參考文獻 |
[1] A. Perron, L. I. Kiss and S. Poncsák, “An experimental investigation of the motion of single bubbles under a slightly inclined surface”, Int. J. Multiphase Flow 32, 606-622 (2006).
[2] D. Bhaga and M. E. Weber, “Bubbles in viscous liquids: shape, wakes and velocities”, J. Fluid Mech. 105, 61-85 (1981).
[3] G. P. Celata, M. Cumo, F. D’Annibale and A. Tomiyama, “Terminal bubble rising velocity in one-component systems”, In Proc. of 39th European Two-Phase Flow Group Meeting, Aveiro, Portugal (2001).
[4] F. H. Garner and D. Hammerton, “Circulation inside gas bubbles”, Chem. Eng. Sci., 3, 1-11 (1954).
[5] J. R. Grace, T. Wairegi and T. H. Nguyen, “Shapes and velocities of single drops and bubbles moving freely Through Immiscible Liquids”, Inst. Chem. Eng., 54, 167-173 (1976).
[6] W. L. Haberman and R. K. Morton, “Davis Taylor Model Basin”, Rept. (1953).
[7] M. A. R. Talaia, “Predicting the rise velocity of single gas slugs in stagnant liquid: influence of liquid viscosity and tube diameter”, In Proc. of the 3rd International Symposium on Two-Phase Flow Modelling and Experimentation, Edizioni ETS, Pisa, Italy (2004).
[8] A. Tomiyama, “Grag, lift and virtual mass forces acting on a single bubble”, In Proc. of the 3rd International Symposium on Two-Phase Flow Modelling and Experimentation, Edizioni ETS, Pisa, Italy, (2004).
[9] A. Tomiyama, G. P. Celata, S. Hosokawa, S. Yoshida, “Terminal velocity of single bubbles in surface tension force dominant regime”, In Proc. of 39th European Two-Phase Flow Group Meeting, Aveiro, Portugal (2001).
[10] G. B. Wallis, “One-dimensional Two-phase Flow, Bubbly Flow”, McGraw-Hill, New York, USA (1969).
[11] E. T. White and R. H. Beardmore, “The velocity of rise of single cylindrical air bubbles through liquids contained in vertical tubes”, Chem. Engng. Sci. 17, 351-361 (1962).
[12] M. A. R. Talaia, “Terminal velocity of a bubble rise in a liquid column”, World Acad. Sci. Eng. Technol. 28, 264-268 (2007).
[13] A. Tomiyama, I. Kataoka, I. Zun and T. Sakaguchi, “Drag coefficients of single bubbles under normal and micro gravity conditions”, JSME Int. J. Ser. B 41, 472-479 (1998).
[14] R. Clif, J. R. Grace and M. E. Weber, “Bubbles, Drops, and Particles”, Dover, New York, USA (1978).
[15] I. Zun and J. Groselj, “The Structure of Bubble Non-Equilibrium Movement in Free-Rise and Agitated-Rise Conditions”, Nuclear Eng. Des. 163, 99-115 (1996).
[16] M. Ishii and T. C. Chawla, “Local Drag Laws in Dispersed Two-Phase Flow”, ANL, USA (1979).
[17] J. R. Grace, “Shapes and Velocities of Bubbles Rising in Finite Liquids”, Trans. Inst. Chem. Eng. 51, 116-120 (1973).
[18] V. G. Levich, “Physicochemical Hydrodynamics”, Prentice-Hall, New York, USA (1962).
[19] R. Clift and W. H. Gauvin, “The Motion of Particles in Turbulent Gas Streams”, British Chem. Eng. 16, 229 (1970).
[20] F. N. Peebles, H. J. Garber, “Studies on the motion of gas bubble in liquid”, Chem. Eng. Prog. 49, 88-97 (1953).
[21] P. G. Saffman, “On the rise of small air bubbles in water”, J. Fluid Mech. 1, 249-275 (1956).
[22] R. A. Hartunian and W. R. Sears, “On the instability of small bubbles moving uniformly in various liquid”, J. Fluid Mech. 3, 27-47 (1957).
[23] H. D. Mendelson, “The prediction of bubble terminal velocities from wave theory”, AIChE J. 13, 250-253 (1967).
[24] K. Ellingsen and F. Risso, “On the rise of an ellipsoidal bubble in water: oscillatory paths and liquid-induced velocity”, J. Fluid Mech. 440, 235-268 (2001).
[25] A. Tomiyama, G. P. Celata, S. Hosokawa and S. Yoshida, “Terminal velocity of single bubbles in surface tension force dominant regime”, Int. J. Multiphase Flow 28, 1497-1519 (2002).
[26] M. Wu and M. Gharib, “Experimental studies on the shape and path of small air bubbles rising in clean water”, Phys. Fluids 14, L49-L52 (2002).
[27] D. Ormie´res and M. Provansal, ‘‘Transition to turbulence in the wake of a sphere’’, Phys. Rev. Lett. 83, 80-83 (1999).
[28] R. M. Davies and S. G. Taylor, “The mechanics of large bubbles rising through extended liquids and through liquids in tubes”, Proc. R. Soc. Ser. A 200, 375-390 (1950).
[29] F. P. Bertherton, “The motion of long bubbles in tubes”, J. Fluid Mech. 10, 166-188 (1961).
[30] H. L. Goldsmith and S. G. Mason, “The movement of single large bubbles in closed vertical tubes”, J. Fluid Mech. 14, 42-58 (1962).
[31] C. E. Shosho and M. E. Ryan, “An experimental of the long bubbles in inclined tubes”, Chem. Eng. Sci. 56, 2191-2204 (2001).
[32] K. H. Bendiksen, “An experimental investigation of the motion of long bubbles in inclined tubes” Int. J. Multiphase Flow 10, 467-483 (1984).
[33] E. E. Zukoski, “Influence of viscosity, surface tension and inclination angle on motion of long bubbles in closed tubes”, J. Fluid Mech. 25, 821-837 (1966).
[34] P. L. Spedding and V. T. Nguyen, “Bubble rise and liquid content in horizontal and inclined tubes”, Chem. Eng. Sci. 33, 987-994 (1978).
[35] T. Maxworthy, “Bubble rise under an inclined plate”, J. Fluid Mech. 229, 659-674 (1991).
[36] J. J. J. Chen, Z. Jianchao, Q. Kangxing, B. J. Welch and M. P. Taylor, “Rise velocity of air bubbles under a slightly inclined planed submerged in water”, The Fifth Asian Congress of Fluid Mechanics, 1173-1176 (1992).
[37] J. Masliyah, R. Jauhari and M. Gray, “Drag coefficients for air bubbles rising along an inclined surface”, Chem. Eng. Sci. 49, 1905-1911 (1994).
[38] A. Perron, L. I. Kiss and S. Poncsa´k, “Regimes of the movement of bubbles under the anode in an aluminum electrolysis cell”, TMS Light Metals, 565-570 (2005).
[39] T. Maxworthy, C. Gnann, M. Ku¨ rten and F. Durst, “Experiments on the rise of air bubbles in clean viscous liquids”, J. Fluid Mech. 321, 421-441 (1996).
[40] H. R. Pruppacher and J. D. Klett, “Microphysics of clouds and precipitation”, D. Reidel, Boston, USA (1979).
[41] S. Hartland and R. W. Hartley, “Axisymmetric Fluid–Liquid Interfaces: tables giving the shape of sessile and pendant drops and external menisci, with examples of their use”, Elsevier Scientific, Amsterdam, Netherlands (1976).
[42] S. Fortin, M. Gerhardt and A. J. Gesing, “Physical modelling of bubble behaviour and gas release from aluminum reduction cell anodes”, TMS Light Metals, 721-741 (1984).
[43] A. Solheim and J. Thonstad, “Model cell studies of gas induced resistance in Hall–Heroult cells”, Light Metals, 397-403 (1986).
[44] J. Zoric and A. Solheim, “On gas bubbles in industrial aluminum cells with prebaked anodes and their influence on the current distribution”, J. Appl. Electrochem. 30, 787-794 (2000).
[45] A. Haupin, “Scanning reference electrode for voltage contours in aluminum smelting cells”, J. Met. 23, 46-49 (1971).
[46] L. I. Kiss, S. Poncsa´k, D. Toulouse, A. Perron, A. Liedtke and V. Mackowiak, “Detachment of bubbles from their nucleation sites”, TMS Light Metals, Multiphase Phenomena and CFD Modeling and Simulation in Materials Processes, 159-167 (2004).
[47] T. Young, “An Essay on the Cohesion of Fluids”, Philos. Trans. R. Soc. Lon-don 95, 65-87 (1805).
[48] R. N. Wenzel, “Resistance of solid surfaces to wetting by water”, Ind. Eng.Chem. 28, 988-994 (1936).
[49] A. Cassie and S. Baxter, “Wettability of porous surfaces”, Trans. Faraday Soc. 40, 546-551 (1944).
[50] Y. Uyama, H. Inoue, K. Ito, A. Kishida and Y. Ikada, “Comparison of Different Methods for Contact Angle Measurement”, J. Colloid Interface Sci. 141, 275-279 (1991).
[51] O. N. Tretinnikov and Y. Ikada, “DynamicWetting and Contact Angle Hysteresis of Polymer Surface Studied with the Modified Wilhelmy Balance Method” Langmuir 10, 1606-1614 (1994).
[52] V. Berejnov and R. E. Thorne, “Effect of Transient Pinning on Stability of Drops Sitting on An Inclined Plane”, Phys. Rev. E 75, 066308 (2007).
[53] De Gennes, “A model for contact angle hysteresis”, J. Chem. Phys. 81, 552 (1984).
[54] S. Yamada and J. Israelachvili, “Friction and Adhesion Hysteresis of Fluorocarbon Surfactant Monolayer-Coated Surfaces Measured with the Surface Forces Apparatus”, J. Phys. Chem. B 102, 234-244 (1998).
[55] S. J. Hong, F. M. Chang, T. H. Chou, S. H. Chan, Y. J. Sheng and H. K. Tsao, “Anomalous Contact Angle Hysteresis of a Captive Bubble: Advancing Contact Line Pinning”, Langmuir 27, 6890-6896 (2011). |