以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:33 、訪客IP:3.146.34.148
姓名 張育豪(Yu-Hao Chang) 查詢紙本館藏 畢業系所 化學學系 論文名稱 改善鋰離子電池電性之新穎電解液添加劑 相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 先進鋰離子電池(LIBs),對電池循環壽命和安全性的要求極為嚴苛。我們發現改進這些物性的主要關鍵在於改善固態電解質界面(Solid electrolyte interface, SEI)。理想的SEI層必須能保護電極,減少其與電解液直接接觸產生物理或化學變化,進而增加電池的循環壽命和安全性。但SEI層也必須仍保有恰當通道有利於鋰離子嵌入/脫出,才不至於影響電池的充放電性表現。
鑑於此,本實驗設計將由開發新型的電解液添加劑來改質SEI結構,藉以完成下世代鋰離子電池的目標。本研究設計以1,3-二甲基巴比妥酸(1,3-DBTA)與N,N′-(4,4′-亞甲基二苯基)雙馬來醯亞胺(BMI)和N-苯基馬來醯亞胺(PMI)進行共聚反應,形成高分岐網狀結構的添加劑p-BPMI。p-BPMI粉末可順利溶解在商用電解液(1M LiPF6 in EC+DMC+EMC 1:1:1 V/V)中,並作為電解液添加劑運用在鋰離子電池(LIBs)上。經組成NMC(Li[Ni1/3Mn1/3Co1/3]O2) /Li鈕扣型半電池測試,於化成過程中生成的固態電解質界面(SEI)藉由電子掃描顯微鏡(SEM)、X-射線光電子光譜(XPS)、電化學阻抗頻譜(EIS)進行分析探討,可以證實p-BPMI順利披覆於電極活性物質並參與SEI的生成。此新的SEI層包覆性較好可減少電解液和鋰鹽的消耗,非但未增加離子傳輸的電阻影響充放電,反而能改善在高溫操作之循環壽命及提升電池安全性能表現。
加入1wt%的p-BPMI於電解液中組成NMC/Li鈕扣型半電池進行測試,在室溫(25oC)以0.5C-rate充放電80圈進行循環測試,與不含添加劑之電解液比較,容量保持率從原本的85.21%提高到96.53%;高溫(在60oC)測試的部分,以0.5C-rate充放電30圈進行循環測試,將同樣1wt%的p-BPMI和Vinylene carbonate (VC)相比,容量保持率從93.71%提高到96.43%。最後將1wt% p-BPMI運用在NMC /graphite軟包裝全電池(500毫安)上,在充滿電狀態(4.3V)進行穿刺測試,並沒有任何燃燒或爆炸的跡象發生,反觀只有添加VC的電解液發生燃燒反應。這種新型電解液添加劑p-BPMI不僅改善了鋰電池室溫和高溫循環性能,更提升了電池使用的安全性。摘要(英) Cycle life and safety are the two most sought-after properties in advanced lithium battery (LIBs). We have previously discovered the improvement hinges on solid electrolyte interface (SEI) layer. An idea SEI layer must be able to isolate the direct contact of electrolyte with the active electrode materials, which prevents physical or chemical reaction and eventually leads to longer cycle life and safety. However, this SEI structure should also bear fluent ion transport path that avails lithium intercalation and de-intercalation during charge and discharge cycle, thus not become a hindrance to cell performance.
In this study, we have developed a new type of electrolyte additive to facilitate formation of idea SEI structure, which leads to improved cycle life and effectively raised battery safety. The additive is based on a family of hyperbranched polyimine derivative composed of 1,3-dimethyl-barbituric acid (1,3-DBTA), copolymerized with N,N’-(4,4’-methylenediphenyl)dimaleimide (BMI) and N-phenylmaleimide(PMI), (termed as p-BPMI). The p-BPMI powder is fully dissolvable in common commercial electrolytes such as (1M LiPF6 in EC+DMC+EMC 1:1:1 V/V), and administered the same fashion as other electrolyte additives. The interface composition and structure after pre-formation and cycling of coin cells using the Li(Ni1/3Mn1/3Co1/3)O2/Li half-cell were characterized by SEM、EIS and XPS techniques and confirmed that the hyper-branched p-BPMI is homogeneously dispersed on the active component surface and participated with the growth of SEI. The newly formed SEI is robust, thinner and porous which not only allows fluent lithium transport, it also reduces the electrolytes and salt decomposition leading to longer cycle life and improved cell safety.
With the addition of 1wt% p-BPMI in the electrolyte, the capacity retention is raised from 85.21% to 96.53% compared with the base electrolyte after 0.5C-rate for 80 cycles at 25°C. When operating at higher temperature (60oC), with the addition of 1wt% p-BPMI in the electrolyte, the capacity retention is raised from93.71% to 96.43% compared to the use of electrolyte with 1wt% Vinylene carbonate (VC) as the additive. Fully charged NMC/graphite pouch full cell (500mA) with 1wt% p-BPMI-added electrolyte at 4.3V shows no sign of combustion or explosion after internal shortage inflicted by nail-penetration, while the regular cell with only VC additive shows thermal run away and finally exploded. This new type of electrolyte additive, p-BPMI is confirmed to be effective in improving both the room temperature and high temperature cycling performance after high temperature storage; and also assured LIB’s safety.關鍵字(中) ★ 鋰離子電池
★ 電解液添加劑關鍵字(英) 論文目次 摘要 I
Abstract III
謝誌辭 V
目錄 VII
圖片目錄 XI
表格目錄 XIV
第一章 緒論 1
1-1 研究背景 1
1-2 現有之鋰離子電池改善方法 4
1-3 實驗動機與目的 7
第二章 文獻回顧 9
2-1 鋰離子電池之議題探討 9
2-2 正極材料之特性介紹 12
2-3 固態電解質介面(SEI)之簡介 15
2-3-1 鈍化層之形成機制 16
2-3-2 鈍化層之鑑定方法 21
2-3-2-1 鈍化層之組成鑑定 21
2-3-2-2 鈍化層之表面鑑定 25
2-4 改良鈍化層之添加劑 28
2-4-1 官能基化電解液之添加劑 29
2-4-2 磷系添加劑 32
2-4-3 氮系添加劑 34
2-4-4硫系添加劑 36
2-4-5 聚合型添加劑 38
第三章 實驗 40
3-1實驗藥品、器材與儀器設備 40
3-1-1實驗藥品 40
3-1-2實驗器材 42
3-1-3實驗儀器設備 42
3-2實驗方法 43
3-2-1電解液添加劑之製備 44
3-2-2 添加劑電解液配置 46
3-2-3 正極極片製作 46
3-2-4鈕扣型電池之組裝 47
第四章 結果與討論 48
4-1 添加劑之合成與物性探討 48
4-1-1 添加劑之合成鑑定 48
4-1-2 添加劑於電解液之溶解度探討 50
4-1-3 添加劑於電解液之離子導電度探討 52
4-1-4變速率充放電 53
4-2 鈍化層之鑑定與探討 54
4-2-1 循環伏安法測試 55
4-2-2掃描電子顯微鏡之電極表面型態分析 57
4-2-3 X光-光電子能譜儀之鈍化層探討 58
4-3添加劑之電性探討 60
4-3-1 室溫循環壽命測試 60
4-3-2 60OC高溫循環壽命測試 62
4-4 電池之安全性測試與探討 64
4-4-1 穿刺實驗測試 64
4-4-2提升電池安全性之原因探討 67
4-4-3不同添加劑之變溫阻抗測試 69
4-5 P-BPMI之衍生應用 72
4-5-1黏著劑O-BMI之探討 72
第五章 結論與未來展望 75
參考文獻 77參考文獻 [1] J. M. Tarascon, M. Armand;Nature. 414 (2001) 359.
[2] 劉偉仁、郭信良;工業材料雜誌, 302 (2012) 131.
[3] http://www.epochtimes.com/b5/13/10/5/n3979527.htm
王添財、王樺;大紀元新聞社;(2013)
[4] J. Wen, Y. Yu, C. Chen;Materials Express. 2 (2012) 197.
[5] 仇衛華、張剛、盧世剛;電源技術;23 (1999) 7.
[6] 楊瑞枝、張東煜、張紅波;無機材料學報;15 (2000) 711.
[7] 黃可龍、王兆翔;鋰離子電池原理與技術;(2014) 457.
[8] G. Pistoia, D. Zane, Y. Zhang;Electrochem. Soc. 142 (1995) 2551.
[9] M. M. Thackeray, A. J. Kahaian, K. D. Kepler, E Skinner;
Electrochemical and Solid-State Letters. 1 (1998) 7.
[10] R. J. Gummow, A. D. Kock, M. M. Thackeray;Solid State Ionics.
69 (1994) 59.
[11] L. Zhang, Z. Zhang, P. C. Redfern, L. A. Curtiss, K. Amine;
Energy Environ. Sci. 5 (2012) 8204.
[12] T. Ohsaki, T. Kishi, T. Kuboki, N. Takami, N. Shimura, Y. Sato,
M. Sekino, A. Satoh;J. Power Sources. 97 (2005) 146.
[13] K. Kumai, H. Miyashiro, Y. Kobayashi, K. Takei, R. Ishikawa;
J. Power Sources. 715 (1999) 81.
[14] E. Sahraei;J Power Sources. 247 (2014) 503.
[15] L. Greve, C. Fehrenbach;J. Power Sources. 214 (2012) 377.
[16] Q. Wang, J. Sun, X. Yao, C. Chen;Thermochim. Acta. 437 (2005) 12.
[17] Q. Wang, J. Sun, X. Yao, C. Chen;J. Electrochem. Soc. 153 (2006) A329.
[18] C. L. Campion, W. Li, B. L. Lucht;J. Electrochem. Soc. 152 (2006) A2327.
[19] V. V. Viswanathan, D. Choi, D. Wang, W. Xu, S. Towne, R. E.Williford, J. G. Zhang, J. Liu, Z. Yang;J. Power Sources. 195 (2010) 3270.
[20] K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough;Mater. Res. Bull. 17 (1980) 783.
[21] C. H. Wu;The Chinese Chem. Soc. 57 (1999) 169.
[22] A. Yamada, M. Tanaka;Mater. Res. Bull. 30 (1995) 715.
[23] L. D. Dyer, B. S. Borie, G. P. Smith;J. Am. Chem. Soc. 78 (1954) 1499.
[24] A. Hirano, R. Kanno, Y. Kawamoto, Y. Takeda, K. Yamaura, M. Takano, K. Ohyama, M. Ohashi, Y. Yamaguchi;Solid State Ionics. 78 (1995) 123.
[25] A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough;
J. Electrochem. Soc. 144 (1997) 1188.
[26] N. Ravet, J. F. Magnan, S. Besner;J. Power Sour. 97 (2001) 503.
[27] C. H. Chen, C. J. Wang;J. Power Sources. 146 (2005) 626.
[28] M. Gozu, K. Świerczek, J. Molenda;J. Power Sources. 194 (2009) 38.
[29] K. Xu;Chem. Rev. 104 (2004) 4303.
[30] P. Verma, P. Maire, P. Novák;Electrochim. Acta. 55 (2010) 6332.
[31] K. Ado, M. Tabuchi, H. Kobayashi, H. Kageyama, O. Nakamura, Y. Inaba, R. Kanno, M. Takagi, Y. Takeda;J. Electrochem. Soc., 144 (1997) 117.
[32] D. Aurbach, B. Markovsky, A. Shechter, Y. Ein‐Eli, H. Cohen;J. Electrochem. Soc. 143 (1996) 3809.
[33] Y. Dai, Y. Wang, V. Eshkenazi, E. Peled, S. G. Greenbaum; J. Electrochem. Soc. 145 (1998) 3482.
[34] 葉定儒、陳金銘、廖世傑;工業材料雜誌;290 (2011) 78.
[35] 黃可龍、王兆翔;鋰離子電池原理與技術;(2014) 398.
[36] 楊家諭、鄭程鴻、邱永城;工業材料;110 (1996) 66.
[37] D. Aurbach, B. Markovsky, M. D. Levi, E. Levi, A. Schechter,M. Moshkovich, Y. Cohen;J. Power. Sources. 81 (1999) 95.
[38] S. S. Zhang;J. Power. Sources. 162 (2006) 1379.
[39] S. S. Zhang, K. Xu, T. R. Jow;Electrochim. Acta. 49 (2004) 1057.
[40] M. Dollé, S. Grugeon, B. Beaudoin, L. Dupont, J. M. Tarascon;J. Power Sources. 97 (2001) 104.
[41] E. Peled, D. Golodnitsky, A. Ulus, V. Yufit;Electrochim. Acta. 50 (2004) 391.
[42] K. I. Morigaki, A. Ohta;J. Power Sources. 76 (1998) 159.
[43] D. Aurbach, Y. Cohen;J. Electrochem. Soc. 143 (1996) 3525.
[44] Q. C. Zhuang;Chin. Sci. Bull. 54 (2009) 2627.
[45] A. D. Pasquier, F. Disma, T. Bowmer, A. S. Gozdz, G. Amatucci,J. M. Tarasconb;J. Electrochem. Soc. 145 (1998) 472.
[46] J. Jiang, J. R. Dahn;Electrochim. Acta. 49 (2004) 4599.
[47] S. S. Zhang, K. Xu, T. R. Jow;Electrochim. Acta. 49 (2004) 1057.
[48] G. Li, J. Power;Sources. 104 (2002) 190.
[49] D. Aurbach;J. Power. Sources. 89 (2000) 206.
[50] V. Eshkenazi;Solid State Ionics. 170 (2004) 83.
[51] D. E. Arreaga-Salas;J. Physical. Chem. 116 (2012) 9072.
[52] 葉定儒、陳金銘、廖世傑;工業材料雜誌;290 (2011) 78.
[53] H. C. Wu;Electrochemical and Solid-State Letters. 9 (2006) A537.
[54] L. B. Chen, K. Wangb, X. H. Xieb;J. Power. Sources. 174 (2007) 538.
[56] Y. S. Hu, W. Kong, H. Li, X. Huang;Electrochemistry Communications. 6 (2004) 126.
[57] T. Hamamoto;JP Patent 3663897. (1999).
[58] Y. X. Wang;J. Am. Chem. Soc., 124 (2002) 4408.
[59] Y. Li;Electrochim. Acta. 168 (2015) 261.
[60] M. Inaba;Electrochim. Acta. 45 (1999) 99.
[61] Y. M. Song, C. K. Kim, K. E. Kim, S. Y. Hong, N. S.
Choi;J. Power. Sources. 302 (2016) 22.
[62] H. F. Xiang, H.Y. Xu, Z.Z. Wang, C.H. Chen;Power. Sources. 173 (2007) 562.
[63] N. Kanno;JP Patent 3060505. (1992).
[64] Jiahui Chen, Yuan Gao, Cuihua Li, Hui Zhang, Jianhong Liu, Qianling Zhang;Electrochim. Acta. 178 (2015) 127.
[65] Y. Kusumoto;JP Patent 3369947. (1999).
[66] T. Hamamoto;US Patent 6033809. (2000).
[67] A. Hiwara;JP Patent 4190162. (2002).
[68] R. H. Wang,;J. Solid. State. Electrochem. 20 (2015) 1.
[69] F. M. Wang, S. C. Lo, C. S. Cheng;J. Membrane. Sci. 368 (2011) 165.
[70] J. P. Pan, G. Y. Shiau, G. Y. Lin;J. Applied. Polymer. Sci. 45 (1992) 103.指導教授 諸柏仁(Po-Jen Chu) 審核日期 2016-7-25 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare