參考文獻 |
1. Ishige, Y., S. Takeda, and M. Kamahori, Direct detection of enzyme-catalyzed products by FET sensor with ferrocene-modified electrode. Biosens Bioelectron, 2010. 26(4): p. 1366-72.
2. Chen, K.-I., B.-R. Li, and Y.-T. Chen, Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today, 2011. 6(2): p. 131-154.
3. Wustoni, S., Hideshima, S., Kuroiwa, S., Nakanishi, T., Mori, Y., and Osaka, T., Label-free detection of Cu(II) in a human serum sample by using a prion protein-immobilized FET sensor. Analyst, 2015. 140(19): p. 6485-8.
4. Lee, H. S., Kim, K. S., Kim, C. J., Hahn, S. K., and Jo, M. H., Electrical detection of VEGFs for cancer diagnoses using anti-vascular endotherial growth factor aptamer-modified Si nanowire FETs. Biosens Bioelectron, 2009. 24(6): p. 1801-5.
5. Xiaochen Dong, Ching Man Lau, Anup Lohani, Subodh G. Mhaisalkar, Johnson Kasim, Zexiang Shen, Xinning Ho, John A. Rogers, and Lain-Jong Li, Electrical Detection of Femtomolar DNA via Gold-Nanoparticle Enhancement in Carbon-Nanotube-Network Field-Effect Transistors. Advanced Materials, 2008. 20(12): p. 2389-2393.
6. Cai, B., Huang, L., Zhang, H., Sun, Z., Zhang, Z., and Zhang, G. J., Gold nanoparticles-decorated graphene field-effect transistor biosensor for femtomolar MicroRNA detection. Biosens Bioelectron, 2015. 74: p. 329-34.
7. Son, M., Kim, D., Park, K. S., Hong, S., and Park, T. H., Detection of aquaporin-4 antibody using aquaporin-4 extracellular loop-based carbon nanotube biosensor for the diagnosis of neuromyelitis optica. Biosens Bioelectron, 2016. 78: p. 87-91.
8. Regonda, S., Tian, R., Gao, J., Greene, S., Ding, J., and Hu, W., Silicon multi-nanochannel FETs to improve device uniformity/stability and femtomolar detection of insulin in serum. Biosens Bioelectron, 2013. 45: p. 245-51.
9. Marco Curreli, Rui Zhang, Fumiaki N. Ishikawa, Hsiao-Kang Chang, Richard J. Cote, Chongwu Zhou, and Mark E. Thompson, Real-Time, Label-Free Detection of Biological Entities Using Nanowire-Based FETs. Ieee Transactions on Nanotechnology, 2008. 7(6): p. 651-667.
10. Elnathan, R., Kwiat, M., Pevzner, A., Engel, Y., Burstein, L., Khatchtourints, A., Lichtenstein, A., Kantaev, R., and Patolsky, F., Biorecognition layer engineering: overcoming screening limitations of nanowire-based FET devices. Nano Lett, 2012. 12(10): p. 5245-54.
11. Schoch, R.B., J. Han, and P. Renaud, Transport phenomena in nanofluidics. Reviews of Modern Physics, 2008. 80(3): p. 839-883.
12. Eric Stern, Robin Wagner, Fred J. Sigworth, Ronald Breaker, Tarek M. Fahmy, and Mark A. Reed, Importance of the debye screening length on nanowire field effect transistor sensors. Nano Letters, 2007. 7(11): p. 3405-3409.
13. An, T., Kim, K. S., Hahn, S. K., and Lim, G., Real-time, step-wise, electrical detection of protein molecules using dielectrophoretically aligned SWNT-film FET aptasensors. Lab Chip, 2010. 10(16): p. 2052-6.
14. Farid, S., Meshik, X., Choi, M., Mukherjee, S., Lan, Y., Parikh, D., Poduri, S., Baterdene, U., Huang, C. E., Wang, Y. Y., Burke, P., Dutta, M., and Stroscio, M. A., Detection of Interferon gamma using graphene and aptamer based FET-like electrochemical biosensor. Biosens Bioelectron, 2015. 71: p. 294-9.
15. Sung, T. C., Chen, W. Y., Shah, P., and Chen, C. S., A replaceable liposomal aptamer for the ultrasensitive and rapid detection of biotin. Sci Rep, 2016. 6: p. 21369.
16. Goda, T. and Y. Miyahara, Label-free and reagent-less protein biosensing using aptamer-modified extended-gate field-effect transistors. Biosens Bioelectron, 2013. 45: p. 89-94.
17. Lidong Wu, Peipei Qi, Xiaochen Fu, Huan Liu, Jincheng Li, Qiong Wang, and Hao Fan, A novel electrochemical PCB77-binding DNA aptamer biosensor for selective detection of PCB77. Journal of Electroanalytical Chemistry, 2016. 771: p. 45-49.
18. Riley, K. R., Saito, S., Gagliano, J., and Colyer, C. L., Facilitating aptamer selection and collection by capillary transient isotachophoresis with laser-induced fluorescence detection. J Chromatogr A, 2014. 1368: p. 183-9.
19. Marechal, A., Jarrosson, F., Randon, J., Dugas, V., and Demesmay, C., In-line coupling of an aptamer based miniaturized monolithic affinity preconcentration unit with capillary electrophoresis and Laser Induced Fluorescence detection. J Chromatogr A, 2015. 1406: p. 109-17.
20. Ravelet, C., C. Grosset, and E. Peyrin, Liquid chromatography, electrochromatography and capillary electrophoresis applications of DNA and RNA aptamers. J Chromatogr A, 2006. 1117(1): p. 1-10.
21. Zi-Ming Zhou, Zhe Feng, Jun Zhou, Bi-Yun Fang, Zhi-Ya Ma, Bo Liu, Yuan-Di Zhao, and Xue-Bin Hu, Quantum dot-modified aptamer probe for chemiluminescence detection of carcino-embryonic antigen using capillary electrophoresis. Sensors and Actuators B: Chemical, 2015. 210: p. 158-164.
22. Lou, B., Chen, E., Zhao, X., Qu, F., and Yan, J., The application of capillary electrophoresis for assisting whole-cell aptamers selection by characterizing complete ssDNA distribution. J Chromatogr A, 2016. 1437: p. 203-9.
23. Tuerk, C. and L. Gold, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990. 249(4968): p. 505-510.
24. Ellington, A.D. and J.W. Szostak, In vitro selection of RNA molecules that bind specific ligands. Nature, 1990. 346(6287): p. 818-822.
25. Wang, C. Y., Wu, C. Y., Hung, T. C., Wong, C. H., and Chen, C. H., Sequence-constructive SELEX: a new strategy for screening DNA aptamer binding to Globo H. Biochem Biophys Res Commun, 2014. 452(3): p. 484-9.
26. Hamula, C. L., Peng, H., Wang, Z., Tyrrell, G. J., Li, X. F., and Le, X. C., An improved SELEX technique for selection of DNA aptamers binding to M-type 11 of Streptococcus pyogenes. Methods, 2016. 97: p. 51-7.
27. Moghadam, M., Sankian, M., Abnous, K., Varasteh, A., Taghdisi, S. M., Mahmoudi, M., Ramezani, M., Gholizadeh, Z., and Ganji, A., Cell-SELEX-based selection and characterization of a G-quadruplex DNA aptamer against mouse dendritic cells. Int Immunopharmacol, 2016. 36: p. 324-32.
28. Savory, N., Nzakizwanayo, J., Abe, K., Yoshida, W., Ferri, S., Dedi, C., Jones, B. V., and Ikebukuro, K., Selection of DNA aptamers against uropathogenic Escherichia coli NSM59 by quantitative PCR controlled Cell-SELEX. J Microbiol Methods, 2014. 104: p. 94-100.
29. Kasahara, Y., Irisawa, Y., Ozaki, H., Obika, S., and Kuwahara, M., 2′,4′-BNA/LNA aptamers: CE-SELEX using a DNA-based library of full-length 2′-O,4′-C-methylene-bridged/linked bicyclic ribonucleotides. Bioorg Med Chem Lett, 2013. 23(5): p. 1288-92.
30. Eulberg, D., Buchner, K., Maasch, C., and Klussmann, S., Development of an automated in vitro selection protocol to obtain RNA-based aptamers: identification of a biostable substance P antagonist. Nucleic Acids Res, 2005. 33(4): p. e45.
31. Darmostuk, M., Rimpelova, S., Gbelcova, H., and Ruml, T., Current approaches in SELEX: An update to aptamer selection technology. Biotechnol Adv, 2015. 33(6 Pt 2): p. 1141-61.
32. Rahim Ruslinda, A., Tanabe, K., Ibori, S., Wang, X., and Kawarada, H., Effects of diamond-FET-based RNA aptamer sensing for detection of real sample of HIV-1 Tat protein. Biosens Bioelectron, 2013. 40(1): p. 277-82.
33. Kenzo Maehashi, Taiji Katsura, Kagan Kerman, Yuzuru Takamura, Kazuhiko Matsumoto, and Eiichi Tamiya, Label-Free Protein Biosensor Based on Aptamer-Modified Carbon Nanotube Field-Effect Transistors. Analytical Chemistry, 2007. 79(2): p. 782-787.
34. Michael Egholm, Ole Buchardt, Leif Christensen, Carsten Behrens, Susan M. Freier, David A. Driver, Rolf Henrik Berg, Seog K. Kim, Bengt Nordén, and Peter E Nielsen, PNA hybridizes to complementary oligonucleotides obeying the WatsonCrick hydrogen-bonding rules. Nature, 1993. 365(6446): p. 566-568.
35. Koppelhus, U. and P.E. Nielsen, Cellular delivery of peptide nucleic acid (PNA). Advanced Drug Delivery Reviews, 2003. 55(2): p. 267-280.
36. Sebastian Tomac, Munna Sarkar, Tommi Ratilainen, Pernilla Wittung, Peter E. Nielsen, Bengt Nordén, and Astrid Gräslund, Ionic Effects on the Stability and Conformation of Peptide Nucleic Acid Complexes. Journal of the American Chemical Society, 1996. 118(24): p. 5544-5552.
37. Nielsen, P.E., Peptide nucleic acid: a versatile tool in genetic diagnostics and molecular biology. Current Opinion in Biotechnology, 2001. 12(1): p. 16-20.
38. Satoshi Obika, Daishu Nanbu, Yoshiyuki Hari, Ken-ichiro Morio, Yasuko In, Toshimasa Ishida, and Takeshi Imanishi, Synthesis of 2′-O, 4′-C-methyleneuridine and-cytidine. Novel bicyclic nucleosides having a fixed C 3,-endo sugar puckering. Tetrahedron Letters, 1997. 38(50): p. 8735-8738.
39. Kent Bondensgaard, Michael Petersen, Sanjay K. Singh, Vivek K. Rajwanshi, Ravindra Kumar, Jesper Wengel, and Jens Peter Jacobsen, Structural studies of LNA: RNA duplexes by NMR: conformations and implications for RNase H activity. Chemistry-A European Journal, 2000. 6(15): p. 2687-2695.
40. Alexei A. Koshkin, Poul Nielsen, Michael Meldgaard, Vivek K. Rajwanshi, Sanjay K. Singh, and Jesper Wengel, LNA (locked nucleic acid): an RNA mimic forming exceedingly stable LNA: LNA duplexes. Journal of the American Chemical Society, 1998. 120(50): p. 13252-13253.
41. Leo H. Koole, Harold M. Moody, Niek L. H. L. Broeders, Peter J. L. M. Quaedflieg, Will H. A. Kuijpers, Marcel H. P. Van Genderen, Annie J. J. M. Coenen, Sjoerd Van der Wal, Henk M. Buck, Synthesis of phosphate-methylated DNA fragments using 9-fluorenylmethoxycarbonyl as transient base protecting group. The Journal of Organic Chemistry, 1989. 54(7): p. 1657-1664.
42. W.H.A. Kuijpers, J. Huskens, L.H. Koole, and C.A.A. van Boeckel, Synthesis of well-defined phosphate-methylated DNA fragments: the application of potassium carbonate in methanol as deprotecting reagent. Nucleic acids research, 1990. 18(17): p. 5197-5205.
43. Koole, L.H. and H.M. Buck. Enhanced stability of a Watson & Crick DNA duplex structure by methylation of the phosphate groups in one strand. in Proc. K. Ned. Acad. Wet. 1987.
44. van Genderen, M.H., L.H. Koole, and H.M. Buck, Hybridization of phosphate‐methylated DNA and natural oligonucleotides. Implications for protein‐induced DNA duplex destabilization. Recueil des Travaux Chimiques des Pays-Bas, 1989. 108(1): p. 28-35.
45. Kind, M. and C. Wöll, Organic surfaces exposed by self-assembled organothiol monolayers: Preparation, characterization, and application. Progress in Surface Science, 2009. 84(7-8): p. 230-278.
46. Bigelow, W.C., D.L. Pickett, and W.A. Zisman, Oleophobic monolayers. Journal of Colloid Science, 1946. 1(6): p. 513-538.
47. Sagiv, J., Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. Journal of the American Chemical Society, 1980. 102(1): p. 92-98.
48. Nuzzo, R.G. and D.L. Allara, Adsorption of bifunctional organic disulfides on gold surfaces. Journal of the American Chemical Society, 1983. 105(13): p. 4481-4483.
49. Wenga, G., Jacques, E., Salaun, A. C., Rogel, R., Pichon, L., and Geneste, F., Step-gate polysilicon nanowires field effect transistor compatible with CMOS technology for label-free DNA biosensor. Biosens Bioelectron, 2013. 40(1): p. 141-6.
50. Rodriguez-Mozaz, S., Marco, M. P., de Alda, M. J. Lopez, and Barceló, D., Biosensors for environmental applications: Future development trends. Pure and Applied Chemistry, 2004. 76(4).
51. Blin, A., I. Cisse, and U. Bockelmann, Electronic hybridization detection in microarray format and DNA genotyping. Sci Rep, 2014. 4: p. 4194.
52. Shanshan Cheng, Sho Hideshima, Shigeki Kuroiwa, Takuya Nakanishi, and Tetsuya Osaka, Label-free detection of tumor markers using field effect transistor (FET)-based biosensors for lung cancer diagnosis. Sensors and Actuators B: Chemical, 2015. 212: p. 329-334.
53. Xu, G., Abbott, J., Qin, L., Yeung, K. Y., Song, Y., Yoon, H., Kong, J., and Ham, D., Electrophoretic and field-effect graphene for all-electrical DNA array technology. Nat Commun, 2014. 5: p. 4866.
54. Jones, M.A., P.K. Kilpatrick, and R.G. Carbonell, Preparation and Characterization of Bifunctional Unilamellar Vesicles for Enhanced Immunosorbent Assays. Biotechnology Progress, 1993. 9(3): p. 242-258.
55. Frost, S.J., J. Chakraborty, and G.B. Firth, Urinary microalbumin measurement using a homogeneous liposomal immunoassay. Journal of Immunological Methods, 1996. 194(2): p. 105-111.
56. Sipova, H., T. Springer, and J. Homola, Streptavidin-enhanced assay for sensitive and specific detection of single nucleotide polymorphism in TP53. Anal Bioanal Chem, 2011. 399(7): p. 2343-50.
57. Lin, K. C., Wey, M. T., Kan, L. S., and Shiuan, D., Characterization of the interactions of lysozyme with DNA by surface plasmon resonance and circular dichroism spectroscopy. Appl Biochem Biotechnol, 2009. 158(3): p. 631-41.
58. Eric Stern, Aleksandar Vacic, Nitin K. Rajan, Jason M. Criscione, Jason Park, Bojan R. Ilic, David J. Mooney, Mark A. Reed, and Tarek M. Fahmy, Label-free biomarker detection from whole blood. Nat Nano, 2010. 5(2): p. 138-142.
59. Zheng, G. F., Patolsky, F., Cui, Y., Wang, W. U., and Lieber, C. M., Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotech, 2005. 23(10): p. 1294-1301.
60. Quartin, R.S. and J.G. Wetmur, Effect of ionic strength on the hybridization of oligodeoxynucleotides with reduced charge due to methylphosphonate linkages to unmodified oligodeoxynucleotides containing the complementary sequence. Biochemistry, 1989. 28(3): p. 1040-1047.
61. Yoshio Okahata, Masanori Kawase, Kenichi Niikura, Fuyuka Ohtake, Hiroyuki Furusawa, and Yasuhito Ebara, Kinetic Measurements of DNA Hybridization on an Oligonucleotide-Immobilized 27-MHz Quartz Crystal Microbalance. Analytical Chemistry, 1998. 70(7): p. 1288-1296.
62. Park, H., Germini, A., Sforza, S., Corradini, R., Marchelli, R., and Knoll, W., Effect of ionic strength on PNA-DNA hybridization on surfaces and in solution. Biointerphases, 2007. 2(2): p. 80-8.
63. Fang, Y., A. M. Ferrie, and F. Lai, Production of Protein Microarrays Using Robotic Pin Printing Technologies. 2005: p. 723-733.
64. Kim, J. Y., Choi, K., Moon, D. I., Ahn, J. H., Park, T. J., Lee, S. Y., and Choi, Y. K., Surface engineering for enhancement of sensitivity in an underlap-FET biosensor by control of wettability. Biosens Bioelectron, 2013. 41: p. 867-70.
65. Ladd, J., Taylor, A. D., Piliarik, M., Homola, J., and Jiang, S., Label-free detection of cancer biomarker candidates using surface plasmon resonance imaging. Anal Bioanal Chem, 2009. 393(4): p. 1157-63.
66. Peterson, A.W., R.J. Heaton, and R.M. Georgiadis, The effect of surface probe density on DNA hybridization. Nucleic Acids Research, 2001. 29(24): p. 5163-5168.
67. Jiang Zeng, Amer Almadidy, James Watterson, and Ulrich J. Krull, Interfacial hybridization kinetics of oligonucleotides immobilized onto fused silica surfaces. Sensors and Actuators B: Chemical, 2003. 90(1-3): p. 68-75.
68. Chen, W. Y., Chen, H. C., Yang, Y. S., Huang, C. J., Chan, H. W., and Hu, W. P., Improved DNA detection by utilizing electrically neutral DNA probe in field-effect transistor measurements as evidenced by surface plasmon resonance imaging. Biosens Bioelectron, 2013. 41: p. 795-801.
69. Yoshida, Y., Sakai, N., Masuda, H., Furuichi, M., Nishikawa, F., Nishikawa, S., Mizuno, H., and Waga, I., Rabbit antibody detection with RNA aptamers. Anal Biochem, 2008. 375(2): p. 217-22.
70. Bing, T., Yang, X., Mei, H., Cao, Z., and Shangguan, D., Conservative secondary structure motif of streptavidin-binding aptamers generated by different laboratories. Bioorg Med Chem, 2010. 18(5): p. 1798-805. |