博碩士論文 90236004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:18.227.81.161
姓名 蕭价伶(Chieh-Ling Hsiao)  查詢紙本館藏   畢業系所 光電科學研究所碩士在職專班
論文名稱 非接觸式光學檢測應用於FPW元件量測技術
(Non-contact optical method for flexural platewave devices measurement application)
相關論文
★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究★ 導波共振光學元件應用於生物感測器之研究
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 低溫成長鍺薄膜於單晶矽基板上之研究
★ 矽鍺薄膜及其應用於光偵測器之研製★ 低溫製備磊晶鍺薄膜及矽基鍺光偵測器
★ 整合慣性感測元件之導波矽基光學平台研究★ 矽基光偵測器研製與整合於光學波導系統
★ 光學滑鼠用之光學元件設計★ 高效率口袋型LED 投影機之研究
★ 在波長為532nm時摻雜鉬之鈦酸鋇單晶性質研究★ 極化繞射光學元件在高密度光學讀取頭上之應用研究
★ 不同溫度及波長之摻銠鈦酸鋇單晶性質研究★ 經氣氛處理之鈦酸鋇單晶其光折變性質及電荷移轉與波長的關係
★ 在不同溫度時氣氛處理鈦酸鋇單晶性質之比較★ 摻銠鈦酸鋇單晶的氧化還原與光折變性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 聲波感測元件的基本原理是利用聲波與物質作用時,將影響聲波波傳的傳遞性質,所造成的特性變化可用來感測某一特定性質之物理量。從理論上推斷,在不同的波速對於液體的感測靈敏度有影響,但最大的影響是在於不同角度上由於晶格排列的不同,所引起波傳模態亦將有所不同,不同的波傳模態與物質之間的作用,其影響會有很大的差異。
本文提出藉由雷射超音波量光學檢測技術,針對非等向性矽晶片<1,0,0>材料進行不同角度的波速測量,利用所得的結果,探討矽晶片在不同角度的波速與波傳模態對蘭姆波(Lamb Wave)的影響,期以找出作為液體感測器,對不同液體性質的感測有最佳的靈敏度。
利用Nd:YAG 雷射激發矽晶片彈性應力波,以雷射刀緣量測技術測得材料的表面波波速,此非接觸式光學檢測法可獲得精確的量測值。實驗結果得知,非等向性矽晶片基板在各個不同角度的方向上,最大的波速與最小的波速差大約在10% ~20%左右。相關理論、系統架設方法、實驗程序及量測結果等將有詳盡之說明。
製作矽基FPW 聲波感測元件,其中也說明元件設計基本原理、製程製作及量測結果討論。對於FPW 元件應用在液體黏滯度及質量負載之檢測理論及靈敏度計算等進行簡單的推導。同時亦製作出具輕巧、即時且易於操作的FPW 液體質量量測的電子系統雛型,亦可應用於黏滯度的量測,該系統可激發聲波信號,並測得經過FPW 元件後衰減的訊號頻率及相位偏移量。利用此雛型及所製作的FPW 元件,進行液體質量與相位變化的測試實驗,實驗結果發現液體質量增加,相位差成正比變化。
最後,從構想提出到理論探討、設計、製程實驗到電子系統製作及測試,已初步完成了整個系統建構,包括:
1.以雷射超音波波速檢測技術,對<1,0,0>晶格方向的非等向性矽基材量測出不同角度的波速。
2.初步完成FPW 聲波感測元件及其應用在流體偵測的系統雛型。
關鍵字(中) ★ 表面聲波感測
★ 相位檢測
★ 彎曲平板波感測器
★ 非等向性材料表面波波速
★ 刀緣技術
★ 微細加工
★ 雷射超音波
★ 表面波波速
★ 非接觸光學檢測
關鍵字(英) ★ surface wave velocity
★ surface wave velocity in anisotropic materials
★ knife edge
★ non-contact optical measurements
★ laser ultrasonic
★ surface acoustic wave sensor
★ phase detector
★ micromachining
★ flexural plate wave sensor
論文目次 目 錄
論文摘要.................................................I
誌謝....................................................IV
目錄...................................................VII
圖目錄...................................................X
表目錄.................................................XIV
第一章 緒論..............................................1
1.1 研究動機.............................................1
1.2 文獻回顧.............................................3
1.3 研究目標與論文大綱..................................10
第二章 雷射超音波與非等向性材料表面波波速量測...........12
2.1 雷射超音波產生、物理現象及波源型態..................12
2.1.1 雷射超音波產生及其物理現象........................12
2.1.2 雷射超音波波源的波傳型態..........................14
2.2 刀緣(Knife-edge)量測技術............................19
2.3 投射式光柵波源表面波波速量測理論....................23
2.3.1 投射式光柵波源....................................23
2.3.2 等向性材料表面波波速計算..........................24
2.3.3 非等向性材料表面波波速計算........................25
2.4 實驗方法與實驗架構簡介..............................30
2.4.1 光柵式波源表面波波速量測系統架構簡介..............30
2.4.2 雷射超音波源 Nd-YAG Laser.........................33
2.4.3 雷射探針(Laser Probing) He-Ne Laser...............35
2.4.4 光電偵測器........................................36
2.4.5 光柵與雜訊濾除....................................38
2.5 實驗程序與方法......................................41
2.6 非等向性材料表面波波速測量結果......................44
第三章 彎曲平板波感測器.................................50
3.1 聲波感測器(Acoustic Wave Sensor )簡介...............50
3.1.1 彈性介質中的波傳行為..............................51
3.1.2 聲波感測器種類與比較..............................54
3.2 彎曲平板波元件感測原理及分析........................63
3.3 指叉狀電極設計與考量................................67
3.4 彎曲平板波元件結構設計與模擬........................70
3.5 製程流程與製作......................................77
3.6 元件量測與實驗結果..................................80
3.6.1 實驗量測架設......................................80
3.6.2 量測結果與討論....................................82
3.7 FPW 感測元件系統整合與液體負載量測結果..............85
3.7.1 阻抗匹配與震盪電路設計............................85
3.7.2 相位檢測器與輸出特性..............................88
3.7.3 頻率計數器........................................90
3.7.4 系統整合與液體負載測試結果........................91
第四章 結論與未來展望...................................95
第五章 參考文獻.........................................97
參考文獻 參考文獻
1.C. B. Scruby and L. E. Drain, “Laser Ultrasonics Techniques and
Applications,” Brist: Adam Hilger, (1990)
2.曾俊豪,光柵投射式雷射超音波量測系統及應用,國立成功大學
機械工程學系碩士論文(2003)
3.G. F. Miller and H. Pursey, Proceedings of the Royal Society of
London. Series A: Mathematical and Physical Sciences 223, pp.521-541,
(1954)
4.A. E. Lord, “Geometric Diffraction loss in longitudinal and shear
wave attenuation measurements in an isotropic half-space,” J. Acoust.
Soc. American. Vol. 39, No.4, pp. 650 – 662, (1966)
5.R. J. Dewhurst, D. A. Hutchins, S. B. Palmer, “Quantitative
measurements of laser- generated acoustic waveforms,” J. Appl.
Phys., Vol. 70, No. 5, pp.4064 – 4071., (1982)
6.Shiuh-Kuang Yang, “Evaluation of Adhesive Bonded Joints Using
Laser-Induced Ultrasound,” Proc. Nutl. Sci. Counc. OC(A), Vol.24,
No.6, pp.496 – 501, (2000)
7.郭士豪,準分子雷射與微型聲波感測器之製作、測試與應用,國
立成功大學機械工程學系碩士論文(2001)
8.J. D. Jchenbach, “Wave Propagation in Elastic Solids,”
North-Holland Publishing Company.
9.S. O. Kasap 著,黃俊達、陳金嘉等編譯,光電子學與光子學原理
與應用,全威圖書有限公司,(2003)
10.New Focus, USA., “ 125MHz Photoreceivers User’s Guide,”(2001)
11.M. S. Weinberg, B. T. Cunningham, C. W. Clapp, “Modeling
Flexural Plate Wave Device,” IEEE J. Microelectromechanical
Systems, Vol. 9, No.3, pp.370 – 379, (2000)
12.李其源,蝕刻晶片厚度即時監控之新穎方法,國立台灣大學機
械工程研究所博士論文,(2004)
13.D. S. Ballantine and David Stephen, “Acoustic wave sensor: theory,
design, and physico-chemical applications,” San Diego, Academic
Press, Inc., (1997)
14.余嘉銘,壓電彎曲平板波生物感測器,國立中正大學電機工程
研究所碩士論文,(2003)
15.Lord Rayleigh, “On waves propagated along the plane surface of an
elastic solid,” Proc. London Math. Soc., Vol. 17, pp.4-11, 1885
16.Bill Drafts, “Acoustic Wave Technology Sensors,” IEEE Trans. On
Microwave Theory and Techniques, Vol. 49, No. 4, (2001)
17.R. M. White, “Acoustic sensor for physical, chemical and
biochemical application,” IEEE International Frequency Control
Symposium, pp. 587-594, (1998)
18.M. S. Weinberg, C. E. Dube, Anthony Petrovich, and A. M. Zapata,
“Fluid Damping in Resonant Flexural Plate Wave Device,” Journal of
Microelectromechanical Systems, Vol. 12, No. 5, (2003)
19.J. W. Gardner, V. K. Varadan, O. O. Awadelkarim, “Microsensors
MEMS and smart devices,” John Wiley & Sons, New York, (2001)
20.M. J. Velekoop, “Acoustic wave sensors and their technology,”
Ultrasonics 36, pp.7-14, (1998)
21.吳德春,薄膜式表面聲波元件之製作與分析,中原大學電子工程學系碩士論文
,(2002)
22.D. W. Galipeau, P. R. Story, K. A. Vetelino and R. D. Mileham,
“surface acoustic wave microsensors and applications,” Smart Mater.
Struct. 6, pp.658-667, (1997)
23.A. Pohl, “A review of wireless SAW sensors,” IEEE Trans. Ultras.
Ferr. Freq. Contr. 47, pp.317-332, (2000)
24.M. E. Motamedi and R. M. White, “Acoustic sensor in
semiconductor Sensor,” edited by S. M. Sze, John Wiely & Sons, Inc.,
New York, (1994)
25.I. Esteban, C. Dejous, D. Rebiere, J. Pistre, R. Planade and J. F.
Lipskier, “Mass sensitivity of SH-APM sensors:potentialities for
organophosphorous vapors detection,” Sensor and Actuators B 68,
pp.244-248, (2000)
26.O. Tamarin, S. Comeau, C. Dejous, D. Moynet, D. Rebiere, J.
Bezian and J. Pistre, “Real time device for biosensing: design of a
bacteriophage model using love acoustic wave,” Biosensors and
Bioelectronics 18, pp.755-763, (2003)
27.Q. Y. Cai, J. Park, D. Heldsinger, M. D. Hsieh, E. T. Zellers, “Vapor
recognition with an integrated array of polymer-coated flexural plate
wave sensor,” Sensor and Actuators B 62, pp.121-130, (2000)
28.J. L. Dohner, “The contribution of radiation and viscous loss in a
fluid loaded flexural plate wave sensor,” Journal of Sound and
Vibration, 217(1), pp.113-126, (1998)
29.R. M. White and S. W. Wenzel, “Fluid loading of a Lamb-wave
sensor,” Appl. Phys. Lett. 52(20), pp.1653-1655, (1988)
30.T. Laurent, F. O. Bastien, J. C. Pommier, A. Cachard, D. Remiens
and E. Cattan, “Lamb wave and plate mode in ZnO/silicon and
AlN/silicon membrane application to sensors able to operate in
contact with liquid,” Sensor and Actuators 87, pp.26-37, (2000)
31.A. Viktorov, “Rayleigh and Lamb wave – Physical theory and
application,” Plenum, New York. (1967)
32.B. J. Costello, B. A. Martin, R. M. White, “Ultrasonic plate wave
for biochemical measurements,” IEEE Ultras. Symp., pp.977-981,(1989)
33.M. J. Vellekoop, P. M. Sarro, A. Venema, “Plate wave oscillator
systems in silicon for sensing in liquids,” IEEE Solid-State Sensors
and Actuators, pp.927-930, (1991)
34.P. Black, B. Chen, R. Quinn, M. Madou and R. M. White,
“Comparison of the performance of flexural plate wave and surface
acoustic wave devices as the detector in a gas chromatograph,” IEEE
Ultras. Symp., pp.435-440, (2000)
35.B. A. Martin, S. W. Wenzel, R. M. White, “Viscosity and Density
Sensing With Ultrasonic Plate Wave,” Sensors and Actuator,
pp.704-708, (1990)
36.W. Stuart, M. W. Richard, “Flexural Plate-wave Gravimetric
Chemical Sensor,” Sensors and Actuators A21-A23, pp.700-703,(1990)
37.T. Giesler, J. U. Meyer, “Electrostatic Excitation and Capacitive
Detection of Flexural Plate Waves,” Sensors and Actuators A 36(2),
pp.113-119, (1993)
38.F. Josse, “Acoustic Wave Liquid-Phase-Based Microsensors,”
Sensors and Actuators A 44(3), pp.199-208, (1994)
39.J. C. Andle, J. F. Vetelino, “Acoustic Wave Biosensors,” Sensors
and Actuators A 44(3), pp.167-176 (1994)
40.Brain Cunningham, Marc Weinberg, Jane Pepper, Chris Clapp, Rob
Bousquet, Brenda Hugh, Richard Kant, Chris Daly, Eric Hauser,
“Design, fabrication and vapor characterization of a microfabricated
flexural plate resonator sensor and application to integrated sensor
arrays,” Sensor and Actuators B 73, pp.112-123, (2001)
41.C. H. Yang, M. F. Huang, “A study on the dispersion relations of
lamb waves propagating along LiNbO3 plate with a laser ultrasound
technique,” Jpn. J. Appl. Phys., Vol. 41, pp.6478-6483, (2002)
42.R. L. Baer, B. J. Costello, S. W. Wenzel and R. M. White, “Phase
noise measurements of flexural plate wave ultrasonic sensor,” IEEE
Ultrasonics Symp., pp.321-326, (1991)
43.T. Laurent, F. O. Bastien, J. C. Pommier, A. Cachard, D. Remiens,
E. Cattan, “Lanb Wave and plate mode in ZnO/silicon and
AlN/silicon membrane Application to sensors able to operate in
contact with liduid,” Sensor and Actuator 87, pp.26-37, (2000)
44.S. W. Wenzel, B. A. Martin and R. M. White, “Generalized
Lamb-wave multisensor,” Proc. of IEEE Symposium on Ultrasonics,
pp.563-567, (1988)
45.R. M. White, F. M. Voltmer, “Direct piezoelectric coupling to
surface elastic waves,” Appl. Phys. Lett. 7, pp.314-316, (1965)
46.C. K. Campbell, “Surface acoustic wave devices for mobile and
wireless communication,” Academic Press, New York (1998)
47.季君炎,表面聲波元件和積體電路整合之研究,國立台灣大學
應用力學研究所碩士論文,(2000)
48.R. H. Tancrell and M. G. Holland, “Acoustic surface wave filters,”
Proc. IEEE pp.393-409, (1971)
49.R. J. Dewhurst, Edwards, C. Mckie and S. B. Palmer, “Estimation
of the thickness of thin metal sheet using laser generated ultrasound,”
Appl. Phys. Lett., 51(14), pp.1066-1068 (1987)
50.P. Hess and A. Neubrand, “Laser generation detection of surface
acoustic waves: Elastic properties of surface layers,” J. Appl. Phys.,
71(1), pp.227-238 (1992)
51.J. I. Burov, K. P. Branzalov and D. V. Ivanov, “High accuracy
noncontact laser-optical method for measuring surface acoustic wave
velocity and attenuation,” Appl. Phys. Lett., 46(2), pp.141-142 (1985)
52.Y. Hong, S. D. Sharples, M. Clark and M. G. Somekh, “Rapid
measurement of surface acoustic wave velocity on single crystals
using an all-optical adaptive scanning acoustic microscope,” Appl.
Phys. Lett., 83(16), pp.3260-3262 (2003)
53.S.W. Wenzel and R.M. White, “Flexural plate wave gravimetric
sensor,” Sensors and Actuators A, 22, pp.700-703 (1990)
54.S.W. Wenzel and R.M. White, “Flexural plate wave sensor:
chemical vapor sensing and electrostrictive excitation,” Ultrasonic
Symposium, pp.595-598 (1989)
55.J.C. Pyun, H. Beutel, J.U. Mayer, H.H. Ruf, “Development of a
biosensor for E. coli based on a flexural plate wave transducer,”
Biosensors and Bioelectronics 13, pp.839-845 (1998)
56.Q.Y. Cai, J. Park, D. Heldsinger, M.D. Hsieh, E.T. Zellers, “vapor
recognition with an integrated array of polymer coated flexural plate
wave sensors,” Sensor and Actuators B 62, pp.121-130 (2000)
57.H. Jia, R. Duhamel, J.F.Manceau, M. de Labachelerie, F. bastien,
“Improvement of Lamb waves sensors Temperature sensitivity
compensation,” Sensors and Actuators A, 121, pp.321-326 (2005)
指導教授 張正陽(Jeng-Yang Chang) 審核日期 2005-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明