博碩士論文 103324003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:18.119.28.213
姓名 曾柏偉(Po-Wei Tseng)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 矽奈米線場效電晶體多點之核酸檢測研究
(Development of multi-point immobilization system on silicon nanowire field effect transistor)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究
★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究
★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性
★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究★ 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量
★ 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究★ 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定
★ 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究★ 利用核適體作為訊號放大器於矽奈米線場效電晶體免疫感測器對生物標記物進行定量分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來有各種生物標記物( biomarkers )的檢測方法被發展與推廣。這些檢測方法包括利用光學、電學、質量等運作原理的生物感測器( biosensors )來偵測DNA、RNA、蛋白質等所謂之生物標記分子。在眾多的生物感測器中,因為矽奈米線場效電晶體相較於其他類別的生物感測器有著超靈敏、具選擇性、即時且免螢光標定的優勢,因此被廣泛的研究與發展,也使得矽奈米線場效電晶體在未來醫學診斷方面有很大的應用潛力。現今矽奈米線場效電晶體的生物分子固定化流程大多採用整片式固定法( all area modification ),然而以這種方式固定上生物受體只能檢測一種生物標記物。
為了解決這個問題,我們開發了「多點固定化系統」。此系統可以將多種生物受體( bioreceptors )溶液點在晶片上的每個元件上,若矽奈米線場效電晶體有更多種生物探針固定於其上,我們就能在同一個晶片上檢測多種生物標記物就是所謂的高通量檢測。相較於整片式固定法,節省成本與實驗的時間是一個很大的優勢。
在本研究,我們首先探討DNA在不同鹽離子濃度下對雜交的影響,接下來我們再探索探針溶液中的甘油比例與探針濃度於多點固定化系統的實驗最佳條件,最後我們嘗試在同一片晶片上固定不同種類的生物探針來進行核酸檢測。
摘要(英) In recent years, various biomarker detection methods have been invented and studied. Optical, mass, electrical and etc… biosensors are common for monitoring DNA, RNA, protein, and so on. Among them, Silicon nanowire field effect transistor (SiNW-FET) is the one that has been extensively studied and developed due to its distinguished advantages over the other biosensors. SiNW-FET is ultrasensitive, selective, real-time and label-free detection platform. Because of these features, SiNW-FET has a great potential in the future of clinical diagnostics. In the current process of SiNW-FET immobilization, we mostly use all area modification. However, if we use this method to immobilize bioreceptors on SiNW-FET, the device can detect only one kind of biomarker. To solve this problem, we develop a technique called “multi-point immobilization system”. Multi-point immobilization system can overcome the above-described problems because this system can spot many kinds of bioreceptor solution on each device. If there are more bioreceptor probes on SiNW-FET, we can detect more categories of biomarker targets on same device. Saving costs and experimental time are comparative advantage with all area modification. In this research, first we investigate the effects of salt ion concentration on hybridizing. Then we explore the best ratio of glycerol in probe solution and optimal probe concentration in multi-point immobilization system. Finally we try to immobilize different probe on same device to measure electrical signal.
關鍵字(中) ★ 場效電晶體
★ 核酸分子
★ 奈米線
★ 微陣列
關鍵字(英) ★ field effect transistor
★ nucleic acids
★ nanowire
★ microarray
論文目次 摘要 i
Abstract iii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xiv
第一章 緒論 - 1 -
第二章 文獻回顧 - 3 -
2.1 場效電晶體生物感測器 - 3 -
2.2 德拜長度對電性檢測的限制 - 10 -
2.3 核酸適體簡介 - 13 -
2.4 核酸類似物 - 18 -
2.4.1 肽核酸 - 18 -
2.4.2 鎖核酸 - 19 -
2.4.3 磷酸根甲基化去氧核醣核酸 - 20 -
2.5 晶片表面改質與固定化 - 22 -
2.6 生物晶片與微陣列技術 - 26 -
2.7 檢測訊號之放大技術 - 32 -
第三章 實驗藥品、儀器設備與方法 - 34 -
3.1 實驗藥品 - 34 -
3.1.1 化學品 - 34 -
3.1.2 實驗溶液 - 35 -
3.1.3 實驗核酸序列 - 36 -
3.2 儀器設備 - 36 -
3.3 實驗方法 - 37 -
3.3.1 R-18 RNA aptamer合成 - 37 -
3.3.2 PCR產物之cleaning up - 38 -
3.3.3 轉錄R-18 RNA aptamer - 39 -
3.3.4 R-18 RNA aptamer電泳測試 - 40 -
3.3.5 FET晶片固定化 - 40 -
3.3.6 FET電性測量 - 42 -
第四章 結果與討論 - 43 -
4.1 DNA與nDNA之雜交鑑定 - 43 -
4.2 DNA 於不同鹽離子濃度的雜交測試 - 45 -
4.3 探針溶液之甘油含量對雜交效率的影響 - 49 -
4.4 探針溶液濃度對雜交效率的影響 - 53 -
4.5 比較nDNA與DNA探針之雜交效率 - 56 -
4.6 固定多點核酸探針之雜交檢測 - 60 -
4.7 R18 RNA適體之訊號放大實驗 - 65 -
4.8 實驗晶片良率統計 - 77 -
第五章 結論 - 78 -
第六章 參考文獻 - 80 -
參考文獻 1. Ishige, Y., S. Takeda, and M. Kamahori, Direct detection of enzyme-catalyzed products by FET sensor with ferrocene-modified electrode. Biosens Bioelectron, 2010. 26(4): p. 1366-72.
2. Chen, K.-I., B.-R. Li, and Y.-T. Chen, Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today, 2011. 6(2): p. 131-154.
3. Wustoni, S., Hideshima, S., Kuroiwa, S., Nakanishi, T., Mori, Y., and Osaka, T., Label-free detection of Cu(II) in a human serum sample by using a prion protein-immobilized FET sensor. Analyst, 2015. 140(19): p. 6485-8.
4. Lee, H. S., Kim, K. S., Kim, C. J., Hahn, S. K., and Jo, M. H., Electrical detection of VEGFs for cancer diagnoses using anti-vascular endotherial growth factor aptamer-modified Si nanowire FETs. Biosens Bioelectron, 2009. 24(6): p. 1801-5.
5. Xiaochen Dong, Ching Man Lau, Anup Lohani, Subodh G. Mhaisalkar, Johnson Kasim, Zexiang Shen, Xinning Ho, John A. Rogers, and Lain-Jong Li, Electrical Detection of Femtomolar DNA via Gold-Nanoparticle Enhancement in Carbon-Nanotube-Network Field-Effect Transistors. Advanced Materials, 2008. 20(12): p. 2389-2393.
6. Cai, B., Huang, L., Zhang, H., Sun, Z., Zhang, Z., and Zhang, G. J., Gold nanoparticles-decorated graphene field-effect transistor biosensor for femtomolar MicroRNA detection. Biosens Bioelectron, 2015. 74: p. 329-34.
7. Son, M., Kim, D., Park, K. S., Hong, S., and Park, T. H., Detection of aquaporin-4 antibody using aquaporin-4 extracellular loop-based carbon nanotube biosensor for the diagnosis of neuromyelitis optica. Biosens Bioelectron, 2016. 78: p. 87-91.
8. Regonda, S., Tian, R., Gao, J., Greene, S., Ding, J., and Hu, W., Silicon multi-nanochannel FETs to improve device uniformity/stability and femtomolar detection of insulin in serum. Biosens Bioelectron, 2013. 45: p. 245-51.
9. Marco Curreli, Rui Zhang, Fumiaki N. Ishikawa, Hsiao-Kang Chang, Richard J. Cote, Chongwu Zhou, and Mark E. Thompson, Real-Time, Label-Free Detection of Biological Entities Using Nanowire-Based FETs. Ieee Transactions on Nanotechnology, 2008. 7(6): p. 651-667.
10. Elnathan, R., Kwiat, M., Pevzner, A., Engel, Y., Burstein, L., Khatchtourints, A., Lichtenstein, A., Kantaev, R., and Patolsky, F., Biorecognition layer engineering: overcoming screening limitations of nanowire-based FET devices. Nano Lett, 2012. 12(10): p. 5245-54.
11. Schoch, R.B., J. Han, and P. Renaud, Transport phenomena in nanofluidics. Reviews of Modern Physics, 2008. 80(3): p. 839-883.
12. Eric Stern, Robin Wagner, Fred J. Sigworth, Ronald Breaker, Tarek M. Fahmy, and Mark A. Reed, Importance of the debye screening length on nanowire field effect transistor sensors. Nano Letters, 2007. 7(11): p. 3405-3409.
13. An, T., Kim, K. S., Hahn, S. K., and Lim, G., Real-time, step-wise, electrical detection of protein molecules using dielectrophoretically aligned SWNT-film FET aptasensors. Lab Chip, 2010. 10(16): p. 2052-6.
14. Farid, S., Meshik, X., Choi, M., Mukherjee, S., Lan, Y., Parikh, D., Poduri, S., Baterdene, U., Huang, C. E., Wang, Y. Y., Burke, P., Dutta, M., and Stroscio, M. A., Detection of Interferon gamma using graphene and aptamer based FET-like electrochemical biosensor. Biosens Bioelectron, 2015. 71: p. 294-9.
15. Sung, T. C., Chen, W. Y., Shah, P., and Chen, C. S., A replaceable liposomal aptamer for the ultrasensitive and rapid detection of biotin. Sci Rep, 2016. 6: p. 21369.
16. Goda, T. and Y. Miyahara, Label-free and reagent-less protein biosensing using aptamer-modified extended-gate field-effect transistors. Biosens Bioelectron, 2013. 45: p. 89-94.
17. Lidong Wu, Peipei Qi, Xiaochen Fu, Huan Liu, Jincheng Li, Qiong Wang, and Hao Fan, A novel electrochemical PCB77-binding DNA aptamer biosensor for selective detection of PCB77. Journal of Electroanalytical Chemistry, 2016. 771: p. 45-49.
18. Riley, K. R., Saito, S., Gagliano, J., and Colyer, C. L., Facilitating aptamer selection and collection by capillary transient isotachophoresis with laser-induced fluorescence detection. J Chromatogr A, 2014. 1368: p. 183-9.
19. Marechal, A., Jarrosson, F., Randon, J., Dugas, V., and Demesmay, C., In-line coupling of an aptamer based miniaturized monolithic affinity preconcentration unit with capillary electrophoresis and Laser Induced Fluorescence detection. J Chromatogr A, 2015. 1406: p. 109-17.
20. Ravelet, C., C. Grosset, and E. Peyrin, Liquid chromatography, electrochromatography and capillary electrophoresis applications of DNA and RNA aptamers. J Chromatogr A, 2006. 1117(1): p. 1-10.
21. Zi-Ming Zhou, Zhe Feng, Jun Zhou, Bi-Yun Fang, Zhi-Ya Ma, Bo Liu, Yuan-Di Zhao, and Xue-Bin Hu, Quantum dot-modified aptamer probe for chemiluminescence detection of carcino-embryonic antigen using capillary electrophoresis. Sensors and Actuators B: Chemical, 2015. 210: p. 158-164.
22. Lou, B., Chen, E., Zhao, X., Qu, F., and Yan, J., The application of capillary electrophoresis for assisting whole-cell aptamers selection by characterizing complete ssDNA distribution. J Chromatogr A, 2016. 1437: p. 203-9.
23. Tuerk, C. and L. Gold, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990. 249(4968): p. 505-510.
24. Ellington, A.D. and J.W. Szostak, In vitro selection of RNA molecules that bind specific ligands. Nature, 1990. 346(6287): p. 818-822.
25. Wang, C. Y., Wu, C. Y., Hung, T. C., Wong, C. H., and Chen, C. H., Sequence-constructive SELEX: a new strategy for screening DNA aptamer binding to Globo H. Biochem Biophys Res Commun, 2014. 452(3): p. 484-9.
26. Hamula, C. L., Peng, H., Wang, Z., Tyrrell, G. J., Li, X. F., and Le, X. C., An improved SELEX technique for selection of DNA aptamers binding to M-type 11 of Streptococcus pyogenes. Methods, 2016. 97: p. 51-7.
27. Moghadam, M., Sankian, M., Abnous, K., Varasteh, A., Taghdisi, S. M., Mahmoudi, M., Ramezani, M., Gholizadeh, Z., and Ganji, A., Cell-SELEX-based selection and characterization of a G-quadruplex DNA aptamer against mouse dendritic cells. Int Immunopharmacol, 2016. 36: p. 324-32.
28. Savory, N., Nzakizwanayo, J., Abe, K., Yoshida, W., Ferri, S., Dedi, C., Jones, B. V., and Ikebukuro, K., Selection of DNA aptamers against uropathogenic Escherichia coli NSM59 by quantitative PCR controlled Cell-SELEX. J Microbiol Methods, 2014. 104: p. 94-100.
29. Kasahara, Y., Irisawa, Y., Ozaki, H., Obika, S., and Kuwahara, M., 2′,4′-BNA/LNA aptamers: CE-SELEX using a DNA-based library of full-length 2′-O,4′-C-methylene-bridged/linked bicyclic ribonucleotides. Bioorg Med Chem Lett, 2013. 23(5): p. 1288-92.
30. Eulberg, D., Buchner, K., Maasch, C., and Klussmann, S., Development of an automated in vitro selection protocol to obtain RNA-based aptamers: identification of a biostable substance P antagonist. Nucleic Acids Res, 2005. 33(4): p. e45.
31. Darmostuk, M., Rimpelova, S., Gbelcova, H., and Ruml, T., Current approaches in SELEX: An update to aptamer selection technology. Biotechnol Adv, 2015. 33(6 Pt 2): p. 1141-61.
32. Rahim Ruslinda, A., Tanabe, K., Ibori, S., Wang, X., and Kawarada, H., Effects of diamond-FET-based RNA aptamer sensing for detection of real sample of HIV-1 Tat protein. Biosens Bioelectron, 2013. 40(1): p. 277-82.
33. Kenzo Maehashi, Taiji Katsura, Kagan Kerman, Yuzuru Takamura, Kazuhiko Matsumoto, and Eiichi Tamiya, Label-Free Protein Biosensor Based on Aptamer-Modified Carbon Nanotube Field-Effect Transistors. Analytical Chemistry, 2007. 79(2): p. 782-787.
34. Michael Egholm, Ole Buchardt, Leif Christensen, Carsten Behrens, Susan M. Freier, David A. Driver, Rolf Henrik Berg, Seog K. Kim, Bengt Nordén, and Peter E Nielsen, PNA hybridizes to complementary oligonucleotides obeying the Watson–Crick hydrogen-bonding rules. Nature, 1993. 365(6446): p. 566-568.
35. Koppelhus, U. and P.E. Nielsen, Cellular delivery of peptide nucleic acid (PNA). Advanced Drug Delivery Reviews, 2003. 55(2): p. 267-280.
36. Sebastian Tomac, Munna Sarkar, Tommi Ratilainen, Pernilla Wittung, Peter E. Nielsen, Bengt Nordén, and Astrid Gräslund, Ionic Effects on the Stability and Conformation of Peptide Nucleic Acid Complexes. Journal of the American Chemical Society, 1996. 118(24): p. 5544-5552.
37. Nielsen, P.E., Peptide nucleic acid: a versatile tool in genetic diagnostics and molecular biology. Current Opinion in Biotechnology, 2001. 12(1): p. 16-20.
38. Satoshi Obika, Daishu Nanbu, Yoshiyuki Hari, Ken-ichiro Morio, Yasuko In, Toshimasa Ishida, and Takeshi Imanishi, Synthesis of 2′-O, 4′-C-methyleneuridine and-cytidine. Novel bicyclic nucleosides having a fixed C 3,-endo sugar puckering. Tetrahedron Letters, 1997. 38(50): p. 8735-8738.
39. Kent Bondensgaard, Michael Petersen, Sanjay K. Singh, Vivek K. Rajwanshi, Ravindra Kumar, Jesper Wengel, and Jens Peter Jacobsen, Structural studies of LNA: RNA duplexes by NMR: conformations and implications for RNase H activity. Chemistry-A European Journal, 2000. 6(15): p. 2687-2695.
40. Alexei A. Koshkin, Poul Nielsen, Michael Meldgaard, Vivek K. Rajwanshi, Sanjay K. Singh, and Jesper Wengel, LNA (locked nucleic acid): an RNA mimic forming exceedingly stable LNA: LNA duplexes. Journal of the American Chemical Society, 1998. 120(50): p. 13252-13253.
41. Leo H. Koole, Harold M. Moody, Niek L. H. L. Broeders, Peter J. L. M. Quaedflieg, Will H. A. Kuijpers, Marcel H. P. Van Genderen, Annie J. J. M. Coenen, Sjoerd Van der Wal, Henk M. Buck, Synthesis of phosphate-methylated DNA fragments using 9-fluorenylmethoxycarbonyl as transient base protecting group. The Journal of Organic Chemistry, 1989. 54(7): p. 1657-1664.
42. W.H.A. Kuijpers, J. Huskens, L.H. Koole, and C.A.A. van Boeckel, Synthesis of well-defined phosphate-methylated DNA fragments: the application of potassium carbonate in methanol as deprotecting reagent. Nucleic acids research, 1990. 18(17): p. 5197-5205.
43. Koole, L.H. and H.M. Buck. Enhanced stability of a Watson & Crick DNA duplex structure by methylation of the phosphate groups in one strand. in Proc. K. Ned. Acad. Wet. 1987.
44. van Genderen, M.H., L.H. Koole, and H.M. Buck, Hybridization of phosphate‐methylated DNA and natural oligonucleotides. Implications for protein‐induced DNA duplex destabilization. Recueil des Travaux Chimiques des Pays-Bas, 1989. 108(1): p. 28-35.
45. Kind, M. and C. Wöll, Organic surfaces exposed by self-assembled organothiol monolayers: Preparation, characterization, and application. Progress in Surface Science, 2009. 84(7-8): p. 230-278.
46. Bigelow, W.C., D.L. Pickett, and W.A. Zisman, Oleophobic monolayers. Journal of Colloid Science, 1946. 1(6): p. 513-538.
47. Sagiv, J., Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. Journal of the American Chemical Society, 1980. 102(1): p. 92-98.
48. Nuzzo, R.G. and D.L. Allara, Adsorption of bifunctional organic disulfides on gold surfaces. Journal of the American Chemical Society, 1983. 105(13): p. 4481-4483.
49. Wenga, G., Jacques, E., Salaun, A. C., Rogel, R., Pichon, L., and Geneste, F., Step-gate polysilicon nanowires field effect transistor compatible with CMOS technology for label-free DNA biosensor. Biosens Bioelectron, 2013. 40(1): p. 141-6.
50. Rodriguez-Mozaz, S., Marco, M. P., de Alda, M. J. Lopez, and Barceló, D., Biosensors for environmental applications: Future development trends. Pure and Applied Chemistry, 2004. 76(4).
51. Blin, A., I. Cisse, and U. Bockelmann, Electronic hybridization detection in microarray format and DNA genotyping. Sci Rep, 2014. 4: p. 4194.
52. Shanshan Cheng, Sho Hideshima, Shigeki Kuroiwa, Takuya Nakanishi, and Tetsuya Osaka, Label-free detection of tumor markers using field effect transistor (FET)-based biosensors for lung cancer diagnosis. Sensors and Actuators B: Chemical, 2015. 212: p. 329-334.
53. Xu, G., Abbott, J., Qin, L., Yeung, K. Y., Song, Y., Yoon, H., Kong, J., and Ham, D., Electrophoretic and field-effect graphene for all-electrical DNA array technology. Nat Commun, 2014. 5: p. 4866.
54. Jones, M.A., P.K. Kilpatrick, and R.G. Carbonell, Preparation and Characterization of Bifunctional Unilamellar Vesicles for Enhanced Immunosorbent Assays. Biotechnology Progress, 1993. 9(3): p. 242-258.
55. Frost, S.J., J. Chakraborty, and G.B. Firth, Urinary microalbumin measurement using a homogeneous liposomal immunoassay. Journal of Immunological Methods, 1996. 194(2): p. 105-111.
56. Sipova, H., T. Springer, and J. Homola, Streptavidin-enhanced assay for sensitive and specific detection of single nucleotide polymorphism in TP53. Anal Bioanal Chem, 2011. 399(7): p. 2343-50.
57. Lin, K. C., Wey, M. T., Kan, L. S., and Shiuan, D., Characterization of the interactions of lysozyme with DNA by surface plasmon resonance and circular dichroism spectroscopy. Appl Biochem Biotechnol, 2009. 158(3): p. 631-41.
58. Eric Stern, Aleksandar Vacic, Nitin K. Rajan, Jason M. Criscione, Jason Park, Bojan R. Ilic, David J. Mooney, Mark A. Reed, and Tarek M. Fahmy, Label-free biomarker detection from whole blood. Nat Nano, 2010. 5(2): p. 138-142.
59. Zheng, G. F., Patolsky, F., Cui, Y., Wang, W. U., and Lieber, C. M., Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotech, 2005. 23(10): p. 1294-1301.
60. Quartin, R.S. and J.G. Wetmur, Effect of ionic strength on the hybridization of oligodeoxynucleotides with reduced charge due to methylphosphonate linkages to unmodified oligodeoxynucleotides containing the complementary sequence. Biochemistry, 1989. 28(3): p. 1040-1047.
61. Yoshio Okahata, Masanori Kawase, Kenichi Niikura, Fuyuka Ohtake, Hiroyuki Furusawa, and Yasuhito Ebara, Kinetic Measurements of DNA Hybridization on an Oligonucleotide-Immobilized 27-MHz Quartz Crystal Microbalance. Analytical Chemistry, 1998. 70(7): p. 1288-1296.
62. Park, H., Germini, A., Sforza, S., Corradini, R., Marchelli, R., and Knoll, W., Effect of ionic strength on PNA-DNA hybridization on surfaces and in solution. Biointerphases, 2007. 2(2): p. 80-8.
63. Fang, Y., A. M. Ferrie, and F. Lai, Production of Protein Microarrays Using Robotic Pin Printing Technologies. 2005: p. 723-733.
64. Kim, J. Y., Choi, K., Moon, D. I., Ahn, J. H., Park, T. J., Lee, S. Y., and Choi, Y. K., Surface engineering for enhancement of sensitivity in an underlap-FET biosensor by control of wettability. Biosens Bioelectron, 2013. 41: p. 867-70.
65. Ladd, J., Taylor, A. D., Piliarik, M., Homola, J., and Jiang, S., Label-free detection of cancer biomarker candidates using surface plasmon resonance imaging. Anal Bioanal Chem, 2009. 393(4): p. 1157-63.
66. Peterson, A.W., R.J. Heaton, and R.M. Georgiadis, The effect of surface probe density on DNA hybridization. Nucleic Acids Research, 2001. 29(24): p. 5163-5168.
67. Jiang Zeng, Amer Almadidy, James Watterson, and Ulrich J. Krull, Interfacial hybridization kinetics of oligonucleotides immobilized onto fused silica surfaces. Sensors and Actuators B: Chemical, 2003. 90(1-3): p. 68-75.
68. Chen, W. Y., Chen, H. C., Yang, Y. S., Huang, C. J., Chan, H. W., and Hu, W. P., Improved DNA detection by utilizing electrically neutral DNA probe in field-effect transistor measurements as evidenced by surface plasmon resonance imaging. Biosens Bioelectron, 2013. 41: p. 795-801.
69. Yoshida, Y., Sakai, N., Masuda, H., Furuichi, M., Nishikawa, F., Nishikawa, S., Mizuno, H., and Waga, I., Rabbit antibody detection with RNA aptamers. Anal Biochem, 2008. 375(2): p. 217-22.
70. Bing, T., Yang, X., Mei, H., Cao, Z., and Shangguan, D., Conservative secondary structure motif of streptavidin-binding aptamers generated by different laboratories. Bioorg Med Chem, 2010. 18(5): p. 1798-805.
指導教授 陳文逸(Wen-Yih Chen) 審核日期 2016-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明