參考文獻 |
[1] C. Papagoras, P. V. Voulgari, and A. A. Drosos, "Strategies after the failure of the first anti-tumor necrosis factor alpha agent in rheumatoid arthritis," Autoimmunity Reviews, vol. 9, pp. 574-582, 2010.
[2] Z. Huang, Z. Zhang, Y. Zha, J. Liu, Y. Jiang, Y. Yang, J. Shao, X. Sun, X. Cai, Y. Yin, J. Chen, L. Dong, and J. Zhang, "The effect of targeted delivery of anti-TNF-α oligonucleotide into CD169+ macrophages on disease progression in lupus-prone MRL/lpr mice," Biomaterials, vol. 33, pp. 7605-7612, 2012.
[3] J. Maria, S. Karin, R. Cecilia, M. Brian, K. Søren, N. D. Tomas, G. J. Thomas, and G. M. Jacob, "Amelioration of Psoriasis by Anti-TNF-α RNAi in the Xenograft Transplantation Model′," Molecular Therapy, vol. 17, pp. 1743-53, 2009.
[4] M. L. Moss, L. Sklair-Tavron, and R. Nudelman, "Drug insight: tumor necrosis factor-converting enzyme as a pharmaceutical target for rheumatoid arthritis," Nature Clinical Practice Rheumatology, vol. 4, pp. 300-309, 2008.
[5] R. C. Newton, K. A. Solomon, M. B. Covington, C. P. Decicco, P. J. Haley, S. M. Friedman, and K. Vaddi, "Biology of TACE inhibition," Annals of the Rheumatic Diseases, vol. 60, pp. III25-III32, 2001.
[6] P. D. Robbins and S. C. Ghivizzani, "Viral vectors for gene therapy," Pharmacology & Therapeutics, vol. 80, pp. 35-47, 1998.
[7] M. S. Al-Dosari and X. Gao, "Nonviral Gene Delivery: Principle, Limitations, and Recent Progress," Aaps Journal, vol. 11, pp. 671-681, 2009.
[8] J. L. Santos, D. Pandita, J. Rodrigues, A. P. Pego, P. L. Granja, and H. Tomas, "Non-Viral Gene Delivery to Mesenchymal Stem Cells: Methods, Strategies and Application in Bone Tissue Engineering and Regeneration," Current Gene Therapy, vol. 11, pp. 46-57, 2011.
[9] C. Ortiz Mellet, J. M. Garcia Fernandez, and J. M. Benito, "Cyclodextrin-based gene delivery systems," Chemical Society Reviews, vol. 40, pp. 1586–1608, 2011.
[10] M. A. Mintzer and E. E. Simanek, "Nonviral Vectors for Gene Delivery," Chemical Reviews, vol. 109, pp. 259-302, 2009.
[11] N. A. Alhakamy and C. J. Berkland, "Polyarginine molecular weight determines transfection efficiency of calcium condensed complexes," Mol Pharm, vol. 10, pp. 1940-8, 2013.
[12] S. Futaki, S. Goto, and Y. Sugiura, "Membrane permeability commonly shared among arginine-rich peptides," Molecular Recognition, vol. 16, pp. 260-264, 2003.
[13] S. Futaki, I. Nakase, A. Tadokoro, T. Takeuchi, and A. T. Jones, "Arginine-rich peptides and their internalization mechanisms," Biochemical Society Transactions, vol. 35, pp. 784-787, 2007.
[14] H. D. Herce, A. E. Garcia, J. Litt, R. S. Kane, P. Martin, N. Enrique, A. Rebolledo, and V. Milesi, "Arginine-Rich Peptides Destabilize the Plasma Membrane, Consistent with a Pore Formation Translocation Mechanism of Cell-Penetrating Peptides," Biophysical Journal, vol. 97, pp. 1917-1925, 2009.
[15] D. J. Mitchell, D. T. Kim, L. Steinman, C. G. Fathman, and J. B. Rothbard, "Polyarginine enters cells more efficiently than other polycationic homopolymers," J Pept Res, vol. 56, pp. 318-325, 2000.
[16] S. H. Lee, B. Castagner, and J. C. Leroux, "Is there a future for cell-penetrating peptides in oligonucleotide delivery?," Eur J Pharm Biopharm, vol. 85, pp. 5-11, 2013.
[17] R. Breslow, S. Belvedere, L. Gershell, and D. Leung, "The chelate effect in binding, catalysis, and chemotherapy," Pure and Applied Chemistry, vol. 72, pp. 333-342, 2000.
[18] W.-w. H. Chiao-chun Yeh, "The use of short peptides conjugated PEI for gene delivery application," 2013.
[19] W. W. Hu, Z. W. Lin, R. C. Ruaan, W. Y. Chen, S. L. C. Jin, and Y. Chang, "A novel application of indolicidin for gene delivery," International Journal of Pharmaceutics, vol. 456, pp. 293-300, 2013.
[20] A. K. Abbas, A. H. H. Lichtman, and S. Pillai, Basic Immunology: Functions and Disorders of the Immune System: Elsevier Health Sciences, 2012.
[21] M. Srirupa, R. H. John, and K. M. Tapan, "Role of TNFα in pulmonary pathophysiology," Respiratory Research, vol. 7, pp. 1-9, 2006.
[22] O. L. Carswell EA, Kassel RL, Green S, Fiore N, Williamson B, "Anendotoxin-induced serum factor that causes necrosis of tumors. ," Proceedings of the National Academy of Sciences of the United States of America, pp. 3666-3670., 1975.
[23] M. R. Shalaby, B. B. Aggarwal, E. Rinderknecht, L. P. Svedersky, B. S. Finkle, and M. A. Palladino, "Activation of human polymorphonuclear neutrophil functions by interferon-gamma and tumor necrosis factors," The Journal of Immunology, vol. 135, pp. 2069-2073, 1985.
[24] S. J. V. Deventer, "Tumour necrosis factor and Crohn′s disease," Gut, vol. 40, pp. 443-448, 1997.
[25] 魏正宗, "抗腫瘤壞死因子製劑 (Anti-TNF)," 台灣醫界, vol. 第46卷, 2003.
[26] S. Tsiodras, G. Samonis, D. T. Boumpas, and D. P. Kontoyiannis, "Fungal infections complicating tumor necrosis factor alpha blockade therapy," Mayo Clinic Proceedings, vol. 83, pp. 181-194, 2008.
[27] D. o. Health, "Our inheritance, our future – realising the potential of genetics in the NHS. ," Genetics White Paper, vol. 1, p. 19, 2003.
[28] K. B. Kaufmann, H. Buning, A. Galy, A. Schambach, and M. Grez, "Gene therapy on the move," Embo Molecular Medicine, vol. 5, pp. 1642-1661, 2013.
[29] K. K. Jain, "Gene therapy," PHARMACOLOGY, vol. 2, 2007.
[30] L. K. Branski, C. T. Pereira, D. N. Herndon, and M. G. Jeschke, "Gene therapy in wound healing: present status and future directions," Gene Therapy, vol. 14, pp. 1-10, 2007.
[31] E. H. Kaji and J. M. Leiden, "Gene and stem cell therapies," Jama-Journal of the American Medical Association, vol. 285, pp. 545-550, 2001.
[32] E. Hood, "RNAi: what′s all the noise about gene silencing?," Environmental Health Perspectives, vol. 112, pp. A224-A229, 2004.
[33] G. W. Redberry, Gene silencing : new research. New York: Nova Science Publishers, 2006.
[34] V. K. Sharma, P. Rungta, and A. K. Prasad, "Nucleic acid therapeutics: basic concepts and recent developments," Rsc Advances, vol. 4, pp. 16618-16631, 2014.
[35] D. Grimm, "Small silencing RNAs: State-of-the-art," Advanced Drug Delivery Reviews, vol. 61, pp. 672-703, 2009.
[36] S. T. Crooke, "Progress in antisense technology," Annual Review of Medicine, vol. 55, pp. 61-95, 2004.
[37] N. Dias and C. A. Stein, "Antisense oligonucleotides: Basic concepts and mechanisms," Molecular Cancer Therapeutics, vol. 1, pp. 347-355, 2002.
[38] A. Forte, M. Cipollaro, A. Cascino, and U. Galderisi, "Small interfering RNAs and antisense oligonucleotides for treatment of neurological diseases," Current Drug Targets, vol. 6, pp. 21-29, 2005.
[39] 陳一村, "核糖核酸干擾術及其應用," biomedicine, vol. 1, 2008.
[40] S. M. Elbashir, J. Harborth, W. Lendeckel, A. Yalcin, K. Weber, and T. Tuschl, "Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells," Nature, vol. 411, pp. 494-498, 2001.
[41] S. Parrish, J. Fleenor, S. Q. Xu, C. Mello, and A. Fire, "Functional anatomy of a dsRNA trigger: Differential requirement for the two trigger strands in RNA interference," Molecular Cell, vol. 6, pp. 1077-1087, 2000.
[42] P. D. Zamore, T. Tuschl, P. A. Sharp, and D. P. Bartel, "RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals," Cell, vol. 101, pp. 25-33, 2000.
[43] D. P. Bartel, "MicroRNAs: Genomics, biogenesis, mechanism, and function," Cell, vol. 116, pp. 281-297, 2004.
[44] N. I. Khatri, M. N. Rathi, D. P. Baradia, S. Trehan, and A. R. Misra, "In Vivo Delivery Aspects of miRNA, shRNA and siRNA," Critical Reviews in Therapeutic Drug Carrier Systems, vol. 29, pp. 487-527, 2012.
[45] M. D. Emine, "Antisense Oligodeoxynucleotide Technology:A Novel Tool for Gene Silencing in Higher Plants " 2012.
[46] A. L. Jackson, J. Burchard, J. Schelter, B. N. Chau, M. Cleary, L. Lim, and P. S. Linsley, "Widespread siRNA "off-target′′ transcript silencing mediated by seed region sequence complementarity," Rna-a Publication of the Rna Society, vol. 12, pp. 1179-1187, 2006.
[47] J. Wang, Z. Lu, M. G. Wientjes, and J. L. S. Au, "Delivery of siRNA Therapeutics: Barriers and Carriers," Aaps Journal, vol. 12, pp. 492-503, 2010.
[48] L. Dong, S. H. Xia, Y. Luo, H. J. Diao, J. Zhang, J. N. Chen, and J. F. Zhang, "Targeting delivery oligonucleotide into macrophages by cationic polysaccharide from Bletilla striata successfully inhibited the expression of TNF-alpha," Journal of Controlled Release, vol. 134, pp. 214-220, 2009.
[49] J. Kurreck, "Antisense technologies. Improvement through novel chemical modifications," Eur J Biochem, vol. 270, pp. 1628-1644, 2003.
[50] G. Galietta, A. Loizzo, S. Loizzo, G. Trombetta, S. Spanipinato, G. Campana, A. Capasso, M. Palermo, I. Guarino, and F. Franconi, "Administration of antisense oligonucleotide against pro-opiomelanocortin prevents enduring hormonal alterations induced by neonatal handling in male mice," European Journal of Pharmacology, vol. 550, pp. 180-185, 2006.
[51] T. Blessing, J. S. Remy, and J. P. Behr, "Monomolecular collapse of plasmid DNA into stable virus-like particles," Proceedings of the National Academy of Sciences of the United States of America, vol. 95, pp. 1427-1431, 1998.
[52] D. Bouard, N. Alazard-Dany, and F. L. Cosset, "Viral vectors: from virology to transgene expression," British Journal of Pharmacology, vol. 157, pp. 153-165, 2009.
[53] A. D. Miller, D. G. Miller, J. V. Garcia, and C. M. Lynch, "Use of retroviral vectors for gene transfer and expression," Methods in Enzymology, vol. 217, pp. 581-599, 1993.
[54] E. Tomlinson and A. P. Rolland, "Controllable gene therapy - Pharmaceutics of non-viral gene delivery systems," Journal of Controlled Release, vol. 39, pp. 357-372, 1996.
[55] P. O. Eric, "Nucleic Acid Delivery: Lentiviral and Retroviral Vectors," Material Method, vol. 3, p. 174, 2013.
[56] T. C. He, S. B. Zhou, L. T. da Costa, J. Yu, K. W. Kinzler, and B. Vogelstein, "A simplified system for generating recombinant adenoviruses," Proceedings of the National Academy of Sciences of the United States of America, vol. 95, pp. 2509-2514, 1998.
[57] E. Wagner, M. J. Hewlett, D. C. Bloom, and D. Camerini, "Basic Virology," Blackwell Publishing, 2008.
[58] J. S. Richard, "Adeno-associated virus: integration at a specific chromosomal locus.," Curr. Opin. Genet., vol. 3, pp. 74–80, 1993.
[59] H. Buning, L. Perabo, O. Coutelle, S. Quadt-Humme, and M. Hallek, "Recent developments in adeno-associated virus vector technology," Journal of Gene Medicine, vol. 10, pp. 717-733, 2008.
[60] H. Yin, R. L. Kanasty, A. A. Eltoukhy, A. J. Vegas, J. R. Dorkin, and D. G. Anderson, "Non-viral vectors for gene-based therapy," Nature Reviews Genetics, vol. 15, pp. 541-555, 2014.
[61] W. E. Klein RM, Wu R, Sanford JC., "High-velocity microprojectiles for delivering nucleic acids into living cells. Biotechnology.," Biotechnology, vol. 24, pp. 384-6, 1992.
[62] M. Uchida, H. Natsume, D. Kobayashi, K. Sugibayashi, and Y. Morimoto, "Effects of particle size, helium gas pressure and microparticle dose on the plasma concentration of indomethacin after bombardment of indomethacin-loaded poly-L-lactic acid microspheres using a Helios (TM) gun system," Biological & Pharmaceutical Bulletin, vol. 25, pp. 690-693, 2002.
[63] N. Yang, J. Burkholder, B. Roberts, B. Martinell, and D. McCabe, "In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment," Genetics, vol. 87, pp. 9568-9572, 1990.
[64] A. V. Titomirov, S. Sukharev, and E. Kistanova, "In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA," Biochimica Et Biophysica Acta, vol. 1088, pp. 131-134, 1991.
[65] F. Andre and L. M. Mir, "DNA electrotransfer: its principles and an updated review of its therapeutic applications," Gene Therapy, vol. 11, pp. S33-S42, 2004.
[66] G. ter Haar, "Therapeutic applications of ultrasound," Progress in Biophysics & Molecular Biology, vol. 93, pp. 111-129, 2007.
[67] H. J. Kim, J. F. Greenleaf, R. R. Kinnick, J. T. Bronk, and M. E. Bolander, "Ultrasound-mediated transfection of mammalian cells," Human Gene Therapy, vol. 7, pp. 1339-1346, 1996.
[68] P. George, P. Demetrios, and J. V. William, "Chapter 4 Lipid Vesicles as Carriers for Introducing Biologically Active Materials into Cells," Methods in Cell Biology, vol. 14, pp. 33–71, 1976.
[69] C. T. de Ilarduya, Y. Sun, and N. Duezguenes, "Gene delivery by lipoplexes and polyplexes," European Journal of Pharmaceutical Sciences, vol. 40, pp. 159-170, 2010.
[70] J. H. Felgner, R. Kumar, C. N. Sridhar, C. J. Wheeler, Y. J. Tsai, R. Border, P. Ramsey, M. Martin, and P. L. Felgner, "Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations," Journal of Biological Chemistry, vol. 269, pp. 2550-2561, 1994.
[71] P. L. Felgner, Ringold, G. M., "Cationic liposome-mediated transfection," Nature, vol. 337, pp. 387-388, 1989.
[72] C. F. Bennett, M. Y. Chiang, H. D. Chan, J. E. E. Shoemaker, and C. K. Mirabelli, "Cationic lipids enhance cellular uptake and activity of phosphorothioate antisense oligonucleotides," Molecular Pharmacology, vol. 41, pp. 1023-1033, 1992.
[73] C. Y. Wang, Huang, L., "Highly efficient DNA delivery mediated by pH-sensitive immunoliposomes," Biochemistry, vol. 28, pp. 9508-9514, 1989.
[74] J. Y. Legendre and F. C. Szoka, "Delivery of plasmid DNA into mammalian cell lines using pH-sensitive liposomes: comparison with cationic liposomes," Pharmaceutical Research, vol. 9, pp. 1235-1242, 1992.
[75] X. H. Zhou and L. Huang, "DNA transfection mediated by cationic liposomes containing lipopolylysine: characterization and mechanism of action," Biochimica Et Biophysica Acta-Biomembranes, vol. 1189, pp. 195-203, 1994.
[76] Y. H. Xu and F. C. Szoka, "Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection," Biochemistry, vol. 35, pp. 5616-5623, 1996.
[77] T. B. Wyman, F. Nicol, O. Zelphati, P. V. Scaria, C. Plank, and F. C. J. Szoka, "Design, Synthesis, and Characterization of a Cationic Peptide That Binds to Nucleic Acids and Permeabilizes Bilayers," Biochemistry, vol. 36, pp. 3008-3017, 1996.
[78] E. Hellstrand, A. Nowacka, D. Topgaard, S. Linse, and E. Sparr, "Membrane Lipid Co-Aggregation with alpha-Synuclein Fibrils," Plos One, vol. 8, p. 10, 2013.
[79] A. V. Ulasov, Y. V. Khramtsov, G. A. Trusov, A. A. Rosenkranz, E. D. Sverdlov, and A. S. Sobolev, "Properties of PEI-based Polyplex Nanoparticles That Correlate With Their Transfection Efficacy," Molecular Therapy, vol. 19, pp. 103-112, 2011.
[80] D. T. Curiel, S. Agarwal, E. Wagner, and M. Cotten, "Adenovirus enhancement of transferrin-polylysine-mediated gene delivery," Proceedings of the National Academy of Sciences of the United States of America, vol. 88, pp. 8850-8854, 1991.
[81] L. Jin, X. Zeng, M. Liu, Y. Deng, and N. Y. He, "Current progress in gene delivery technology based on chemical methods and nano-carriers," Theranostics, vol. 4, pp. 240-255, 2014.
[82] Z. Pharma, "What are peptides."
Available from: dhttp://www.zealandpharma.com/research-and-development/key-zealand-peptide-competences/what-are-peptides
[83] M. Green and P. M. Loewenstein, "Autonomous functional domains of chemically synthesized human immunodeficiency virus tat activator protein," Cell, vol. 55, pp. 1179-1188, 1988.
[84] A. D. Frankel and C. O. Pabo, "Cellular uptake of the tat protein from human immunodeficiency virus," Cell, vol. 55, pp. 1189-1193, 1988.
[85] E. Vives, P. Brodin, and B. Lebleu, "A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus," Journal of Biological Chemistry, vol. 272, pp. 16010-16017, 1997.
[86] K. M. Wagstaff and D. A. Jans, "Protein transduction: Cell penetrating peptides and their therapeutic applications," Current Medicinal Chemistry, vol. 13, pp. 1371-1387, 2006.
[87] F. Madani, S. Lindberg, U. Langel, S. Futaki, and A. Gr¨slund, "Mechanisms of Cellular Uptake of Cell-Penetrating Peptides," Journal of Biophysics, vol. 2011, 2011.
[88] Y. W. Huang, H. J. Lee, L. M. Tolliver, and R. S. Aronstam, "Delivery of Nucleic Acids and Nanomaterials by Cell-Penetrating Peptides: Opportunities and Challenges," Biomed Research International, vol. 2015, p. 834079, 2015.
[89] J. Regberg, A. Srimanee, and Ü. Langel, "Applications of Cell-Penetrating Peptides for Tumor Targeting and Future Cancer Therapies," Pharmaceuticals, vol. 5, p. 991, 2012.
[90] W. Y. Li, Y. J. Liu, J. W. Du, K. F. Ren, and Y. X. Wang, "Cell penetrating peptide-based polyplexes shelled with polysaccharide to improve stability and gene transfection," Nanoscale, vol. 7, pp. 8476-8484, 2015.
[91] J. Hoyer and I. Neundorf, "Peptide Vectors for the Nonviral Delivery of Nucleic Acids," Accounts of Chemical Research, vol. 45, pp. 1048-1056, 2012.
[92] J. M. Gump and S. F. Dowdy, "TAT transduction: the molecular mechanism and therapeutic prospects," Trends in Molecular Medicine, vol. 13, pp. 443-448, 2007.
[93] B. R. Liu, Y.-w. Huang, J. G. Winiarz, H.-J. Chiang, and H.-J. Lee, "Intracellular delivery of quantum dots mediated by a histidine- and arginine-rich HR9 cell-penetrating peptide through the direct membrane translocation mechanism," Biomaterials, vol. 32, pp. 3520-3537, 2011.
[94] S. Futaki, T. Suzuki, W. Ohashi, T. Yagami, S. Tanaka, K. Ueda, and Y. Sugiura, "Arginine-rich peptides - An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery," Journal of Biological Chemistry, vol. 276, pp. 5836-5840, 2001.
[95] J. L. Zaro and W. C. Shen, "Quantitative comparison of membrane transduction and endocytosis of oligopeptides," Biochemical and Biophysical Research Communications, vol. 307, pp. 241-247, 2003.
[96] A. F. Saleh, H. Aojula, Y. Arthanari, S. Offerman, M. Alkotaji, and A. Pluen, "Improved Tat-mediated plasmid DNA transfer by fusion to LK15 peptide," Journal of Controlled Release, vol. 143, pp. 233-242, 2010.
[97] F. Salomone, F. Cardarelli, M. Di Luca, C. Boccardi, R. Nifosi, G. Bardi, L. Di Bari, M. Serresi, and F. Beltram, "A novel chimeric cell-penetrating peptide with membrane-disruptive properties for efficient endosomal escape," J Control Release, vol. 163, pp. 293-303, 2012.
[98] Y. J. Lee, A. Erazo-Oliveras, and J. P. Pellois, "Delivery of Macromolecules into Live Cells by Simple Co-incubation with a Peptide," Chembiochem, vol. 11, pp. 325-330, 2010.
[99] L. K. Fei, L. Ren, J. L. Zaro, and W. C. Shen, "The influence of net charge and charge distribution on cellular uptake and cytosolic localization of arginine-rich peptides," Journal of Drug Targeting, vol. 19, pp. 675-680, 2011.
[100] S. Abes, J. J. Turner, G. D. Ivanova, D. Owen, D. Williams, A. Arzumanov, P. Clair, M. J. Gait, and B. Lebleu, "Efficient splicing correction by PNA conjugation to an R6-Penetratin delivery peptide (vol 35, pg 4495, 2007)," Nucleic Acids Research, vol. 35, pp. 7396-7396, 2007.
[101] S. Deshayes, K. Konate, A. Rydstrom, L. Crombez, C. Godefroy, P. E. Milhiet, A. Thomas, R. Brasseur, G. Aldrian, F. Heitz, M. A. Munoz-Morris, J. M. Devoisselle, and G. Divita, "Self-assembling peptide-based nanoparticles for siRNA delivery in primary cell lines," Small, vol. 8, pp. 2184-2188, 2012.
[102] J.-M. Crowet, L. Lins, S. Deshayes, G. Divita, M. Morris, R. Brasseur, and A. Thomas, "Modeling of non-covalent complexes of the cell-penetrating peptide CADY and its siRNA cargo," Biochimica et Biophysica Acta (BBA) - Biomembranes, vol. 1828, pp. 499-509, 2013.
[103] R. H. Mo, J. L. Zaro, and W. C. Shen, "Comparison of cationic and amphipathic cell penetrating peptides for siRNA delivery and efficacy," Mol Pharm, vol. 9, pp. 299-309, 2012.
[104] H. L. Amand, B. Norden, and K. Fant, "Functionalization with C-terminal cysteine enhances transfection efficiency of cell-penetrating peptides through dimer formation," Biochemical and Biophysical Research Communications, vol. 418, pp. 469-474, 2012.
[105] M. Balakirev, G. Schoehn, and J. Chroboczek, "Lipoic acid-derived amphiphiles for redox-controlled DNA delivery," Chemistry & Biology, vol. 7, pp. 813-819, 2000.
[106] M. L. Read, K. H. Bremner, D. Oupicky, N. K. Green, P. F. Searle, and L. W. Seymour, "Vectors based on reducible polycations facilitate intracellular release of nucleic acids," Journal of Gene Medicine, vol. 5, pp. 232-245, 2003.
[107] O. Boussif, F. Lezoualch, M. A. Zanta, M. D. Mergny, D. Scherman, B. Demeneix, and J. P. Behr, "A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine.," Proceedings of the National Academy of Sciences of the United States of America, vol. 92, pp. 7297-7301, 1995.
[108] L. De Laporte, J. C. Rea, and L. D. Shea, "Design of modular non-viral gene therapy vectors," Biomaterials, vol. 27, pp. 947-954, 2006.
[109] D. Fischer, T. Bieber, Y. X. Li, H. P. Elsasser, and T. Kissel, "A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: Effect of molecular weight on transfection efficiency and cytotoxicity," Pharmaceutical Research, vol. 16, pp. 1273-1279, 1999.
[110] C. N. Lungu, M. V. Diudea, M. V. Putz, and I. P. Grudzinski, "Linear and Branched PEIs (Polyethylenimines) and Their Property Space," International Journal of Molecular Sciences, vol. 17, p. 12, 2016.
[111] Z. Y. Zhang and B. D. Smith, "High-generation polycationic dendrimers are unusually effective at disrupting anionic vesicles: Membrane bending model," Bioconjugate Chemistry, vol. 11, pp. 805-814, 2000.
[112] A. E. Nel, L. Madler, D. Velegol, T. Xia, E. M. V. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, and M. Thompson, "Understanding biophysicochemical interactions at the nano-bio interface," Nature Materials, vol. 8, pp. 543-557, 2009.
[113] E. J. Kwon, S. Liong, and S. H. Pun, "A truncated HGP peptide sequence that retains endosomolytic activity and improves gene delivery efficiencies," Mol Pharm, vol. 7, pp. 1260-5, 2010.
[114] H. J. Lee, R. Namgung, W. J. Kim, J. I. Kim, and I.-K. Park, "Targeted delivery of microRNA-145 to metastatic breast cancer by peptide conjugated branched PEI gene carrier," Macromolecular Research, vol. 21, pp. 1201-1209, 2013.
[115] S. Yamano, J. Dai, S. Hanatani, K. Haku, T. Yamanaka, M. Ishioka, T. Takayama, C. Yuvienco, S. Khapli, A. M. Moursi, and J. K. Montclare, "Long-term efficient gene delivery using polyethylenimine with modified Tat peptide," Biomaterials, vol. 35, pp. 1705-1715, 2014.
[116] Y. M. Lee, D. Lee, J. Kim, H. Park, and W. J. Kim, "RPM peptide conjugated bioreducible polyethylenimine targeting invasive colon cancer," J Control Release, vol. 205, pp. 172-80, 2015.
[117] T. Zhang, X. Xue, D. He, and J. T. Hsieh, "A prostate cancer-targeted polyarginine-disulfide linked PEI nanocarrier for delivery of microRNA," Cancer Letters, vol. 365, pp. 156-165, 2015.
[118] J. S. Oh, M. Park, J. S. Kim, and J. H. Jang, "Enhanced Cellular Transfection by Ternary Non-Viral Gene Vectors Coupled with Adeno-Associated Virus-Derived Peptides," Macromolecular Bioscience, vol. 14, pp. 121-130, 2014.
[119] E. B. Getz, M. Xiao, T. Chakrabarty, R. Cooke, and P. R. Selvin, "A comparison between the sulfhydryl reductants tris(2-carboxyethyl)phosphine and dithiothreitol for use in protein biochemistry," Anal Biochem, vol. 273, pp. 73-80, 1999.
[120] Tania, "TCEP or DTT?," 2014.
Available from: http://sites.psu.edu/msproteomics/2014/05/30/tcep-or-dtt/
[121] P. Cayot and G. Tainturier, "The quantification of protein amino groups by the trinitrobenzenesulfonic acid method: a reexamination," Anal Biochem, vol. 249, pp. 184-200, 1997.
[122] Y. Kang, S. Semones, J. Smith, and M. Frodyma, "Bacillus amyloliquefaciens strain," ed: Google Patents, 2011.
[123] I. Yudovin-Farber, J. Golenser, N. Beyth, E. I. Weiss, and A. J. Domb, "Quaternary Ammonium Polyethyleneimine: Antibacterial Activity," Journal of Nanomaterials, 2010.
[124] Edgar, " Chemical reaction of Ellman′s reagent (5,5′-dithiobis-(2-nitrobenzoic acid) or DTNB) with a thiol," 2010.
Available from: http://sites.psu.edu/msproteomics/2014/05/30/tcep-or-dtt/
[125]X. J. Loh, T. C. Lee, Q. Dou, and G. R. Deen, "Utilising inorganic nanocarriers for gene delivery," Biomater Sci, vol. 4, pp. 70-86, 2016.
[126] R. Kircheis, L. Wightman, and E. Wagner, "Design and gene delivery activity of modified polyethylenimines," Advanced Drug Delivery Reviews, vol. 53, pp. 341-358, 2001.
[127] W. Zauner, N. A. Farrow, and A. M. Haines, "In vitro uptake of polystyrene microspheres: effect of particle size, cell line and cell density," J Control Release, vol. 71, pp. 39-51, 2001.
[128] T. R. Green, J. Fisher, M. Stone, B. M. Wroblewski, and E. Ingham, "Polyethylene particles of a ′critical size′ are necessary for the induction of cytokines by macrophages in vitro," Biomaterials, vol. 19, pp. 2297-302, 1998.
[129] S. P. Strand, S. Danielsen, B. E. Christensen, and K. M. Varum, "Influence of chitosan structure on the formation and stability of DNA-chitosan polyelectrolyte complexes," Biomacromolecules, vol. 6, pp. 3357-3366, 2005.
[130] N. Jain, V. Goldschmidt, S. Oncul, Y. Arntz, G. Duportail, Y. Mély, and A. Klymchenko, "Lactose-ornithine bolaamphiphiles for efficient gene delivery in vitro," International Journal of Pharmaceutics, vol. 423, pp. 392-400, 2012.
[131] Y. Liu, D. A. Peterson, H. Kimura, and D. Schubert, "Mechanism of Cellular 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) Reduction," Journal of Neurochemistry, vol. 69, pp. 581-593, 1997.
[132] F. Simeoni, M. C. Morris, F. Heitz, and G. Divita, "Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells," Nucleic Acids Research, vol. 31, pp. 2717-2724, 2003.
[133] R. Pan, W. Xu, F. Yuan, D. Chu, Y. Ding, B. Chen, M. Jafari, Y. Yuan, and P. Chen, "A novel peptide for efficient siRNA delivery in vitro and therapeutics in vivo," Acta Biomaterialia, vol. 21, pp. 74-84, 2015.
[134] A. Anna, D. Catherine, D. Géraldine, L. C. Eric, M. Claude, T. François, and B. Jean-Rémi, "Influence of the Internalization Pathway on the Efficacy of siRNA Delivery by Cationic Fluorescent Nanodiamonds in the Ewing Sarcoma Cell Model," Plos One, vol. 7, p. e52207, 2012. |