博碩士論文 103827014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:18.217.228.35
姓名 張達盛(Da-Sheng Chang)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 製備包覆靛氰綠及阿黴素之聚乳酸甘醇酸-聚乙二醇交聯標靶奈米粒子用於乳癌光/化學治療之研究
(Fabrication and Characterization of HER2-Target Indocyanine Green-Doxorubicin-Loaded PLGA-PEG Nanoparticles for Chemo-/Photo-Therapy of Breast Cancer Cells)
相關論文
★ 可動態改變外翻力矩的治療退化性膝關節炎輔具★ 聚乙二醇對於擬球藻生長與脂質堆積之影響
★ 研製包覆靛氰綠與阿黴素之標靶氟化奈米乳劑用於乳癌光/化學治療之研究★ 研究設計全氟碳化物光生物反應器系統用以純化沼氣並藉此提升微藻生物質及生質能源之產量
★ 針對糖尿病足潰瘍設計並製作一種抗菌且能促進傷口癒合的甲殼素複合式水凝膠之研究★ 利用PLGA微球載體結合超聲波駐波場以提高巨噬細胞藥物輸送之效率
★ 以血流動力系統探討血管內皮細胞在尼古丁刺激下對層流剪應力之型態異常與自體凋亡之表現變化★ 以板式流道系統模擬血管內皮細胞於層流剪力影響下受尼古丁刺激產生發炎反應之研究
★ 結合超聲波駐波場與層堆疊自體組裝微球載體建構提高分子傳遞至細胞內效率之方法★ 製備包覆靛氰綠之聚乳酸甘醇酸標靶奈米粒子用於乳癌光熱暨光動治療之研究
★ 建構駐波聲場光生物反應器系統用於提升密閉式微藻養殖效能之研究★ 研製包覆靛氰綠與利福平之聚乳酸-聚甘醇酸奈米粒子應用於介質內細菌感染治療之研究
★ 雙離子矽氧烷共聚物以沉積法對聚二甲基矽氧烷進行生物相容性修飾★ 開發具有抗菌、消炎、供氧及促使細胞生長特性可注射溫感性水凝膠用於慢性傷口癒合之研究
★ 設計開發一多效複合式殼聚醣水凝膠用於慢性傷口修復之研究★ 丙烯酸胜肽用於開發醫療用途生物活性高分子材料
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究以微乳液法製作包覆抗癌藥物阿黴素(Doxorubicin)與光敏試劑靛氰綠(Indocyanine Green;ICG)之聚乳酸甘醇酸(Poly(Lactic-co- Glycolic Acid);PLGA)-聚乙二醇(Polyethylene glycol;PEG)並於表面接枝人類上皮生長因子2(human epidermal growth factor receptor 2;HER2)單株抗體之新穎生物可降解性標靶奈米藥物載體(HER2-target ICG-DOX-Loaded PLGA-PEG Co-polymeric Nanoparticles;;HIDPNPs),並測試該載體對於乳癌細胞進行複合式癌症治療之可行性。本研究首先以傅立葉轉換紅外線光譜儀與核磁共振儀確認PLGA及PEG共聚高分子合成效果,完成載體製備後再以螢光表現抗體及BCA蛋白質檢測證明HER2抗體於產品表面之存在與生物活性。經過動態光散射儀器分析HIDPNPs之平均粒徑與表面電位分別為266  4.3 nm和-12  4.48 mV;對於DOX及ICG的包覆率分別約為35%及79%;包藥率則分別約為0.15%及0.34%。再由UV-Vis分光光度計分析降解率得到48小時內HIDPNPs在4℃及37℃環境下所包覆的ICG降解率比單純溶解於水中之ICG分別低11%及54%;48小時內HIDPNPs在4℃及37℃環境的DOX釋放率分別為13%及26%。以激發波長808 nm搭配強度為 6 W/cm2的近紅外光雷射照射HIDPNPs奈米載體,結果發現ICG包覆濃度大於1μM下照射90秒內溶液溫度上升超過40℃並且可維持高溫長達5分鐘,另外藉由SOSG檢測單態氧濃度發現於5分鐘內的單態氧生成量和HIDPNPs的濃度成正比關係,在包含相等於4μM ICG的HIDPNPs其單態氧生成量比在相同濃度下單純ICG水溶液高出約3倍。藉由偵測被細胞攝取後的HIDPNPs其所發射的ICG螢光強度發現MDA-MB-453(HER2+)的螢光值明顯大於MCF-7 (HER2-),如此證明了HIDPNPs對HER2表現的細胞具有主動靶向的功能。將HIDPNPs和MDA-MB-453乳癌細胞而共同培養12小時再以近紅外光雷射照射5分鐘後,經由計算得知包覆4μM ICG及3μM DOX的HIDPNPs之毒殺細胞效率比單純使用ICG或DOX分別高了1.5 (P < 0.05)及2.6 (P < 0.05)倍,此一結果證明HIDPNP可以有效的減少化療劑量並且搭配光療法以增加或維持乳癌治療效果,因此有望發展成為一種治療癌症的材料。
摘要(英) Breast cancer has long been recognized as one of the most lethal gynecological disease for women due to high drug resistance and serious side effects during treatment. To resolve these issues, a multi-functional human epidermal growth factor receptor 2 (HER2)-targeted Indocyanine green (ICG)-Doxorubicin (DOX)-encapsulated poly( lactide- co-glycolide) -poly(ethylene glycol) copolymeric nanoparticles (HIDPNPs) was developed in this study. The mean size and surface charge of the HIDPNPs are 266 ± 4.26 nm and -12  4.48 mV, respectively, through measurements using dynamic light scattering technique. The encapsualtion efficiencies of ICG and DOX in HIDPNP are 79% and 35%, respectively, while the drug loading rates for ICG and DOX are 0.34% and 0.15%, respectively. The degradation rate of encapsulated ICG remarkably decreases 11% and 54% at 4 and 37oC, respectively, within 48 h as compared with freely dissolved ICG in PBS. The DOX release rates are 13% and 26% at 4 and 37oC, respectively, within 48 h. Through the detection of ICG-induced fluorescence, we found that the uptake efficiency of HIDPNPs in MDA-MB-453 cells (HER2+) was significantly higher than that in MCF7 cells (HER2-), showing that the HIDPNP enables to specifically target HER2-expressing cells. In terms of the therapeutic functionality of the agent, our data show that upon NIR laser exposure, the temperature of medium containing HIDPNPs with ≥ 1-μM equivalent ICG concentration enabled to reach > 40oC within 90 sec and its amount of singlet oxygen yielded significantly enhanced ≥ 3 folds after 5-min laser treatment. The capacity of HIDPNP in cancer cell killing was further verified by using MDA-MB-453 as the model cell that the motality of the cells which were treated by HIDPNPs including 4 and 3 μM of ICG and DOX, respectively for 12 h and followed by 5-min NIR laser irradiation significantly enhanced 1.5- (P < 0.05) and 2.6 folds (P < 0.05) as compared to the group treated with ICG or DOX alone, respectively. Overall, the HIDPNP which enables to provide both chemo and photo therapeutic effects exhibits a high potential for use in breast tumor destruction.
關鍵字(中) ★ 奈米藥物載體
★ 聚乳酸甘醇酸
★ 聚乙二醇
★ 光-化學治療
★ 阿黴素
★ 靛氰綠
★ 乳癌
關鍵字(英) ★ Nanoparticle
★ Poly(lactic-co-glycolic acid)
★ Polyethylene glycol
★ Photo-Chemo therapy,
★ Doxorubicin
★ Indocyanine green
★ Breast cancer
論文目次 目 錄
摘 要 i
ABSTRACT iii
誌 謝 v
目 錄 vi
圖目錄 x
表目錄 xiv
第 一 章 緒論 1
第 二 章 原理與文獻探討 3
2-1 奈米科技 3
2-2 乳癌 5
2-3 癌症的治療 7
2-4 化學藥物治療 9
2-5 溫熱療法 11
2-6 光療法 13
2-6-1 光熱治療(Photothermal therapy;PTT) 14
2-6-2 奈米材料的光熱治療 15
2-6-3 光動力治療(Photodynamic therapy;PDT) 17
2-6-4 靛氰綠 (Indocyanine Green,ICG) 20
2-7 生醫材料 24
2-7-1 高分子生醫材料 25
2-7-2 Poly(lactide-co-glycolide )簡介 28
2-7-3 Poly(ethylene glycol)之性質與應用 29
2-8 藥物載體 29
2-8-1 奈米藥物載體製備與包覆原理 30
2-8-2 奈米藥物載體的細胞吞噬機制 32
2-8-3 奈米藥物載體的藥物釋放系統 34
第 三 章 研究材料與方法 38
3-1 實驗藥品 38
3-2 實驗及分析儀器 40
3-2-1 UV-Vis分光光度計(UV-Vis Spectrophotoscope) 40
3-2-2 動態雷射粒徑分布暨界面電位儀 41
3-2-3 808 nm Fiber Coupled Laser 43
3-2-4 倒立式螢光顯微鏡 43
3-2-5 其他實驗儀器 45
3-3 實驗設計架構 46
3-4 實驗步驟 47
3-4-1 合成PLGA-b-PEG高分子 47
3-4-2 製備包覆 ICG、DOX之PLGA-PEG奈米載體 48
3-4-3 奈米載體表面修飾HER2 antibody 48
3-5 HIDPNPs特性分析 49
3-5-1 HIDPNPs 抗體接枝分析 49
3-5-2 HIDPNPs粒徑及表面電位分析 50
3-5-3 HIDPNPs構型分析 50
3-5-4 DOX及ICG的包覆率、包藥率分析 50
3-5-5 HIDPNPs穩定性分析 51
3-6 HIDPNPs光治療功能分析 52
3-6-1 HIDPNPs光熱功能檢測 52
3-6-2 HIDPNPs光動力功能檢測 52
3-7 細胞實驗 53
3-7-1 細胞培養 53
3-7-2 細胞染色 54
3-7-3 HIDPNPs細胞毒性分析 56
3-7-4 HIDPNPs細胞專一性能力分析 57
3-8 HIDPNPs細胞毒殺能力分析 57
3-9 統計分析 58
第四章結果與討論 59
4-1 PLGA-PEG 共聚物交聯分析鑑定 59
4-2 HIDPNPs製備及其性質量測 61
4-2-1 HIDPNPs表面抗體修飾分析 61
4-2-2 HIDPNPs粒徑及電位分布 62
4-2-3 HIDPNPs 型態分析 63
4-2-4 HIDPNPs包覆率及包藥率之量測 64
4-2-5 HIDPNPs奈米載體的穩定性分析 65
4-3. HIDPNPs 光治療功能分析 67
4-3-1 HIDPNPs 奈米載體光熱分析 67
4-3-2 HIDPNPs 奈米載體光動力分析 68
4-4 HIDPNPs 照光釋放藥物之檢測 69
4-5 HIDPNPs對乳癌細胞的專一性測試 70
4-6 HIDPNPs對乳癌細胞的生物毒性測試 71
4-7 HIDPNPs對乳癌細胞的細胞毒殺測試 72
4-8 結論 76
第 五 章 未來展望 77
參考文獻 78
附錄 95


圖目錄
圖 1. 2011年十大癌症發生率統計資料 2
圖 2.研究策略 2
圖 3.奈米科技於各領域之應用 3
圖 4.全球乳癌發生率統計分布 6
圖 5.全球乳癌死亡率統計分布 6
圖 6.亞洲各國乳癌發生率與死亡率統計結果 7
圖 7. Doxorubicin (DOX) 分子結構示意圖 11
圖 8. Doxorubicin-DNA複合物 (a) DOX分別以共價鍵及氫鍵等方式和DNA兩端的鳥嘌呤鍵結,(b) DOX螯合DNA示意圖 11
圖 9.溫度與時間對細胞存活率的影響 13
圖 10.人體中水分子、血紅素(Hb)以及攜氧血紅素(HbO2)於可見光-近紅外之光吸收圖 16
圖 11. (A)雷射照射時間與腫瘤的溫度變化圖,(B)腫瘤生長狀況圖 17
圖 12. (A) 光動力治療之分類;(B) 光動力治療之反應機制 18
圖 13.光感物質照光刺激氧氣形成單相氧造成細胞凋亡的作用機制 20
圖 14. (A) ICG結構圖;(B) ICG近紅外光吸收放射圖譜 21
圖 15. (A) 73ug/ml的ICG於不同的光照強度對溫度提升的效應;(B)不同濃度ICG光照後溫度的變化 21
圖 16. (A)不同濃度ICG之吸收光譜示意圖及(B)ICG於血液中濃度與螢光表現量關係圖 22
圖 17. ICG 濃度高低影響螢光表現量示意圖 22
圖 18. ICG與Phospholipids結合之螢光放射波長變化圖 23
圖 19. ICG溶液降解速率與光照、不同光源、溫度及濃度關係圖 23
圖 20.以HPLC分析ICG於無光照及光照後結構變化 24
圖 21. (A)PLA、PGA及PLGA之結構示意圖;(B)PLA/PGA共聚比和PLGA的降解關係 29
圖 22.奈米載體乳化製備 (A) 水相包油相(B)油相包水相 30
圖 23. 聚合物自組裝載體 31
圖 24.細胞吞噬作用 32
圖 25.細胞胞飲作用 32
圖 26.細胞受體介導和內吞作用 33
圖 27.藥物載體於細胞內之藥物釋放模式示意圖 34
圖 28.藥物載體於組織內之藥物釋放模式示意圖 34
圖 29.藥物擴散釋放 35
圖 30.載體澎潤釋放藥物 35
圖 31.滲透幫補藥物釋放 36
圖 32.載體溶蝕釋放藥物 36
圖 33.化學控制釋放 36
圖 34.可分解性支鏈載體 37
圖 35.可分解性骨架之載體 37
圖 36.可分解性支鏈載體 37
圖 37. UV-VIS光譜儀的外觀構造圖及架構圖 40
圖 38. 比爾定律吸收光路徑的示意圖 41
圖 39. Zetasizer Nano之外觀圖及測量示意圖 42
圖 40.近紅外光雷射裝置示意圖 43
圖 41. 螢光能階示意圖 44
圖 42. 倒立式螢光顯微鏡光路圖及實體圖 44
圖 43.實驗流程 46
圖 44. PLGA-PEG 反應流程 47
圖 45. IDPNPs合成流程 48
圖 46.奈米載體修飾抗體流程 49
圖 47. (A) MDA-MB-453細胞和(B)MCF-7細胞之可見光圖 54
圖 48. HER2 receptor 膠體電泳結果比較 54
圖 49. Calcein AM細胞染色示意圖 55
圖 50.以核磁共振圖譜(NMR)分析PLGA-PEG共聚物的結果 59
圖 51.以傅立葉轉換紅外光譜分析PLGA-PEG共聚物的結果 59
圖 52. (A)修飾與未修飾Anti-HER2抗體的奈米載體在接枝螢光抗體後之螢光表現量分析圖;(B)以FT-IR分析抗體修飾情形 62
圖 53. HIDPNPs與IDPNPs的粒徑分布與表面電性分布比較圖 62
圖 54. HIDPNPs奈米載體的型態分析 63
圖 55.HIDPNPs內DOX釋放率及ICG降解率量測結果 66
圖 56.HIDPNPs及純ICG之光熱檢測結果 68
圖 57.HIDPNPs及純ICG的光動力檢測結果 69
圖 58.經過近紅外光照射奈米載體之藥物釋放結果 70
圖 59. HIDPNPs專一性(A)DOX螢光及(B)ICG螢光結果 71
圖 60. HIDPNPs毒性測試結果 72
圖 61.(A)與MDA-MB-453共同培養4小時之HIDPNPs光化療、純ICG光療及純DOX化療毒殺細胞結果及(B)以倒立式顯微鏡觀察與MDA-MB-453共同培養4小時之HIDPNPs光化療、純ICG光療及純 DOX化療毒殺細胞細胞存活狀況(scale bar:50μm) 74
圖 62. (A)與MDA-MB-453共同培養12小時之HIDPNPs光化療、純 ICG光療及純DOX化療毒殺細胞結果(*P < 0.05)及(B)以倒立式顯微鏡觀察與MDA-MB-453共同培養12小時之HIDPNPs光化療、純ICG光療及純DOX化療毒殺細胞細胞存活狀況(scale bar:50μm) 75
表目錄
表 1. 乳癌分期 5
表 2. PLGA載體包覆藥物之比較 65
參考文獻 [1] 衛生福利部. 2014年死因統計結果. 2015.
[2] Hanahan D, Weinberg RA. The hallmarks of cancer cell. 2000;100:57-70.
[3] Chang K-J, Kuo W-H, Wang M-Y. The epidemiology of breast cancer in Taiwan. J Chinese Oncol Soc. 2008;24:85-93.
[4] Feynman RP. There′s plenty of room at the bottom. Engineering and science. 1960;23:22-36.
[5] 林建中. 奈米科技: 基礎與實務: 新文京開發; 2006.
[6] 馬遠榮. 奈米科技: 商周出版; 2002.
[7] Freitas RA. What is nanomedicine? Nanomedicine: Nanotechnology, Biology and Medicine. 2005;1:2-9.
[8] Sudeep P, Joseph SS, Thomas KG. Selective detection of cysteine and glutathione using gold nanorods.Journal of the American Chemical Society. 2005;127:6516-7.
[9] Lin Y-S, Wu S-H, Hung Y, Chou Y-H, Chang C, Lin M-L, et al. Multifunctional composite nanoparticles: magnetic, luminescent, and mesoporous. Chemistry of Materials. 2006;18:5170-2.
[10] 張芳瑜. 磁共振造影及光熱治療之雙功能複合材料: 二氧化矽/氧化鐵/金奈米管與 Gd2O (CO3) 2‧ H2O/二氧化矽/金複合粒子的製備與探討. 成功大學化學系學位論文. 2008:1-90.
[11] Cheng F-Y, Wang SP-H, Su C-H, Tsai T-L, Wu P-C, Shieh D-B, et al. Stabilizer-free poly (lactide-co-glycolide) nanoparticles for multimodal biomedical probes. Biomaterials. 2008;29:2104-12.
[12] Ma J, Jemal A. Breast cancer statistics. Breast Cancer Metastasis and Drug Resistance: Springer; 2013. p. 1-18.
[13] 國家衛生研究院. 乳癌診斷與治療共識. 2004.
[14] Unit EI. breast cancer in asia. 2016.
[15] 和信致癌中心. 女人與癌症. 天下生活股份有限公司; 2000.
[16] 李雅萱. 以巨噬細胞承載包覆藥物相變液滴作為藥物傳遞載體之可行性研究. 清華大學生醫工程與環境科學系學位論文. 2012:1-83.
[17] 吳德維. 高溫腫瘤治療用超音波換能器分析. 台南市: 崑山科技大學; 2006.
[18] 張金堅, Zhang J. 乳房醫學: 健康世界雜誌社; 1993.
[19] 康森防癌健康網. 癌症的治療. 2016.
[20] Kusumaningrum S, Budianto E, Kosela S, Sumaryono W, Juniarti F. The molecular docking of 1, 4-naphthoquinone derivatives as inhibitors of polo-like kinase 1 using Molegro Virtual Docker. J App Sci. 2014;4:47-53.
[21] 維基百科. 阿黴素. 2016.
[22] Rossi S. Australian Medicines Handbook (2013 ed.). Adelaide: The Australian Medicines Handbook Unit Trust. ISBN 978-0-9805790-9-3; 2013.
[23] Cutts SM, Nudelman A, Rephaeli A, Phillips DR. The power and potential of doxorubicin‐DNA adducts. IUBMB life. 2005;57:73-81.
[24] Coldwell KE, Cutts SM, Ognibene TJ, Henderson PT, Phillips DR. Detection of Adriamycin–DNA adducts by accelerator mass spectrometry at clinically relevant Adriamycin concentrations. Nucleic acids research. 2008;36:e100-e.
[25] Gewirtz D. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochemical pharmacology. 1999;57:727-41.
[26] Burgess DJ, Doles J, Zender L, Xue W, Ma B, McCombie WR, et al. Topoisomerase levels determine chemotherapy response in vitro and in vivo. Proceedings of the National Academy of Sciences. 2008;105:9053-8.
[27] Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE, et al. Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenetics and genomics. 2011;21:440.
[28] Khouri MG, Hornsby WE, Risum N, Velazquez EJ, Thomas S, Lane A, et al. Utility of 3-dimensional echocardiography, global longitudinal strain, and exercise stress echocardiography to detect cardiac dysfunction in breast cancer patients treated with doxorubicin-containing adjuvant therapy. Breast cancer research and treatment. 2014;143:531-9.
[29] KERR DJ. Microparticulate drug delivery systems as an adjunct to cancer treatment.Cancer drug delivery. 1987;4:55-61.
[30] Meng H, Xue M, Xia T, Ji Z, Tarn DY, Zink JI, et al. Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model. ACS NANO. 2011;5:4131-44.
[31] Elbialy NS, Mady MM. Ehrlich tumor inhibition using doxorubicin containing liposomes. Saudi Pharmaceutical Journal. 2015;23:182-7.
[32] Tinkov S, Coester C, Serba S, Geis NA, Katus HA, Winter G, et al. New doxorubicin-loaded phospholipid microbubbles for targeted tumor therapy: in-vivo characterization. Journal of Controlled Release. 2010;148:368-72.
[33] Uziely B, Jeffers S, Isacson R, Kutsch K, Wei-Tsao D, Yehoshua Z, et al. Liposomal doxorubicin: antitumor activity and unique toxicities during two complementary phase I studies. Journal of Clinical Oncology. 1995;13:1777-85.
[34] Ranson MR, Carmichael J, O′Byrne K, Stewart S, Smith D, Howell A. Treatment of advanced breast cancer with sterically stabilized liposomal doxorubicin: results of a multicenter phase II trial. Journal of Clinical Oncology. 1997;15:3185-91.
[35] Yang F, Teves SS, Kemp CJ, Henikoff S. Doxorubicin, DNA torsion, and chromatin dynamics. Biochim Biophys Acta. 2014;1845:84-9.
[36] Hegyi G, Szigeti GP, Szász A. Hyperthermia versus oncothermia: cellular effects in complementary cancer therapy. Evidence-Based Complementary and Alternative Medicine. 2013;2013.
[37] Falk M, Issels R. Hyperthermia in oncology. International Journal of Hyperthermia. 2001;17:1-18.
[38] Srinivasan S, Manchanda R, Lei T, Nagesetti A, Fernandez-Fernandez A, McGoron AJ. Targeted nanoparticles for simultaneous delivery of chemotherapeutic and hyperthermia agents--an in vitro study. J Photochem Photobiol B. 2014;136:81-90.
[39] Tang Y, McGoron AJ. Combined effects of laser-ICG photothermotherapy and doxorubicin chemotherapy on ovarian cancer cells. J Photochem Photobiol B. 2009;97:138-44.
[40] Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, et al. Hyperthermia in combined treatment of cancer. The lancet oncology. 2002;3:487-97.
[41] Christophi C, Winkworth A, Muralihdaran V, Evans P. The treatment of malignancy by hyperthermia.Surgical oncology. 1998;7:83-90.
[42] Fessenden P, Hand JW. Hyperthermia therapy physics. Radiation Therapy Physics: Springer; 1995. p. 315-63.
[43] Behrouzkia Z, Joveini Z, Keshavarzi B, Eyvazzadeh N, Aghdam RZ. Hyperthermia: How Can It Be Used? Oman Med J. 2016;31:89-97.
[44] Dewey W, Hopwood L, Sapareto S, Gerweck L. Cellular Responses to Combinations of Hyperthermia and Radiation 1. Radiology. 1977;123:463-74.
[45] van der Zee J. Heating the patient: a promising approach? Annals of oncology. 2002;13:1173-84.
[46] Matylevitch NP, Schuschereba ST, Mata JR, Gilligan GR, Lawlor DF, Goodwin CW, et al. Apoptosis and accidental cell death in cultured human keratinocytes after thermal injury. The American journal of pathology. 1998;153:567-77.
[47] Henderson BW, Dougherty TJ. How does photodynamic therapy work? Photochem Photobiol. 1992;55:145-57.
[48] Weissleder R. A clearer vision for in vivo imaging.Nature biotechnology. 2001;19:316-7.
[49] Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 2005;1:325-7.
[50] Diagaradjane P, Shetty A, Wang JC, Elliott AM, Schwartz J, Shentu S, et al. Modulation of in vivo tumor radiation response via gold nanoshell-mediated vascular-focused hyperthermia: characterizing an integrated antihypoxic and localized vascular disrupting targeting strategy. Nano letters. 2008;8:1492-500.
[51] Hirsch L, Stafford R, Bankson J, Sershen S, Rivera B, Price R, et al. Ultrafast electron relaxation via breathing vibration of gold nanocrystals embedded in a dielectric medium. PNAS. 2003;100:13549-54.
[52] Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, et al. Photodynamic therapy. Journal of the National Cancer Institute. 1998;90:889-905.
[53] Bedwell J, MacRobert A, Phillips D, Bown S. Fluorescence distribution and photodynamic effect of ALA-induced PP IX in the DMH rat colonic tumour model. British journal of cancer. 1992;65:818.
[54] Hsi RA, Rosenthal DI, Glatstein E. Photodynamic therapy in the treatment of cancer. Drugs. 1999;57:725-34.
[55] Nisnevitch M, Nakonechny F, Nitzan Y. Photodynamic antimicrobial chemotherapy by liposome-encapsulated water-soluble photosensitizers. Russian Journal of Bioorganic Chemistry. 2010;36:363-9.
[56] Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nature reviews cancer. 2003;3:380-7.
[57] Webber J, Herman M, Kessel D, Fromm D. Current concepts in gastrointestinal photodynamic therapy. Annals of surgery. 1999;230:12.
[58] Puolakkainen P, Rämö J, Schröder T. Review: Photodynamic Therapy in Gastroenterology. Scandinavian journal of gastroenterology. 1990;25:417-21.
[59] Kalka K, Merk H, Mukhtar H. Photodynamic therapy in dermatology. Journal of the American Academy of Dermatology. 2000;42:389-413.
[60] Kubba A. Role of photodynamic therapy in the management of gastrointestinal cancer. Digestion. 1999;60:1-10.
[61] Castano AP, Mroz P, Hamblin MR. Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer. 2006;6:535-45.
[62] Yu J, Yaseen MA, Anvari B, Wong MS. Synthesis of near-infrared-absorbing nanoparticle-assembled capsules. Chemistry of Materials. 2007;19:1277-84.
[63] JM D, Soulié S, Mordon S, Desmettre T, Maillols H. Fluorescence properties of indocyanin green-part 1.: in-vitro study with micelles and liposomes.
[64] Miwa M. The principle of ICG fluorescence method. Open Surg Oncol J. 2010;2:26-8.
[65] Bennett TJ, Barry CJ. Ophthalmic imaging today: an ophthalmic photographer′s viewpoint–a review. Clinical & experimental ophthalmology. 2009;37:2-13.
[66] Inaging GR. Indocyanine green optical properties. 2016.
[67] Han L, Zhang Y, Chen X-W, Shu Y, Wang J-H. Protein-modified hollow copper sulfide nanoparticles carrying indocyanine green for photothermal and photodynamic therapy. Journal of Materials Chemistry B. 2016;4:105-12.
[68] Wang YG, Kim H, Mun S, Kim D, Choi Y. Indocyanine green-loaded perfluorocarbon nanoemulsions for bimodal (19)F-magnetic resonance/nearinfrared fluorescence imaging and subsequent phototherapy. Quant Imaging Med Surg. 2013;3:132-40.
[69] Zhou JF, Chin MP, Schafer SA. Aggregation and degradation of indocyanine green. OE/LASE′94: International Society for Optics and Photonics; 1994. p. 495-505.
[70] Landsman M, Kwant G, Mook G, Zijlstra W. Light-absorbing properties, stability, and spectral stabilization of indocyanine green. Journal of applied physiology. 1976;40:575-83.
[71] Mordon S, Devoisselle JM, Soulie-Begu S, Desmettre T. Indocyanine green: physicochemical factors affecting its fluorescencein vivo. Microvascular research. 1998;55:146-52.
[72] van den Biesen PR, Jongsma FH, Tangelder GJ, Slaaf DW. Yield of fluorescence from indocyanine green in plasma and flowing blood. Annals of biomedical engineering. 1995;23:475-81.
[73] Desmettre T, Devoisselle J, Mordon S. Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography. Survey of ophthalmology. 2000;45:15-27.
[74] 賴允涵. 製備包覆靛氰綠之聚乳酸甘醇酸標靶奈米粒子用於乳癌光熱暨光動治療之研究. 桃園縣: 國立中央大學; 2015.
[75] Saxena V, Sadoqi M, Shao J. Degradation kinetics of indocyanine green in aqueous solution. Journal of pharmaceutical sciences. 2003;92:2090-7.
[76] Engel E, Schraml Rd, Maisch T, Kobuch K, König B, Szeimies R-M, et al. Light-induced decomposition of indocyanine green. Investigative ophthalmology & visual science. 2008;49:1777-83.
[77] 宋信文, 陳松青. 生醫材料簡介. 生物產業技術概論, 第二章. 2003:33-58.
[78] 李玉寶, 顧寧, 魏于全. 奈米生醫材料. 初版, 台北, 五南出版股份有限公司. 2006:162-84.
[79] Whittlesey KJ, Shea LD. Delivery systems for small molecule drugs, proteins, and DNA: the neuroscience/biomaterial interface. Experimental Neurology. 2004;190:1-16.
[80] Roderick HL, Campbell AK, Llewellyn DH. Nuclear localisation of calreticulin in vivo is enhanced by its interaction with glucocorticoid receptors. FEBS letters. 1997;405:181-5.
[81] Kim E-M, Jeong H-J, Park I-K, Cho CS, Bom H-S, Kim C-G. Monitoring the effect of PEGylation on polyethylenimine in vivo using nuclear imaging technique.Nuclear medicine and biology. 2004;31:781-4.
[82] Ghosh S. Recent research and development in synthetic polymer-based drug delivery systems.Journal of Chemical Research. 2004;2004:241-6.
[83] Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Advanced Drug Delivery Reviews. 2012;64:72-82.
[84] Leong K, D′Amore P, Marletta M, Langer R. Bioerodible polyanhydrides as drug‐carrier matrices. II. Biocompatibility and chemical reactivity. Journal of biomedical materials research. 1986;20:51-64.
[85] Stolnik S, Illum L, Davis S. Long circulating microparticulate drug carriers. Advanced Drug Delivery Reviews. 2012;64:290-301.
[86] Fuchs S, Kapp T, Otto H, Schöneberg T, Franke P, Gust R, et al. A Surface‐Modified Dendrimer Set for Potential Application as Drug Delivery Vehicles: Synthesis, In Vitro Toxicity, and Intracellular Localization.Chemistry–A European Journal. 2004;10:1167-92.
[87] 馬光輝, 蘇志國. 新型高分子材料. 曉園出版社; 2006.
[88] Jeong J-M, Chung Y-C, Hwang J-H. Enhanced adjuvantic property of polymerized liposome as compared to a phospholipid liposome.Journal of biotechnology. 2002;94:255-63.
[89] Dinarvand R, Sepehri N, Manoochehri S, Rouhani H, Atyabi F. Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. Int J Nanomedicine. 2011;6:877-95.
[90] Langer JATR. Erosion kinetics of hydrolytically degradable polymers. 1993:Vol. 90, pp. 552-6,.
[91] Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier.Polymers. 2011;3:1377-97.
[92] Harris Z, Zalipsky S. Poly(ethylene Glycol): American; 1997.
[93] Cagdas FM, Ertugral N, Bucak S, Atay NZ. Effect of preparation method and cholesterol on drug encapsulation studies by phospholipid liposomes.Pharmaceutical development and technology. 2011;16:408-14.
[94] 周志謂. 神奇的奈米鍊丹術. 科學發展. 2008;431:16-22.
[95] Bae KH, Mok H, Park TG. Synthesis, characterization, and intracellular delivery of reducible heparin nanogels for apoptotic cell death. Biomaterials. 2008;29:3376-83.
[96] Sasaki Y, Akiyoshi K. Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications. The Chemical Record. 2010;10:366-76.
[97] Otsuka H, Nagasaki Y, Kataoka K. Self-assembly of poly (ethylene glycol)-based block copolymers for biomedical applications. Current Opinion in Colloid & Interface Science. 2001;6:3-10.
[98] Kim T-i, Ou M, Lee M, Kim SW. Arginine-grafted bioreducible poly (disulfide amine) for gene delivery systems. Biomaterials. 2009;30:658-64.
[99] Silverstein SC, Steinman RM, Cohn ZA. Endocytosis.Annual review of biochemistry. 1977;46:669-722.
[100] BiologyExams4U.com.Membrane transport for Macromolecules. 2016.
[101] Gillies ER, Fréchet JM.pH-responsive copolymer assemblies for controlled release of doxorubicin. Bioconjugate chemistry. 2005;16:361-8.
[102] Omelyanenko V, Kopečková P, Gentry C, Kopeček J. Targetable HPMA copolymer-adriamycin conjugates. Recognition, internalization, and subcellular fate.Journal of Controlled Release. 1998;53:25-37.
[103] Duncan R.The dawning era of polymer therapeutics. Nature reviews Drug discovery. 2003;2:347-60.
[104] 林宜美. 幾丁質摻合聚乳酸酯微粒於藥物釋放系統之研究; Chitin/PLGA blend microspheres as a biodegradable drug delivery system: Phase separation, degradation and release behavior. 2002.
[105] 魏宗平. PLGA 微球包覆 Rapamycin 與蠶絲蛋白/明膠形成複合薄膜之藥物釋放探討. 2012.
[106] 賴秀英. 缽式包覆阿斯匹靈藥物與控制釋放之研究. 臺北科技大學化學工程研究所學位論文. 2010:1-115.
[107] Ta HT, Dass CR, Dunstan DE.Injectable chitosan hydrogels for localised cancer therapy.Journal of Controlled Release. 2008;126:205-16.
[108] Seyednejad H, Ghassemi AH, van Nostrum CF, Vermonden T, Hennink WE.Functional aliphatic polyesters for biomedical and pharmaceutical applications.Journal of Controlled Release. 2011;152:168-76.
[109] Karamanev D, Nikolov L. Influence of some physicochemical parameters on bacterial activity of biofilm: ferrous iron oxidation by Thiobacillus ferrooxidans. Biotechnology and bioengineering. 1988;31:295-9.
[110] 周幸儀. 動態光散射儀之建構與應用. 台南市: 南台科技大學; 2013.
[111] 林怡秀. Chenodeoxycholic acid微胞形成之研究. 花蓮縣: 國立東華大學; 2011.
[112] Tavano L, Pinazo A, Abo-Riya M, Infante M, Manresa M, Muzzalupo R, et al. Cationic vesicles based on biocompatible diacyl glycerol-arginine surfactants: Physicochemical properties, antimicrobial activity, encapsulation efficiency and drug release. Colloids and Surfaces B: Biointerfaces. 2014;120:160-7.
[113] Hallett F, Watton J, Krygsman P. Vesicle sizing: number distributions by dynamic light scattering. Biophysical journal. 1991;59:357.
[114] Lakowicz JR. Principles of fluorescence spectroscopy: Springer Science & Business Media; 2013.
[115] 陳虹瑋. 癌症標靶材料作用於細胞與分子機制之探討:1.多光子趨動標靶化奈米鑽石誘發癌細胞死亡之機制;2.anti-CEACAM6與anti-HER-2單一抗原結合功能區抗體於乳癌標靶治療之研究。. 新竹市: 國立交通大學; 2011.
[116] Morgan HP, McNae IW, Nowicki MW, Zhong W, Michels PA, Auld DS, et al. The trypanocidal drug suramin and other trypan blue mimetics are inhibitors of pyruvate kinases and bind to the adenosine site. Journal of Biological Chemistry. 2011;286:31232-40.
[117] Braut-Boucher F, Pichon J, Rat P, Adolphe M, Aubery M, Font J. A non-isotopic, highly sensitive, fluorimetric, cell-cell adhesion microplate assay using calcein AM-labeled lymphocytes.Journal of immunological methods. 1995;178:41-51.
[118] Riccardi C, Nicoletti I. Analysis of apoptosis by propidium iodide staining and flow cytometry.Nature protocols. 2006;1:1458-61.
[119] Lecoeur H. Nuclear apoptosis detection by flow cytometry: influence of endogenous endonucleases. Experimental cell research. 2002;277:1-14.
[120] Tuyen Dao TP, Nguyen TH, To VV, Ho TH, Nguyen TA, Dang MC. A new formulation of curcumin using poly (lactic-co-glycolic acid)—polyethylene glycol diblock copolymer as carrier material. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2014;5:035013.
[121] Silverstein RM, Webster FX, Kiemle DJ, Bryce DL. Spectrometric identification of organic compounds: John Wiley & Sons; 2014.
[122] Cheng J, Teply BA, Sherifi I, Sung J, Luther G, Gu FX, et al. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials. 2007;28:869-76.
[123] Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW, et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci U S A. 2006;103:6315-20.
[124] Danhier F, Lecouturier N, Vroman B, Jérôme C, Marchand-Brynaert J, Feron O, et al. Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation. Journal of Controlled Release. 2009;133:11-7.
[125] Wang S, Mamedova N, Kotov NA, Chen W, Studer J. Antigen/Antibody Immunocomplex from CdTe Nanoparticle Bioconjugates. Nano Letters. 2002;2:817-22.
[126] Jiang S, Zhang Y, Lim KM, Sim EK, Ye L. NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA. Nanotechnology. 2009;20:155101.
[127] Yang J, Lee C-H, Park J, Seo S, Lim E-K, Song YJ, et al. Antibody conjugated magnetic PLGA nanoparticles for diagnosis and treatment of breast cancer. Journal of Materials Chemistry. 2007;17:2695.
[128] Mo Y, Lim L-Y. Preparation and in vitro anticancer activity of wheat germ agglutinin (WGA)-conjugated PLGA nanoparticles loaded with paclitaxel and isopropyl myristate. Journal of Controlled Release. 2005;107:30-42.
[129] Barua S, Yoo J-W, Kolhar P, Wakankar A, Gokarn YR, Mitragotri S. Particle shape enhances specificity of antibody-displaying nanoparticles. Proceedings of the National Academy of Sciences. 2013;110:3270-5.
[130] Zheng M, Yue C, Ma Y, Gong P, Zhao P, Zheng C, et al. Single-step assembly of DOX/ICG loaded lipid–polymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS NANO. 2013;7:2056-67.
[131] Lim YT, Noh YW, Han JH, Cai QY, Yoon KH, Chung BH. Biocompatible Polymer‐Nanoparticle‐Based Bimodal Imaging Contrast Agents for the Labeling and Tracking of Dendritic Cells. Small. 2008;4:1640-5.
[132] Saxena V, Sadoqi M, Shao J. Enhanced photo-stability, thermal-stability and aqueous-stability of indocyanine green in polymeric nanoparticulate systems. Journal of Photochemistry and Photobiology B: Biology. 2004;74:29-38.
[133] Haley B, Frenkel E. Nanoparticles for drug delivery in cancer treatment. Urologic Oncology: Seminars and original investigations: Elsevier; 2008. p. 57-64.
[134] Zolnik BS, Leary PE, Burgess DJ. Elevated temperature accelerated release testing of PLGA microspheres. Journal of Controlled Release. 2006;112:293-300.
[135] Hakkarainen M, Albertsson A-C, Karlsson S. Weight losses and molecular weight changes correlated with the evolution of hydroxyacids in simulated in vivo degradation of homo-and copolymers of PLA and PGA. Polymer Degradation and Stability. 1996;52:283-91.
[136] Harush-Frenkel O, Debotton N, Benita S, Altschuler Y. Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochemical and biophysical research communications. 2007;353:26-32.
指導教授 李宇翔(Yu-Hsiang Lee) 審核日期 2016-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明