博碩士論文 103223040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:18.222.182.249
姓名 張倚涵(Yi-Han Chang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 電場誘導高離子導向之混摻高分子固態電解質
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 電場誘導聚苯醚碸摻雜複合薄膜之研究
★ 改善鋰離子電池電性之新穎電解液添加劑★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討
★ 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討★ 電致發光電池中電解質的結構與物性探討
★ 奈米二氧化鈦-固態複合高分子電解質★ 交聯型固態高分子電解質
★ 高分子固態電解質改進高分子發光二極體之光學特性研究★ 複合高分子電解質結構與電性之研究
★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性
★ 超分子發光二極體相容性、分子運動性與光性之研究★ 新穎質子交換膜
★ 原位聚合有機無機複合發光二極體 之分散性及光性研究★ 原位聚合固態電解質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 鋰離子二次電池廣泛使用在各個電子產品與行動裝置,為重要儲能裝置之一;由於一般鋰電池之電解液在使用上,有安全性上之隱憂,因此發展不具揮發性之固態電解質為解決此問題之方法之一。
本研究利用兩種不同比例之PMMA及PVDF-HFP高分子混摻及非揮發性離子液體之結合,於電場誘導極化下製成高離子導電度之固態電解質。在電場中,非結晶區之高分子鏈形成有序之排列;結晶區結晶度下降,提供鋰離子有更多之運動空間,增加導離子導電度,此系統之樣品之導電度皆可達10-3 S/cm以上。尤其是主體高分子比例為PVDF-HFP:PMMA=50:50電場處理後之e5EL樣品,在溫度70oC,導電度可高達10-2 S/cm。由於電場誘導之結構上的改變,非結晶區形成長程有序的排列,進而使薄膜緻密化,不但增加薄膜之機械強度提高PVDF-HFP/PMMA之相容性,伴隨著提升薄膜之熱穩定性及電化學穩定性,電化學視窗最高可達5.58 V。此外電解質與電極之介面電阻也由於PMMA及電場極化之效應得以改善。
電性測試上,在0.1C時,皆都可達120mAh/g以上,e5EL電容量可達150mAh/g,而在0.5C充放電速率下,e3EL電容量可以達70mAh/g,在庫倫效率,皆可達100%左右。
摘要(英) Lithium-ion battery holds great promises for automobile applications and for energy storage purpose. In this work, we present a highly ion conducting solid polymer electrolytes (SPEs) membrane, prepared under external electric field (EF) poling where nonvolatile conducting medium, ionic liquids (ILs) in solid polymer electrolytes. The poling created aligned morphology in PVDF-HFP and PMMA blending system yielding long-range ordered morphology, but remains nearly total amorphous where nonflammable ionic liquids is fully dispersed to deliver unusually high Li+ transport. Room temperature conductivity reached above 10-3S/cm and the highest conductivity of 10-2 S/cm is observed at 70oC for polymer electrolyte containing PMMA/PVDF-HFP (50/50 wt%, e5EL). The alignment by the external electric field not only altered the interaction between polymer components which has suppressed PVDF-HPF crystallinity in the SPEs, but it also improves mechanical strength of the membrane, and reduced the electrode-electrolyte interface resistance. The coin cell (R2032) using e5EL, e4EL and e3EL as the SPEs and LiFePO4 cathode shows fair half-cell performance and durable cycle stability. Under 0.1C-rate the half-cell displayed discharge capacity which could above a1most 120 mAh/g, and at 0.5C-rate the capacity reached above 60mAh/g , especially e3EL reached 70mAh/g.
關鍵字(中) ★ 固態電解質
★ 混摻高分子
★ 離子液體
★ 電場誘導
★ 鋰離子二次電池
關鍵字(英)
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 vii
表目錄 x
第1.章 緒論 1
1.1. 研究背景 1
1.2. 鋰離子二次電池之發展與簡介 2
1.3. 研究動機與目的 6
第2.章 文獻回顧 8
2.1. 聚合物電解質 9
2.1.1. 聚合物電解質之發展 9
2.1.2. 聚合物電解質之簡介與分類 11
2.1.3. 聚合物電解質之內部形貌 12
2.1.4. 聚合物電解質之目標性質 14
2.1.5. 聚合物電解質之製程技術 16
2.1.6. 聚合物混摻電解質之發展與簡介 17
2.2. PVDF-HFP及PMMA之介紹與應用 19
2.2.1. 聚偏二氟乙烯六氟丙烯(PVDF-HFP) 19
2.2.2. 聚甲丙烯酸甲酯(PMMA) 22
2.3. 離子液體 27
2.3.1. 離子液體之簡介與特性 27
2.3.2. 離子液體在高分子電解質上之應用 28
2.4. 外加電場之影響 30
第3.章 實驗方法 32
3.1. 實驗藥品與儀器 32
3.1.1. 實驗藥品 32
3.1.2. 實驗儀器 34
3.2. 實驗流程與操作 35
3.2.1. 薄膜製備 35
3.2.2. 鈕扣型半電池之製備 36
3.3. 儀器簡介與用途 37
3.3.1. 示差掃秒式熱差儀 37
3.3.2. 線性掃描式伏安法之分析 39
第4.章 實驗結果與討論 42
4.1. 薄膜之結晶性與物化性 43
4.1.1. 結晶性 43
4.1.2. 以DSC鑑定樣品之熱性質探討與結晶變化 44
4.1.3. 機械性質之探討 46
4.1.4. SEM之固態電解質表面之鑑定 47
4.1.5. 變溫導電度之探討 49
4.2. 薄膜之穩定性質 52
4.2.1. 熱穩定性 52
4.2.2. 電化學穩定性 54
4.2.3. 鋰離子於電解質之中傳導機制 57
4.3. 電解質與電極之介面探討 58
4.3.1. 電化學介面光譜之鑑定 58
4.3.2. 以SEM鑑定充放電後之薄膜表面 60
4.4. 半電池之電性測試 62
第5.章 結論與未來展望 66
5.1. 結論 66
5.2. 未來展望 66
參考文獻 68
參考文獻 1. Y. Wang , X. Liao , Y. Luo , Q. Yang , G. Li , Journal of Materials Science & Technology,. 31(5) , p.463, 2015
2. W.H.Meyer, Advaned Materials,10, p.439, 1998.
3. M.Galiński,A. Lewandowski, and I. Stępniak,Electrochimica Acta,.51(26), p.5567, 2006.
4. C.M. Hayner, X. Zhao, and H.H. Kung, Rev Chem Biomol Eng, 3, p. 445, 2012.
5. J. Chen, Materials, 6(1), p.156, 2013.
6. X. Zeng,J.L.,and Narendar Singh, Environmental Science and Technology, 44, p.1129, 2014.
7. V. Etacheri et al., Energy & Environmental Science,. 4(9), p.3243, 2011.
8. J.Y. Song, Y.Y.W., C.C. Wan, Journal of Power Sources, 77, p.183, 1999.
9. Felix B. Dias, Lambertus Plomp, Jakobert B.J. Veldhuis , Journal of Power Sources, 88, p.169, 2000.
10. H.Y. Liua, L.L. Liua, C.L. Yanga, Z.H. Lia, Q.Z. Xiaoa, G.T. Leia, Y.H. Dingb, Electrochimica Acta, 121, p.328 , 2014.
11. D.S. Kim, J. C. Woob, J. H. Youkb, J. Manuela, J.H. Ahn,Materials Research Bulletin, 58,p.208, 2014.
12. B.Scrosati, and J. Garche, 195(9), p.2419, 2010.
13. Zlatka Gadjourova, Y.G.A., David P. Tunstall,Peter G. Bruce,Nature, 412 , p.520, 2001.
14. H.Sakaebe, H. Matsumoto, and K. Tatsumi, Electrochimica Acta, 53(3), p.1048, 2007.
15. Kang Wu,.Chemical Reviews, 104, p. 4303, 2004.
16. Brodd, R.J., "Comments on the History of Lithium-Ion Batteries.", Broddarp of Nevada, Henderson NV 89074.
17. Masaki Yoshio, R.J.B., Akiya Kozawa,"Lithium-Ion Batteries:Science and Technologies", Springer, Japan, 2009.
18. Doron Aurbach , E.Z., Yaron Cohen, Hanan Teller, Solid State Ionics,148, p.405416, 2002.
19. A.H North, J.M., Solid State lonics , 9 & 10, p.1161, 1983.
20. D.E. Fenton, J.M.P., P.V. Wright, Polymer, 14, p.89, 1973.
21. Gregory C. Farrington, J.L.B., Science, 204, p.1371, 1979.
22. R.C. Agrawal, and G.P. Pandey, Journal of Physics D: Applied Physics, 41(22), p.223001, 2008.
23. M. Armand, Solid State Ionies, 69, p.309, 1994.
24. Kazuo Murata , S.I., Youetsu Yoshihisa, Electrochimica Acta ,45, p. 1501, 2000.
25. Hu, Q., "Electrode-Electrolyte Interfaces in Solid Polymer Lithium Batteries", in Harvard School of Engineering and Applied Sciences, Doctoral dissertation, 2012.
26. J.-M. Tarascon, M.A., Nature, 414, p.15 , 2001.
27. W.H.Meyer, Advanced Materials, 10, p.439, 1998.
28. Priew Eiamlamai,"Polymer electrolytes based on ionic liquids for lithium." Doctoral dissertation , Materials,Universit´e Grenoble Alpes, 2015.
29. Fiona M. Gray, R. James, Maccallum,Colin.A.Vincent.,Solid State lonics ,18 & 19 , p.282, 1986.
30. S.Sadhukhan,"Preparation and Characterization of Polymer Electrolyte", in Department of Physics, National Institute of Technology, Degree of Master, Rourkela-769008.
31. Jyotishkumar Parameswaranpillai, S.T., and Yves Grohens, "Polymer Blends: State of the Art, New Challenges,and Opportunities, in Characterization of Polymer Blends: Miscibility, Morphology, and Interfaces", Wiley-VCH Verlag GmbH & Co. KGaA, 2015.
32. A.Manuel Stephan,K.S. Nahm , M. Anbu Kulandainathan ,G. Ravi , J. Wilson , European Polymer Journal, 42, p.1728, 2006.
33. P.Martins, , A.C. Lopes, and S. Lanceros-Mendez, Progress in Polymer Science, 39(4), p.683, 2014.
34. Röhm O, On the Polymerization Products of Acrylic Acid [dissertation], 1901.
35. T. Iijima, Y. Toyoguchi, N. Eda, Denki Kagaku., 53, p.619, 1985.
36. G. B. Appetecchi, F. Croce and B. Scrosat,Electrochimico Acla, 40, p.591, 1995.
37. Y.F. Zhou, S.Xie, X.W. GE, C.H. Chen and K. Amine, Journal of Applied Electrochemistry, 34, p.1119, 2004.
38. M. Tretera, J.R., J. Vondrák1, M.,Sedlaříková,"Ionic Conductivity of Lithium salts in PMMA gel electrolytes",6th Advanced Batteries and Accumulators, 2005.
39. S.Schneider, X.D., J.C.Wittmann, B.Lotz, Polymer, 42, p.8799, 2001.
40. N.N.António,"STUDY OF THE MECHANISMS OF THERMAL DESPOLIMERIZAÇÃO OF THE POLI(METHYL METHACRYLATE)", Engenharia Química , Degree of Master , 2007.
41. Shyly PM, K.K., Linda T, Paitip Thiravetyan, Balakumar S and S.S. X, Journal of Applied Physics, 1(4), p.47, 2012.
42. R. Nimma Elizabeth, S.K., Yuria Saito, A. Manuel Stephan,Ciência e Tecnologia, 15, p.46, 2005.
43. Yanilmaz, M. and X. Zhang, Polymers, 7(4), p.629, 2015.
44. Cedric Maton, Nils De Vos and Christian V. Stevens, Chemical Society Review, 42(13), p.5963, 2013.
45. S.Keskin et al., The Journal of Supercritical Fluids, 43(1), p.150, 2007.
46. Yun-Sheng Ye, John Rick , Bing-Joe Hwang, Journal of Materials Chemistry A, 1(8), p. 2719, 2013.
47. Shalu, et al., The Journal of Physical Chemistry B, 117(3): p.897, 2013.
48. Johnson,K.E., What’s an Ionic Liquid?,The Electrochemical Society Interface., 2007
49. Serpico, J.M., Wnek G.E., Krause S., Smith T.W., Luca D.J., Van Laeken A. , Macromolecules, 24(26), 1991.
50. Belfiore, L.A., Physical Properties of Macromolecules. Canada: John Wiley & Sons, Inc., 2010
51. A.D. Drozdov, Journal of Applied Mechanics, 66,p.702, 1999.
52. Wegener, D.M., F 10 Electrical Poling of Polymers, in Institute of Physics. University of Potsdam,. 2002.
53. T. Nishil and T. T. Wan, Macromolecules, 8,p 909, 1975
54. Peng G.et al., RSC Advances, 4(32), p.16849, 2014.
55. Kodre KV, A.S., Yendhe P.R., Patil R.Y., and Barge V.U.,Journal of Pharmaceutical Analysis, 3(3), p11, 2014.
56. Websites,N. Principle of a heat-flux DSC. Available from: https://www.netzsch-thermal-analysis.com/en/landing-pages/principle-of-a-heat-flux-dsc/.
57. Websites ,Cambridge, U.o. Linear Sweep and Cyclic Voltametry: The Principles. 2015;Available from: http://www.ceb.cam.ac.uk/research/groups/rg-eme/teaching-notes/linear-sweep-and-cyclic-voltametry-the-principles.
58. D.J. Lin, C.L Lin, and S.Y. Guo, Macromolecules,45, p.8824,2012
指導教授 諸柏仁(Po-Jen Chu) 審核日期 2016-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明