參考文獻 |
Chap. 1
1. Chapin, D. M.; Fuller, C. S.; Pearson, G. L. A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power. J. Appl. Phys. 1954, 25 (5), 676.
2. Amkreutz, D.; Müller, J.; Schmidt, M.; Hänel, T.; Schulze, T. F. Electron-Beam Crystallized Large Grained Silicon Solar Cell on Glass Substrate. Prog. Photovolt. Res. Appl. 2011, 19 (8), 937-945.
3. Zhao, J.; Wang, A.; Green, M. A.; Ferrazza, F. 19.8% Efficient “Honeycomb” Texture Multicrystalline and 24.4% Monocrystalline Silicon Solar Cells. Appl. Phys. Lett. 1998, 73 (14), 1991-1993.
4. Carlson, D. E.; Wronski, C. R. Amorphous Silicon Solar Cell. Appl. Phys. Lett. 1976, 28 (11), 671-673.
5. Britt, J.; Ferekides, C. Thin-Film CdS/CdTe Solar Cell with 15.8% Efficiency. Appl. Phys. Lett. 1993, 62 (22), 2851-2852.
6. Wada, T.; Kohara, N.; Nishiwaki, S.; Negami, T. Characterization of the Cu (In, Ga) Se2/Mo Interface in CIGS Solar Cells. Thin Solid Films. 2001, 387 (1-2), 118-122.
7. Lee, K. M.; Hu, C. W.; Chen, H. W.; Ho, K. C. Incorporating Carbon Nanotube in a Low-Temperature Fabrication Process for Dye-Sensitized TiO2 Solar Cells. Solar Energy Materials & Solar Cells. 2008, 92 (12), 1628-1633.
8. Lee, K. M.; Chen, P. Y.; Hsu, C. Y.; Huang, J. H.; Ho, W. H.; Chen, H. C.; Ho, K. C. A High-Performance Counter Electrode Based on Poly(3,4-alkylenedioxythiophene) for Dye-Sensitized Solar Cells. Power Sources. 2009, 188 (1), 313-318.
9. Burschka, J.; Pellet, N.; Moon, S. J.; Baker, R. H.; Gao, P.; Nazeeruddin, M. K.; Gräzel, M. Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells. Nature, 2013, 499 (7458), 316-319.
10. Mei, A.; Li, X.; Liu, L.; Ku, Z.; Liu, T.; Rong, Y.; Xu, M.; Hu, M.; Chen, J.; Yang, Y.; Grätzel, M.; Han, H. A Hole-Conductor-Free, Fully Printable Mesoscopic Perovskite Solar Cell with High Stability. Science, 2014, 345 (6194), 295-298.
11. National Renewable Energy Laboratory (NREL), http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.
12. Park, N. G. Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell. J. Phys. Chem. Lett. 2013, 4 (15), 2423-2429.
13. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chen. Soc. 2009, 131 (17), 6050-5051.
14. Wang, Z. X.; Liao, W. Q.; Ye, H. Y.; Zhang Y. Sequential Structural Transitions with Distinct Dielectric Responses in A Layered Perovskite Organic-Inorganic Hybrid Material: [C4H9N]2[PbBr4]. Dalton Trans. 2015, 44 (47), 20406-20412.
15. Im, J. H.; Lee, C. R.; Lee, J. W.; Park, S. W.; Park, N. G. 6.5% Efficient Perovskite Quantum-Dot-Sensitized Solar Cell. Nanoscale. 2011, 3 (10), 4088-4093.
16. Wolf, S. D.; Holovsky, J.; Moon, S. J.; Löper, P.; Niesen, B.; Ledinsky, M.; Haug, F. J.; Yum, J. H.; Ballif, C. Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. J. Phys. Chem. Lett. 2014, 5 (6), 1035-1039.
17. Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-Hole Diffusion Lengths Exceeding in an Organometal Trihalide Perovskite Absorber. Science. 2013, 342 (6156), 341-344.
18. Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z.; Tou, J.; Liu, Y.; Yang, Y. Interface Engineering of Highly Efficient Perovskite Solar Cells. Science. 2014, 345 (6196), 542-546.
19. Du, M. H. Efficient Carrier Transport in Halide Perovskites Theoretical Perspectives. J. Mater. Chem. A. 2014, 2 (24), 9091-9098.
20. Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Semiconducting Tin and Lead Iodine Perovskites with Organic Cations: Phase Transition, and Near-Infrared Photoluminescent Properties. Inorg. Chem. 2013, 52 (15), 9019-9038.
21. Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Chemical Management for Colorful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells. Nano. Lett. 2013, 13 (4), 1764-1769.
22. Deng, Y.; Peng, E.; Shao, Y.; Xiao, Z.; Dong, Q.; Huang, J. Scalable Fabrication of Efficient Organolead Trihalide Perovskite Solar Cells with Doctor-Bladed Active Layers. Energy Environ. Sci. 2015, 8 (5), 1544-1550.
23. Hwang, K.; Jung, Y. S.; Heo, Y. J.; Scholes, F. H.; Watkins, S. E.; Subbiah, J.; Jones, D. J.; Kim, D. Y.; Vak, D. Toward Large Scale Roll-to-Roll Production of Printer Perovskite Solar Cells. Adv. Mater. 2015, 27 (7), 1241-1247.
24. Barrows, A. T.; Pearson, A. J.; Kwak, C. K.; Dunbar, A. D. F.; Buckley, A. R.; Lidzey, D. G. Efficient Planar Heterojunction Mixed-Halide Perovskite Solar Cells Deposited via Spray-Deposition. Energy Environ. Sci. 2014, 7 (9), 2944-2950.
25. Liu, D.; Kelly, T. L. Perovskite Solar Cells with a Planar Heterojunction Structure Prepared Using Room-Temperature Solution Processing Techniques. Nature Photonics. 2014, 8 (2), 133-138.
26. Eperon, G. E.; Burlakov, V. M.; Docampo, P.; Goriely, A.; Snaith, H. J. Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells. Adv. Funct. Mater. 2014, 24 (1), 151-157.
27. Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Peroveskites. Science. 2012, 338 (6107), 643-647.
28. Li, F.; Bao, C.; Gao, H.; Zhu, W.; Yu, T.; Yang, J.; Fu, G.; Zhou, X.; Zou, Z. A Facile Spray-Assisted Fabrication of Homogenous Flat CH3NH3PbI3 Films for High Performance Mesostructure Perovskite Solar Cells. Maters. Lett. 2015, 157, 38-41.
29. Albero, J.; Asiri, A. M.; Gercia, H. Influence of the Composition of Hybrid Perovskites on Their Perormence in Solar Cells. J. Mater. Chem. A. 2016, 4 (12), 4353-4364.
30. Peng, Y.; Jing, G.; Cui, T. A Hybrid Physical-Chemical Deposition Process at Ultra-Low Temperatures for High-Performance Perovskite Solar Cells. J. Mater. Chem. A. 2015, 3 (23), 12436-12442.
31. Zhou, Z.; Wang, Z.; Zhou, Y.; Pang, S.; Wang, D.; Xu, H.; Liu, Z.; Padture, N, P.; Cui, G. Methylamine-Gas-Induced Defect-Healing Behavior of CH3NH3PbI3 Thin Films for Perovskite Solar Cells. Angew. Chem. Int. Ed. 2015, 54¬ (33), 9705-9709.
32. Zhou, Y.; Zhang, T.; Li, C.; Liang, Z.; Gong, L.; Chen, J.; Xie, W.; Xu, J.; Liu, P. Rapid Growth of High Quality Perovskite Crystal by Solvent Mixing. CrystEngComm. 2016, 18 (7), 1184-1189.
33. Wu, Y. Z.; Islam, A.; Yang, X. D.; Qin, C. J.; Liu, J.; Zhang, K.; Peng, W. Q.; Han, L. Y. Retarding the Crystallization of PbI2 for Highly Reproducible Planar-Structured Perovskite Solar Cells via Sequential Deposition. Energy Environ. Sci. 2014, 7 (9), 2934−2938.
34. Jacobsson, T. J.; Tress, W.; Correa-Baena, J. P.; Edvinsson, T.; Hagfeldt, A. Room Temperature as a Goldilocks Environment for CH3NH3PbI3 Perovskite Solar Cells: The Importance of Temperature on Device Performance. J. Phys. Chem. C. 2016, 120 (21), 11382-11393.
35. Dar, M. I.; Jalebi, M. A.; Arora, N.; Moehl, T.; Grätzel, M.; Nazeerudin, M. K. Understanding the Impact of Bromide on the Photovoltaic Performance of CH3NH3PbI3 Solar Cells. Adv. Mater. 2015, 27 (44), 7221-7228.
36. Zheng, E.; Wang, X. F.; Song, J.; Yan, L.; Tian, W.; Miyasaka, T. PbI2-Based Dipping-Controlled Material Conversion for Compact Layer Free Perovskite Solar Cells. ACS Appl. Mater. Interfaces. 2015, 7 (32), 18156-18162.
37. Ying, C.; Shi, C.; Wu, N.; Zhang, J.; Wang, M. A Two-Layer Structured PbI2 Film for Efficient Planar Perovskite Solar Cells. Nanoscale. 2015, 7 (28), 12092-12095.
38. Borchert, J.; Boht, H.; Fräzel, W.; Csuk, R.; Scheer, R.; Pistor, P. Structural Investigation of Co-Evaporated Methyl Ammonium Lead Halide Perovskite Films During Growth and Thermal Decomposition Using Different PbX2 (X= I, Cl) Precursors. J. Mater. Chem. A. 2015, 3 (39), 19842-19849.
39. Kara, K.; Kara, D. A.; Kırbıyık, C.; Ersoz, M.; Usluer, O.; Briseno, A. L.; Kus, M. Solvent Washing with Toluene Enhances Efficiency and Increases Reproducibility in Perovskite Solar Cells. RSC Adv. 2016, 6 (32), 26606-26611.
40. Vincent, B. R.; Robertson, K. N.; Cameron, T. S.; Knop, O. Alkylammonium Lead. Part 1. Isolated PbI64- Ions in (CH3NH3)4PbI6●2H2O. Can. J. Chem. 1987, 65 (5), 1042-1046.
41. Hao, F.; Stoumpos, C. C.; Ziu, Z.; Chang, R. P. H.; Kanatzidis, M. G. Controllable Perovskite Crystallization at a Gas-Solid Interface for Hole Conductor-Free Solar Cells with Steady Power Conversion Efficiency Over 10%. J. Am. Chem. Soc. 2014, 136 (46), 16411-16419.
42. Leguy, A. M. A.; Hu, Y.; Quiles, M. C.; Alonso, M. I.; Weber, O. J.; Azarhoosh, P.; Scilfgaarde, M. V.; Weller, M. T.; Bein, T.; Nelson, J.; Docampo, P.; Barnes, P. R. F. Reversibile Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells. Chem. Mater. 2015, 27 (9), 3397-3407.
43. Xiao. Z.; Dong, Q.; Bi, C.; Shao, Y.; Yuan, Y.; Huang, J. Solvent Annealing of Perovskite-Induced Crystal Growth for Photovolatic-Device Efficiency Enhancement. Adv. Mater. 2014, 26 (37), 6503-6509.
44. Liang, P. W.; Liao, C. Y.; Chueh, C. C.; Zuo, F.; Williams, S. T.; Xin, X. K.; Lin, J.; Jen, K. Y. Additive Enhanced Crystallization of Soiution-Processed Perovskite for Highly Efficient Planar-Heterojunction Solar Cells. Adv. Mater. 2014, 26 (22), 3748-3754.
45. Dualeh, A.; Tétreault, N.; Moehl, T.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Effect of Annealing Temperature on Film Morphology of Organic-Inorganic Hybrid Perovskite Solid-State Solar Cells. Adv. Funct. Mater. 2014, 24 (21), 3250-3258.
46. Zhang, T.; Yang, M.; Zhu, K. Controllable Sequential Deposition of Planar CH3NH3PbI3 Perovskite Films via Adjustable Volume Expansion. Nano Lett. 2015, 15 (6), 3959-3963.
47. Chiang, C. H.; Tseng, Z. L.; Wu, C. G. Planar Heterojunction Perovskite/PC71BM Solar Cells with Enhanced Open-Circuit Voltage via a (2/1)-Step Spin-Coating Process. J. Mater. Chem. A. 2014, 2 (38), 15897-15903.
48. Zhao, Y.; Zhu, K. CH3NH3Cl-Assisted One-Step Solution Growth of CH3NH3PbI3: Structure, Charge-Carrier Dynamics, and Photovoltaic Properties of Perovskite Solar Cells. J. Phys. Chem. C. 2014, 118 (18), 9412-9418.
49. Chang, C. Y.; Chu, C. Y.; Huang, Y. C.; Huang, C. W.; Chang, S. Y.; Chen, C. A.; Chao, C. Y.; Su, W. F. Tuning Perovskite Morphology by Polymer Additive for High Efficiency Solar Cell. ACS Appl. Mater. Interfaces. 2015, 7 (8), 4955-4961.
50. Lin, K. F.; Chang, S. H.; Wang, K. H.; Cheng, H. M.; Chiu, K. Y.; Lee, K. M.; Chen, S. H.; Wu, C. G. Unraveling the High Performance of Tri-Iodine Perovskite Absorber Based Photovoltaics with a Non-Polar Solvent Washing Treatment. Sol. Energy Mater. Sol. Cells. 2015, 141, 309-314.
51. Bi, D.; Zohry, A. M. E.; Hagfeldt, A.; Boschloo, G. Unraveling the Effect of PbI2 Concentration on Charge Recombination Kinetics in Perovskite Solar Cells. ACS Photonics. 2015, 2 (5), 589-594.
52. Kim, H. B.; Choi, H.; Jeong, J.; Kim, S.; Walker, B.; Song, S.; Kim, J. Y. Mixed Solvents for the Optimization of Morphology in Solution-Processed, Inverted-Type Perovskite/Fullerene Hybrid Solar Cells. Nanoscale. 2014, 6 (12), 6679-6683.
53. Wu, C. G.; Chiang, C. H.; Tseng, Z. L.; Nazeeruddin, M. K.; Hagfeldt, A.; Grätzel, M. High Efficiency Stable Inverted Perovskite Solar Cells Without Current Hysteresis. Energy Environ. Sci. 2015, 8 (9), 2725-2733.
54. Liu, M.; Johnston, M. B.; Snaith, H. J. Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition. Nature. 2013, 501 (7467), 395-398.
Chap. 2
1. Wei, Y. Synthesis and Optical Properties of Self-Assembled 2D Layered Organic-Inorganic Perovskites for Optoelectronics. PhD thesis. The Quantum and Molecular Photonics Laboratory. France 2012.
2. Nagao, K.; Kawano, N.; Koshimizu, M.; Asei, K. Resonance Effects of Wannier-Frenkel Excitons on Luminescence Properties of Layered Perovskite Compounds (C6H5CH2NH3)2PbClxBr4-x. Jpn. J. Appl. Phys. 2014, 53 (2S), 02BC21-1-02BC21-4.
3. Lin, K. F.; Chang, S. H.; Wang, K. H.; Cheng, H. M.; Chiu, K. Y.; Lee, K. M.; Chen, S. H.; Wu, C. G. Unraveling the High Performance of Tri-Iodine Perovskite Absorber Based Photovoltaics with a Non-Polar Solvent Washing Treatment. Sol. Energy Mater. Sol. Cells. 2015, 141, 309-314.
4. Maculan, G.; Sheikh, A. D.; Abdelhady, A. L.; Saidaminov, M. I.; Haque, M. A.; Murali, B.; Alarousu, E.; Mohammed, O. F.; Wu, T.; Baker, O. M. CH3NH3PbI3 Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector. J. Phys. Chem. Lett. 2015, 6 (19), 3781-3786.
5. Braga, D.; Grepioni, F. Reactions Between or Within Molecular Crystals. Angew. Chem. Int. Ed. 2004, 43 (31), 4002-4011.
6. Cinčić, D.; Friščić, T.; Jones, W. A Stepwise Mechanism for Mechanochemical Synthesis of Halogen-Bonded Cocrystal Architectures. J. Am. Chem. Soc. 2008, 130 (24), 7524-7525.
7. Lee, T.; Su, Y. C.; Hou, H. J.; Hsieh, H. Y. Initial Solvent Screening of Carbamazepine, Cimetidine, and Phenylbutazone: Part 1 of 2. Pharm. Technol. 2009, 33 (5), 62-72.
8. Lee, T.; Kuo, C. S.; Chen, Y. H. Solubility, Polymorphism, Crystalinity, and Crystal Habit of Acetaminophen and Ibuprofen. Pharm. Technol. 2006, 30 (10), 72-92.
9. Lee, T.; Su, Y. C.; Hou, H. J.; Hsieh, H. Y. Initial Solvent Screening of Carbamazepine, Cimetidine, and Phenylbutazone: Part 2 of 2. Pharm. Technol. 2009, 33 (6), 54-61.
Chap. 3
1. Albero, J.; Asiri, A, M.; Garcia, H. Influence of the Composition of Hybrid Perovskites on the Performance in Solar Cells. J. Mater. Chem. A. 2016, 4 (12), 4353-4364.
2. Zhou, Z.; Wang, Z.; Zhou, Y.; Pang, S.; Wang, D.; Xu, H.; Liu, Z.; Padture, N. P.; Cui, G. Methylamine-Gas-Induced Defect-Healing Behavior of CH3NH3PbI3 Thin Films for Perovskite Solar Cells. Angew. Chem. Int. Ed. 2015, 54 (33), 9705-9709.
3. Xie, F. X.; Zhang, D.; Su, H.; Ren, X.; Wong, K. S.; Grätzel, M.; Choy, W. C.H. Vacuum-Assisted Thermal Annealing of CH3NH3PbI3 for Highly Stable and Efficient Perovskite Solar Cells. ACS Nano. 2015, 9 (1), 639-646.
4. Li, C.; Guo, Q.; Qiao, W.; Chen, Q.; Ma, S.; Pan, X.; Wang, F.; Yao, J.; Zhang, C.; Xiao, M.; Dai, S.; Tan, Z. Efficient Lead Acetate Sourced Planar Heterojunction Perovskite Solar Cells With Enhanced Substrate Coverage via One-step Spin-coating. Organic Electronics. 2016, 33, 194-200.
5. Wu, Y. Z.; Islam, A.; Yang, X. D.; Qin, C. J.; Liu, J.; Zhang, K.; Peng, W. Q.; Han, L. Y. Retarding the Crystallization of PbI2 for Highly Reproducible Planar-Structured Perovskite Solar Cells via Sequential Deposition. Energy Environ. Sci. 2014, 7 (9), 2934−2938.
6. Zhou, Y.; Zhang, T.; Li, C.; Liang, Z.; Gong, L.; Chen, J.; Xie, W.; Xu, J.; Liu, P. Rapid Growth of High Quality Perovskite Crystal by Solvent mixing. CrystEngComm. 2016, 18 (7), 1184-1189.
7. Heo, J. H.; Song, D. H.; Han, H. J.; Kim, S. Y.; Kim, J. H.; Kim, D.; Shih, H. W.; Christoph Wolf, T. K. A.; Lee, T. E.; Im, S. H. Planar CH3NH3PbI3¬ Perovskite Solar Cells with Constant 17.2% Average Power Conversion Efficiency Irrespective of The Scan Rate. Adv. Mater. 2015, 27 (22), 3424-3430.
8. Kara, K.; Kara, D. A.; Kırbıyık, C.; Ersoz, M.; Usluer, O.; Briseno, A. L.; Kus, M. Solvent Washing with Toluene Enhances Efficiency and Increases Reproducibility in Perovskite Solar Cells. RSC Adv. 2016, 6 (32), 26606-26611.
9. Zhou, Y.; Yang, M.; Wu, W.; Vasiliev, A. L.; Zhu, K.; Padture, N. P. Room-temperature Crystallization of Hybrid-perovskite Thin Films via Solvent-solvent Extraction for High-Performance Solar Cells. J. Mater. Chem. A. 2015, 3 (15), 8178-8184.
10. Yang, M.; Zhou, Y.; Zeng, Y.; Jiang, C. S.; Padture, N. P.; Zhu, K. Square-Centimeter Solution-Processed Planar CH3NH3PbI3 Perovskite Solar Cells with Efficiency Exceeding 15%. Adv. Mater. 2015, 27 (41), 6363-6370.
11. Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solvent Engineering for High-Performance Inorganic-Organic Hybrid Perovskite Solar Cells. Nature Materials. 2014, 13 (9), 897-903.
12. Chen, C. C.; Bae, S. H.; Chang, W. H.; Hong, Z.; Li, G.; Chen, Q.; Zhou, H.; Yang, Y. Perovskite/Polymer Monolithic Hybrid Tandem Solar Cells Utilizing a Low-Temperature, Full Solution Process. Mater. Horiz. 2015, 2 (2), 203-211.
13. Xiao, Z.; Bi, C.; Shao, Y.; Dong, Q.; Wang, Q.; Yuan, Y.; Wang, C; Gao, Y.; Huang, J. Efficient, High Yield Perovskite Photovoltaic Devices Grown by Interdiffusion of Solution-Processed Precursor Stacking Layers. Energy Environ. Sci. 2014, 7 (8), 2619-2623.
14. Jiang, C.; Lim, S. L.; Goh, W. P.; Wei, F. X.; Zhang, J. Improvement of CH3NH3PbI3 Formation for Efficient and Better Reproducible Mesoscopic Perovskite Solar Cells. ACS Appl. Mater. Interface. 2015, 7 (44), 24726-24732.
15. Zhu, L.; Xiao, J.; Shi, J.; Wang, J.; Lv, S.; Xu, Y.; Luo, Y.; Xiao, Y.; Wang, S.; Meng, Q.; Li. X.; Li, D. Efficient CH3NH3PbI3 Perovskite Solar Cells with 2TPA-n-DP Hole-transporting Layers. Nano Res. 2015, 8 (4), 1116-1127.
16. Shi, J.; Luo, Y.; Wei, H.; Luo, J.; Dong, J.; Lv, S.; Xiao, J.; Xu, Y.; Zhu, L.; Xu, X.; Wu, H.; Li, D.; Meng, Q. Modified Two-Step Deposition Method for High-Efficiency TiO2/ CH3NH3PbI3 Heterojunction Solar Cells. ACS Appl. Mater. Interfaces. 2014, 6 (12), 9711-9718.
17. Peng, Y.; Jing, G.; Cui, T. A Hybrid Physical-Chemical Deposition Process at Ultra-Low Temperatures for High-Performance Perovskite Solar Cells. J. Mater. Chem. A. 2015, 3 (23), 12436-12442.
18. Leyden, M. R.; Ono, L. K.; Raga, S. R.; Kato, Y.; Wang, S.; Qi, Y. High Performance Perovskite Solar Cells by Hybrid Chemical Vapor Deposition. J. Mater. Chem. A. 2014, 2 (4), 18742-18745.
19. Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H. S.; Wang, H. H.; Liu, Y.; Li, G.; Yang, Y. Planner Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. J. Am. Chem. Soc. 2014, 136 (2), 622-625.
20. Liu, M.; Johnston, M. B.; Snaith, H. J. Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition. Nature. 2013, 501 (7467), 395-398.
21. Bhachu, D. S.; Scanlon, D. O.; Saban, E. J.; Bronstein, H.; Parkin, I. P.; Carmalt, C. J.; Palgrave, R, G. Scalable Route to CH3NH3PbI3 Perovskite Thin Films by Aerosol Assisted Chemical Vapour Deposition. J. Mater. Chem. A. 2015, 3 (17), 9071-9073.
22. Raga, S. R.; Jung, M. C.; Lee, M. V.; Leyden, M. R.; Kato, Y.; Qi, Y. Influence of Air Annealing on High Efficiency Planar Structure Perovskite Solar Cells. Chem. Mater. 2015, 27 (5), 1597−1603.
23. Dualeh, A.; Tétreault, N.; Moehl, T.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Effect of Annealing Temperature on Film Morphology of Organic-Inorganic Hybrid Perovskite Solid-Stste Solar Cells. Adv. Funct. Mater. 2014, 24 (21), 3250-3258.
24. Tan, K. W.; Moore, D. T.; Saliba, M.; Sai, H.; Estroff, L. A.; Hanrath, T.; Snaith, H. J.; Wiesner, U. Thermally Induced Structural Evolution and Performance of Mesoporous Block Copolymer-Directed Alumina Perovskite Solar Cells. ACS Nano. 2014, 8 (5), 4730-4739.
25. Luo, D.; Yu, L.; Wang, H.; Zou, T.; Luo, L.; Liu, Z.; Lu, Z. Cubic Structure of the Mixed Halide Perovskite CH3NH3PbI3-xClx via Thermal Annealing. RSC Adv. 2015, 5 (104), 85480-85485.
26. Park, J. T.; Szpunar, J. A.; Cha, S. Y. Effect of Heating Rate on the Development of Annealing Texture in Nonoriented Electrical Steels. ISIJ International. 2003, 43 (10), 1611-1614.
27. Lee, T.; Su, Y. C.; Hou, H. J.; Hsieh, H. Y. Initial Solvent Screening of Carbamazepine, Cimetidine, and Phenylbutazone: Part 1 of 2. Pharm. Technol. 2009, 33 (5), 62-72.
28. Lee, T.; Kuo, C. S.; Chen, Y. H. Solubility, Polymorphism, Crystalinity, and Crystal Habit of Acetaminophen and Ibuprofen. Pharm. Technol. 2006, 30 (10), 72-92.
29. Lee, T.; Chen, Y. H.; Zhang, C. W. Solubility, Polymorphism, Crystallinity, Crystal Habit, and Drying Scheme of (R,S)-(±)-Sodium Ibuprofen Dihydrate. Pharm. Technol. 2007,31 (6), 72-87.
30. Lee, T.; Lin, M. S. Sublimation Point Depression of Tris(8-hydroxyquinoline)aluminum(III) (Alq3) by Crystal Engineering. Cryst. Growth Des. 2007, 7 (9), 1803-1810.
31. Lee, H. L.; Lee, T. Direct Co-crystal Assembly from Synthesis to Co-crystallization. CrystEngComn. 2015, 17 (47), 9002-9006.
32. James, S. L.; Adams, C. J.; Bolm, C.; Braga, D.; Collier, P.; Friščić, T.; Grepioni, F.; Harris, K. D. M.; Hyett, G.; Jones, W.; Krebs, A.; Mack, J.; Maini, L.; Orpen, A, G.; Parkin, I. P.; Shearouse, W. C.; Steed, J. W.; Waddel, D. C. Mechanochemistry: Opportunities for New and Cleaner Synthesis. Chem. Soc. Rev. 2012, 41 (1), 413-447.
33. Prochowicz, D.; Sokołowski, K.; Justyniak, I.; Kornowicz, A.; Fairen-Jimenez, D.; Friščić, T.; Lewiński, J. A Mechanochemical Strategy for IRMOF Assembly Based on Pre-designed Oxo-zinc Precursors. Chem. Commun. 2015, 51 (19), 4032-4035.
34. Friščić, T.; Jones, W. Recent Advances in Understanding the Mechanism of Cocrystal Formation via Grinding. Cryst. Growth Des. 2009, 9 (3), 1621–1637.
35. Pedireddi, V. R.; Jones, W.; Chorlton, A. P.; Docherty, R. Creation of Crystalline Supramolecular Arrays: A Comparison of Co-crystal Formation from Solution and by Solid-State Grinding. Chem. Commun. 1996, (8), 987–988.
36. Karki, S.; Friščić, T.; Jones, W.; Motherwell, W. D. S. Screening for Pharmaceutical Cocrystal Hydrates via Neat and Liquid-Assisted Grinding. Mol. Pharmaceutics. 2007, 4 (3), 347-354.
37. Etter, M. C. Hydrogen Bonds as Design Elements in Organic Chemistry. J. Phys. Chem. 1991, 95 (12), 4601-4610.
38. Etter, M. C.; Reutzel, S. M.; Choo, C. G. Self-Organization of Adenine and Thymine in the Solid State. J. Am. Chem. Soc. 1993, 115 (10), 4411-4412.
39. Stoumpos, C. C.; Malliakas, C, D.; Kanatzidis, M. G. Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties. Inorg. Chem. 2013, 52 (15), 9019-9038.
40. Prochowicz, D.; Franckevičius, M.; Cieślak, A. M.; Zakeeruddie, S. M.; Grätzel, M.; Lewiński, J. Mechanosynthesis of the Hybrid Perovskite CH3NH3PbI3: Characterization and The Corresponding Solar Cell Efficiency. J. Mater. Chem. A. 2015, 3 (41), 20772-20777.
41. Yamada, Y.; Yamada, T.; Phuong, L, Q.; Maruyama, N.; Nishimura, H.; Wakamiya, A.; Murata, T.; Kanemitsu, Y. Dynamic Optical Properties of CH3NH3PbI3 Single Crystals As Revealed by One- and Two-Photon Excited Photoluminescence Measurements. J. Am. Chem. Soc. 2015, 137 (33), 10456-10459.
42. Markus, B.; Wolfgang, F. Crystal Structure of Bis(Benzylammonium) Lead Tetrachloride, (C6H5CH2NH3)2PbCl4. NCS. 1999, 214 (3), 331-332.
43. Conings, B.; Baeten, L.; Dobbelaere, C. D.; Haen, J. D.; Manca, J.; Boүen, H. G. Perovskite-Based Hybrid Solar Cells Exceeding 10% Efficiency with High Reproducibility Using a Thin Film Sandwich Approach. Adv. Mater. 2014, 26 (13), 2041-2046.
44. Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Long-Range Balanced Electron- and Hole- Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science. 2013, 342 (6156), 344-347.
45. Ahn, N.; Son, D. Y.; Jang, I. H.; Kang, S. M.; Choi, M.; Park, N. G. Highly Reproducible Perovskite Solar Cell with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead (II) Iodine. J. Am. Chem. Soc. 2015, 137 (27), 8696-8699.
46. Nguyen, M. T.; Vu, T. V. P.; Bui, B. T.; Luong, T. T.; Nguyen, M. H.; Ngoc, L. H. H.; Bui, V. D.; Truong, T. T.; Tran, T. N. Optical and Structural Study of Organometal Halide Materials for Application in Perovskite-Based Solar Cells. J. Electron. Chem. 2016, 45 (5), 2322-2327.
47. Löper, P.; Stuckelberger, M.; Niesen, B.; Werner, J.; Filipič, M.; Moon, S. J.; Yum, J. H.; Topič, M.; Wolf, S. D.; Ballif, C. Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry. J. Phys. Chem. Lett. 2015, 6 (1), 66-71.
48. Guo, X.; McCleese, C.; Kolodziej, C.; Samia, A. C. S.; Zhao, Y.; Burda, C. Identification and Characterization of the Intermediate Phase in Hybrid Organic-inorganic MAPbI3 perovskite. Dalton Trans. 2016, 45 (9), 3806–3813.
49. Takieddin, K.; Khimyak, Y. Z.; Fábián, L. Prediction of Hydrate and Solvate Formation Using Statistical Models. Cryst. Growth Des. 2016, 16 (1), 70-81.
50. Wang, B.; Wong, K. Y.; Yang, S.; Chen, T. Crystallinity and Defect State Engineering in Organo-Lead Halide Perovskite for High-Efficiency Solar Cells. J. Mater. Chem. A. 2016, 4 (10), 3806-3812.
51. Oku, T. Crystal Structures of CH3NH3PbI3 and Related Perovskite Compounds Used for Solar Cells. 2015. |