參考文獻 |
1 Ardakani, H.A., Bridges, T.J.: Shallow-water sloshing in vessels undergoing prescribed rigid-body motion in three dimensions. J. Fluid Mech., 667, 474–519, 2011
2 Chen, BF, Nokes, R, Time-Independent Finite Difference Analysis OF Fully Non-Linear And Viscous Fluid Sloshing in a Rectangular Tank. J. Comput. Phys., Vol. 209, pp. 47-81, 2005.
3 Chen, Y.-H., Hwang, W.-S. & Ko, C.-H. Numerical simulation of the three-dimensional sloshing problem by boundary element method. J. Chinese Inst. Eng., Vol. 23, 321–330. 2000
4 Chen W, Haroun, MA, and Liu, F, Large amplitude liquid sloshing in seismically excited tanks. Earthq. Eng. Struct. D., Vol. 25: 653-669, 1996
5 Chorin, A.J., Numerical solution of the Navier–Stokes equations. Math. Comput. Vol. 22: 745–762. 1968
6 Chorin, A.J., On the convergence of discrete approximations of the Navier–Stokes equations. Math. Comput. Vol. 232: 341–353. 1969
7 Deardorff, J., A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech., Vol. 41 (2): 453–480. 1970
8 Faltinsen, OM, A Numerical nonlinear method of sloshing in tanks with two-dimensional flow. J. Ship Res., Vol. 22:193-202. 1978
9 Faltinsen, OM, Rognebakke, OF, Timokha AN, Resonant Three-Dimensional Nonlinear Sloshing in a Square-Base Basin. J. Fluid Mech., Vol. 487, pp. 1-42, June 2003.
10 Faltinsen, OM, Rognebakke, OF, Timokha AN, Resonant Three-Dimensional Nonlinear Sloshing in a Square-Base Basin. Part 2. Effect of Higher Modes. J. Fluid Mech., Vol. 523, pp. 199-218, January 2005.
11 Faltinsen, OM, Rognebakke, OF, Timokha AN, Classification of three-dimensional nonlinear sloshing in a square-base tank with finite depth. J. Fluid Struct., Vol. 20: 81-103, 2005
12 Faltinsen, OM, Rognebakke, OF, Timokha AN, Resonant Three-Dimensional Nonlinear Sloshing in a Square-Base Basin. Part 3. Base Ratio Perturbations. J. Fluid Mech., Vol. 551, pp. 93-116, March 2006.
13 Faltinsen, O.M., Timokha, A.N., Sloshing. Cambridge University Press:2009
14 Faltinsen, O.M., Timokha, A.N., On sloshing modes in a circular tank. J. Fluid Mech., 695, 467-477, 2012
15 Faltinsen, O.M., Timokha, A.N., Multimodal analysis of weakly nonlinear sloshing in a spherical tank. J. Fluid Mech., 719, 129-16, 2013
16 Feng, Z. C. , Senthna, P. R., Symmetry-breaking bifurcations in resonant surface waves. J. Fluid Mech., Vol. 199, 495–518, 1989
17 Hatayama, K. Lessons from the Tokachi-oki, Japan, earthquake for prediction of long-period strong ground motions and sloshing damage to oil storage tanks. J Seismol., Vol. 12: 255-263, 2003
18 Huang, NE et al., On Holo-Hilbert spectral analysis: a full informational spectral representation for nonlinear and non-stationary data. Phil. Trans. R. Soc. A, Vol. 374, 20150206
19 Ibrahim, RA and VN Pilipchuk. Recent advances in liquid sloshing dynamics. Appl. Mech. Rev, Vol. 54, 2001
20 Ibrahim, R.A., Liquid Sloshing Dynamics: Theory and Applications, Cambridge University Press, New York, USA, 2005.
21 Gueyffier, D., J. Li, A. Nadim, R. Scardovelli, S. Zaleski, Volume-of-fluid interface tracking with smoothed surface stress methods for
3D flows, J. Comput. Phys. Vol.152: 423–456. 1999
22 Isaacson, M, S Premasiri, Hydrodynamic Damping Due to Baffles in a Rectangular Tank. Can J. Civil Eng., Vol. 28, pp. 608-616, 2001
23 Kim MS, Park JS, Lee WI. A new VOF-based numerical scheme for the simulation of fluid flow with free surface. Part II: application to the cavity filling and sloshing problems. Int. J. Numer. Methods Fluids, Vol. 42, pp: 791–812. 2003
24 Leonard, A. Energy cascade in large-eddy simulations of turbulent fluid flows. Advances in Geophysics A. Vol. 18: 237–248.1974
25 Lin, P., P.L.-F. Liu, A numerical study of breaking waves in the surf zone, J. Fluid Mech., Vol. 359:239–264. 1998
26 Lin, P., C.-W. Li, Wave–current interaction with a vertical square cylinder. Ocean Eng., Vol. 30: 855–876. 2003
27 Liu, DM, PZ Lin, A numerical study of three-dimensional liquid sloshing in tanks. J. Comput. Phys, Vol. 227, pp.3921-3939, 2008
28 Liu, D and Lin, PZ. Three-dimensional liquid sloshing in a tank with baffles. Ocean Eng, Vol, 227:3921-3939, 2009
29 Liu, P. L.-F., T.-R. Wu et al., Runup and rundown generated by three-dimensional sliding masses. J. Fluid Mech., Vol.536, pp: 107-144, 2005
30 Luo, M., C.G. Koh, W. Bai. A three-dimensional particle method for violent sloshing under regular and irregular excitations. Ocean Eng., Vol. 120, pp: 52–63, 2016
31 Mohammad Ali Goudarzi, Saeed Reza Sabbagh-Yazdi. Investigation of nonlinear sloshing effects in seismically excited tanks. Soil Dyn. Earthq. Eng., Vol. 43:355-365, 2012
32 Ming Ping-jian Numerical simulation of sloshing in rectangular tank with VOF based on unstructured grids. J. Hydrodyn., 22 (6): 856-864.2010
33 Miles, J. & Henderson, D. Parametrically forced surface waves. Annu. Rev. Fluid Mech. 22, 143–165. 1990
34 Perlin, M. & Schultz, W. W. Capillary effects on surface waves. Annu. Rev. Fluid Mech. 32, 241–274. 2000
35 Rider, W.J., D.B. Kothe, Reconstructing volume tracking, J. Comput. Phys. Vol. 141:112–152. 1998
36 Ruiz. RO et al., Modeling and experimental validation of a new type of tuned liquid damper. Acta Mech. 2016
37 Sagaut, P. Large Eddy Simulation for Incompressible Flows (Third Ed.). Springer. 2006
38 Smagorinsky, J. General Circulation Experiments with the Primitive Equations. Mon. Weather Rev. 91 (3): 99–164. March. 1963
39 Thacker, WC, Some Exact Solutions to the Nonlinear Shallow-Water Wave Equations, J. Fluid Mech., Vol. 107, pp. 499-508, 1981.
40 Van der Vorst H.A., Iterative Krylov Methods for Large Linear Systems, Cambridge University Press, New York, USA, 2003.
41 Wang, C.Z., B.C. Khoo, Finite Element Analysis of Two-Dimensional Nonlinear Sloshing Problems in Random Excitations, Ocean Eng., Vol. 32, pp. 107-133, February 2005.
42 Wang, YH, CH Yeh, HWV Young, K Hu and MT Lo, On the computational complexity of the empirical mode decomposition algorithm. Physica A., vol. 400,Issue 15, pp. 159-167, 2014
43 Wu, CH, Faltinsen, OM, Chen, BF. Numerical study of sloshing liquid in tanks with baffles by time-independent finite difference and fictitious cell method. Comput. Fluids, Vol. 63, pp. 9–26, 2012
44 Wu, CH, Faltinsen, OM, Chen, BF. Time-Independent Finite Difference and Ghost Cell Method to Study Sloshing Liquid in 2D and 3D Tanks with Internal Structures. Commun. Comput. Phys., Vol. 13, pp. 780-800, 2013
45 Wu, C.H., B.F. Chen, T.-K. Hung, Hydrodynamic forces induced by transient sloshing in a 3D rectangular tank due to oblique horizontal excitation, Comp. Math. Appl., Vol. 65, pp. 1163-1186, 2013
46 Wu, T.-R., 2004. A numerical study of three-dimensional breaking waves and turbulence effects. Ph.D. Dissertation, Cornell University.
47 Wu, G.X., Q.A. Ma, R.E. Taylor, Numerical simulation of sloshing waves in a 3D tank based on a finite element method, Appl. Ocean Res. Vol. 20, pp: 337-355, 1998
48 Xue, MA, J Zheng, PZ Lin, Numerical Simulation of Sloshing Phenomena in Cubic Tank with Multiple Baffles, J. Applied Math., 2012
49 Zhou, D., J. D. Wang, W. Q. Liu, Nonlinear Sloshing of Liquid in Rigid Cylindrical Container With a Rigid Annular Baffle: Free Vibration, Nonlinear Dyn., Vol. 78, pp. 2557-2576, December 2014.
50 Sketch of Six degree of Motion
http://www.oemoffhighway.com/article/10979955/inertial-measurement-sensors-improve-safety-in-ag-equipment |