430.
8. Kara, K.; Kara, D. A.; Kırbıyık, C.; Ersoz, M.; Usluer, O.; Briseno, A. L.; Kus, M. Solvent Washing with Toluene Enhances Efficiency and Increases Reproducibility in Perovskite Solar Cells. RSC Adv. 2016, 6 (32), 26606-26611.
9. Zhou, Y.; Yang, M.; Wu, W.; Vasiliev, A. L.; Zhu, K.; Padture, N. P. Room-temperature Crystallization of Hybrid-perovskite Thin Films via Solvent-solvent Extraction for High-Performance Solar Cells. J. Mater. Chem. A. 2015, 3 (15), 8178-8184.
10. Yang, M.; Zhou, Y.; Zeng, Y.; Jiang, C. S.; Padture, N. P.; Zhu, K. Square-Centimeter Solution-Processed Planar CH3NH3PbI3 Perovskite Solar Cells with Efficiency Exceeding 15%. Adv. Mater. 2015, 27 (41), 6363-6370.
11. Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solvent Engineering for High-Performance Inorganic-Organic Hybrid Perovskite Solar Cells. Nature Materials. 2014, 13 (9), 897-903.
12. Chen, C. C.; Bae, S. H.; Chang, W. H.; Hong, Z.; Li, G.; Chen, Q.; Zhou, H.; Yang, Y. Perovskite/Polymer Monolithic Hybrid Tandem Solar Cells Utilizing a Low-Temperature, Full Solution Process. Mater. Horiz. 2015, 2 (2), 203-211.
13. Xiao, Z.; Bi, C.; Shao, Y.; Dong, Q.; Wang, Q.; Yuan, Y.; Wang, C; Gao, Y.; Huang, J. Efficient, High Yield Perovskite Photovoltaic Devices Grown by Interdiffusion of Solution-Processed Precursor Stacking Layers. Energy Environ. Sci. 2014, 7 (8), 2619-2623.
14. Jiang, C.; Lim, S. L.; Goh, W. P.; Wei, F. X.; Zhang, J. Improvement of CH3NH3PbI3 Formation for Efficient and Better Reproducible Mesoscopic Perovskite Solar Cells. ACS Appl. Mater. Interface. 2015, 7 (44), 24726-24732.
15. Zhu, L.; Xiao, J.; Shi, J.; Wang, J.; Lv, S.; Xu, Y.; Luo, Y.; Xiao, Y.; Wang, S.; Meng, Q.; Li. X.; Li, D. Efficient CH3NH3PbI3 Perovskite Solar Cells with 2TPA-n-DP Hole-transporting Layers. Nano Res. 2015, 8 (4), 1116-1127.
16. Shi, J.; Luo, Y.; Wei, H.; Luo, J.; Dong, J.; Lv, S.; Xiao, J.; Xu, Y.; Zhu, L.; Xu, X.; Wu, H.; Li, D.; Meng, Q. Modified Two-Step Deposition Method for High-Efficiency TiO2/ CH3NH3PbI3 Heterojunction Solar Cells. ACS Appl. Mater. Interfaces. 2014, 6 (12), 9711-9718.
17. Peng, Y.; Jing, G.; Cui, T. A Hybrid Physical-Chemical Deposition Process at Ultra-Low Temperatures for High-Performance Perovskite Solar Cells. J. Mater. Chem. A. 2015, 3 (23), 12436-12442.
18. Leyden, M. R.; Ono, L. K.; Raga, S. R.; Kato, Y.; Wang, S.; Qi, Y. High Performance Perovskite Solar Cells by Hybrid Chemical Vapor Deposition. J. Mater. Chem. A. 2014, 2 (4), 18742-18745.
19. Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H. S.; Wang, H. H.; Liu, Y.; Li, G.; Yang, Y. Planner Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. J. Am. Chem. Soc. 2014, 136 (2), 622-625.
20. Liu, M.; Johnston, M. B.; Snaith, H. J. Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition. Nature. 2013, 501 (7467), 395-398.
21. Bhachu, D. S.; Scanlon, D. O.; Saban, E. J.; Bronstein, H.; Parkin, I. P.; Carmalt, C. J.; Palgrave, R, G. Scalable Route to CH3NH3PbI3 Perovskite Thin Films by Aerosol Assisted Chemical Vapour Deposition. J. Mater. Chem. A. 2015, 3 (17), 9071-9073.
22. Raga, S. R.; Jung, M. C.; Lee, M. V.; Leyden, M. R.; Kato, Y.; Qi, Y. Influence of Air Annealing on High Efficiency Planar Structure Perovskite Solar Cells. Chem. Mater. 2015, 27 (5), 1597−1603.
23. Dualeh, A.; Tétreault, N.; Moehl, T.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Effect of Annealing Temperature on Film Morphology of Organic-Inorganic Hybrid Perovskite Solid-Stste Solar Cells. Adv. Funct. Mater. 2014, 24 (21), 3250-3258.
24. Tan, K. W.; Moore, D. T.; Saliba, M.; Sai, H.; Estroff, L. A.; Hanrath, T.; Snaith, H. J.; Wiesner, U. Thermally Induced Structural Evolution and Performance of Mesoporous Block Copolymer-Directed Alumina Perovskite Solar Cells. ACS Nano. 2014, 8 (5), 4730-4739.
25. Luo, D.; Yu, L.; Wang, H.; Zou, T.; Luo, L.; Liu, Z.; Lu, Z. Cubic Structure of the Mixed Halide Perovskite CH3NH3PbI3-xClx via Thermal Annealing. RSC Adv. 2015, 5 (104), 85480-85485.
26. Park, J. T.; Szpunar, J. A.; Cha, S. Y. Effect of Heating Rate on the Development of Annealing Texture in Nonoriented Electrical Steels. ISIJ International. 2003, 43 (10), 1611-1614.
27. Lee, T.; Su, Y. C.; Hou, H. J.; Hsieh, H. Y. Initial Solvent Screening of Carbamazepine, Cimetidine, and Phenylbutazone: Part 1 of 2. Pharm. Technol. 2009, 33 (5), 62-72.
28. Lee, T.; Kuo, C. S.; Chen, Y. H. Solubility, Polymorphism, Crystalinity, and Crystal Habit of Acetaminophen and Ibuprofen. Pharm. Technol. 2006, 30 (10), 72-92.
29. Lee, T.; Chen, Y. H.; Zhang, C. W. Solubility, Polymorphism, Crystallinity, Crystal Habit, and Drying Scheme of (R,S)-(±)-Sodium Ibuprofen Dihydrate. Pharm. Technol. 2007,31 (6), 72-87.
30. Lee, T.; Lin, M. S. Sublimation Point Depression of Tris(8-hydroxyquinoline)aluminum(III) (Alq3) by Crystal Engineering. Cryst. Growth Des. 2007, 7 (9), 1803-1810.
31. Lee, H. L.; Lee, T. Direct Co-crystal Assembly from Synthesis to Co-crystallization. CrystEngComn. 2015, 17 (47), 9002-9006.
32. James, S. L.; Adams, C. J.; Bolm, C.; Braga, D.; Collier, P.; Friščić, T.; Grepioni, F.; Harris, K. D. M.; Hyett, G.; Jones, W.; Krebs, A.; Mack, J.; Maini, L.; Orpen, A, G.; Parkin, I. P.; Shearouse, W. C.; Steed, J. W.; Waddel, D. C. Mechanochemistry: Opportunities for New and Cleaner Synthesis. Chem. Soc. Rev. 2012, 41 (1), 413-447.
33. Prochowicz, D.; Sokołowski, K.; Justyniak, I.; Kornowicz, A.; Fairen-Jimenez, D.; Friščić, T.; Lewiński, J. A Mechanochemical Strategy for IRMOF Assembly Based on Pre-designed Oxo-zinc Precursors. Chem. Commun. 2015, 51 (19), 4032-4035.
34. Friščić, T.; Jones, W. Recent Advances in Understanding the Mechanism of Cocrystal Formation via Grinding. Cryst. Growth Des. 2009, 9 (3), 1621–1637.
35. Pedireddi, V. R.; Jones, W.; Chorlton, A. P.; Docherty, R. Creation of Crystalline Supramolecular Arrays: A Comparison of Co-crystal Formation from Solution and by Solid-State Grinding. Chem. Commun. 1996, (8), 987–988.
36. Karki, S.; Friščić, T.; Jones, W.; Motherwell, W. D. S. Screening for Pharmaceutical Cocrystal Hydrates via Neat and Liquid-Assisted Grinding. Mol. Pharmaceutics. 2007, 4 (3), 347-354.
37. Etter, M. C. Hydrogen Bonds as Design Elements in Organic Chemistry. J. Phys. Chem. 1991, 95 (12), 4601-4610.
38. Etter, M. C.; Reutzel, S. M.; Choo, C. G. Self-Organization of Adenine and Thymine in the Solid State. J. Am. Chem. Soc. 1993, 115 (10), 4411-4412.
39. Stoumpos, C. C.; Malliakas, C, D.; Kanatzidis, M. G. Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties. Inorg. Chem. 2013, 52 (15), 9019-9038.
40. Prochowicz, D.; Franckevičius, M.; Cieślak, A. M.; Zakeeruddie, S. M.; Grätzel, M.; Lewiński, J. Mechanosynthesis of the Hybrid Perovskite CH3NH3PbI3: Characterization and The Corresponding Solar Cell Efficiency. J. Mater. Chem. A. 2015, 3 (41), 20772-20777.
41. Yamada, Y.; Yamada, T.; Phuong, L, Q.; Maruyama, N.; Nishimura, H.; Wakamiya, A.; Murata, T.; Kanemitsu, Y. Dynamic Optical Properties of CH3NH3PbI3 Single Crystals As Revealed by One- and Two-Photon Excited Photoluminescence Measurements. J. Am. Chem. Soc. 2015, 137 (33), 10456-10459.
42. Markus, B.; Wolfgang, F. Crystal Structure of Bis(Benzylammonium) Lead Tetrachloride, (C6H5CH2NH3)2PbCl4. NCS. 1999, 214 (3), 331-332.
43. Conings, B.; Baeten, L.; Dobbelaere, C. D.; Haen, J. D.; Manca, J.; Boүen, H. G. Perovskite-Based Hybrid Solar Cells Exceeding 10% Efficiency with High Reproducibility Using a Thin Film Sandwich Approach. Adv. Mater. 2014, 26 (13), 2041-2046.
44. Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Long-Range Balanced Electron- and Hole- Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science. 2013, 342 (6156), 344-347.
45. Ahn, N.; Son, D. Y.; Jang, I. H.; Kang, S. M.; Choi, M.; Park, N. G. Highly Reproducible Perovskite Solar Cell with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead (II) Iodine. J. Am. Chem. Soc. 2015, 137 (27), 8696-8699.
46. Nguyen, M. T.; Vu, T. V. P.; Bui, B. T.; Luong, T. T.; Nguyen, M. H.; Ngoc, L. H. H.; Bui, V. D.; Truong, T. T.; Tran, T. N. Optical and Structural Study of Organometal Halide Materials for Application in Perovskite-Based Solar Cells. J. Electron. Chem. 2016, 45 (5), 2322-2327.
47. Löper, P.; Stuckelberger, M.; Niesen, B.; Werner, J.; Filipič, M.; Moon, S. J.; Yum, J. H.; Topič, M.; Wolf, S. D.; Ballif, C. Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry. J. Phys. Chem. Lett. 2015, 6 (1), 66-71.
48. Guo, X.; McCleese, C.; Kolodziej, C.; Samia, A. C. S.; Zhao, Y.; Burda, C. Identification and Characterization of the Intermediate Phase in Hybrid Organic-inorganic MAPbI3 perovskite. Dalton Trans. 2016, 45 (9), 3806–3813.
49. Takieddin, K.; Khimyak, Y. Z.; Fábián, L. Prediction of Hydrate and Solvate Formation Using Statistical Models. Cryst. Growth Des. 2016, 16 (1), 70-81.
50. Wang, B.; Wong, K. Y.; Yang, S.; Chen, T. Crystallinity and Defect State Engineering in Organo-Lead Halide Perovskite for High-Efficiency Solar Cells. J. Mater. Chem. A. 2016, 4 (10), 3806-3812.
51. Oku, T. Crystal Structures of CH3NH3PbI3 and Related Perovskite Compounds Used for Solar Cells. 2015.
指導教授 李度(Tu Lee) 審核日期 2016-6-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明