博碩士論文 102331010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:52.15.63.145
姓名 柯孟平(KO, MENG-PING)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 以Metal–Phenolic Networks 結合兩性離子多巴胺磺基甜菜鹼於表面之研究
(A Versatile Approach to Antifouling and Substrate-independent coatings via Assembly of Metal-Phenolic Networks)
相關論文
★ 可功能化抗沾黏性雙離子自組裝單層膜於生物感測器之應用★ 雙離子胺基酸吸附劑在血液中重金屬 吸附之應用
★ Intelligent nature-derived coordinative hydrogel incorporated with HRP as dressing for infected wounds★ 新型兩性磷脂類高分子聚合物與其自組裝奈米結構
★ 聚電解質和多價植酸之間向抗菌強韌水凝膠的離子絡合作用★ 磺基甜菜鹼基自組裝單分子層的形成、穩定性和抗污染性的比較研究
★ Deposition of Photoactive Layer on Thermoplastic Polyurethane Tubes for Photo-grafting poly(2-methacryloyloxyethyl phosphorylcholine)★ Preparation of lubricant and antifouling medical coating on thermalplastic polyurethane
★ 開發可生物降解的完全磷酸膽鹼水凝膠★ Development of Functional Biointerface by Mixed Oligomeric Silatranes
★ Biodegradable and pH-Responsive Nanoparticles for the Triggered Release of Antibiotics to Infected Wounds★ In situ gelation using amine-containing copolymer and dialkyne crosslinker via amino-yne click chemistry
★ Disulfide-based cross-linkers for functional polymeric networks★ 建立雙離子高分子修飾蛋白質技術與分析
★ DEVELOPMENT AND APPLICATIONS OF CATECHOL-FUNCTIONALIZED ZWITTERIONIC POLYMER★ 三次元量床之虛擬儀器教學與訓練系統之設計與開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 現有應用在修飾醫療器材表面的方法,往往受限於器材大小與修飾材料的化學組成。在此限制下,發展能修飾在多種表面上,且又能進一步做功能化修飾的方法,是目前發展表面修飾的重大課題。在本篇研究,我們利用多酚(polyphenol)與鐵離子,在水溶液中能形成複合物(complex)的現象,發展出具備一步驟簡單,且不受限基板大小及化學組成的修飾方法。後續並加入兩性雙離子材料,於各種基材表面進行改質而達到抗生物汙染的功能。此篇利用兩性離子多巴胺磺基甜菜鹼(sulfobetaine-dopamine, SB-DA)以達抗生物汙染之特性;單寧酸(Tannic acid, TA)與二價或三價鐵離子形成複合物(metal–phenolic complex network, MPN),以達適用於多樣基材表面修飾的目的。因多酚(polyphenol)與二價或三價鐵離子皆能形成複合物,首先用UV-VIS計算單寧酸及多巴胺磺基甜菜鹼,與二價或三價鐵離子間的平衡常數。再利用水接觸角和X射線光電子能譜,了解結合MPN與SB-DA修飾後的親水性質、表面元素組態。並藉由綠膿桿菌和表皮葡萄球菌細菌貼附,纖維母細胞貼附,比較利用不同價數的鐵離子與單寧酸、多巴胺磺基甜菜鹼修飾的薄膜,是否有不同抗生物汙染程度。其中,在XPS結果,於Fe2+MPN/Fe2+的薄膜上修飾多巴胺磺基甜菜鹼,其效果比於Fe3+MPN/Fe3+的薄膜上有更高的密度。在Fe2+MPN/Fe2+/SB-DA修飾條件下,表面水接觸角約為5度;細菌貼附實驗結果,可抵抗約85%的綠膿桿菌和表皮葡萄球菌的貼附;細胞貼附實驗結果,則可抵抗約80%的纖維母細胞貼附。本研究發展了一種新的修飾方法,可於各種基材表面進行改質而達到抗生物汙染的功能,並期待開發多功能生物界面且應用於醫療器材表面塗層,以提升其生物相容性與使用安全性。
摘要(英) The development of facile and versatile strategies for surface engineering has attracted considerable attentions in various aspects of applications. However, only few methods can be applied to substrates with different compositions, sizes, and shapes. In this study, we report a newly developed approach to fabricating an antifouling coating via coordination of polyphenols and metal ions in an aqueous solution. This approach incorporates bioinspired zwitterionic sulfobetaine dopamine (SB-DA) for fouling resistance in which tannic acid (TA) and metal ions serve as crosslinking agents. Film formation was accomplished with the adsorption of the metal–phenolic complex network (MPN) on various planar organic and inorganic substrates. Because of super hydrophilic and charge-balanced properties, SB-DA enables forming a tightly bound water layer on the top of the complex network to repel nonspecific adsorption. Here we compared two metal ions: ferrous ion (Fe2+) and ferric ion (Fe3+). Their stabilities with phenol groups were estimated by measuring the binding constant and being determined spectrophotometrically. The surface hydration of the modified substrates was tested by contact angle goniometer; the surface elemental composition and the chemical states of the modified substrates were confirmed by and X-ray photoelectron spectroscopy (XPS). For examining the antifouling properties, we immersed the modified substrates into the solutions containing bacteria or cell. Thus, the adsorbed bacteria and cell were quantified using fluorescence microscopy and cell imaging analysis. We applied the coating strategy onto various substrates, including silica, noble metals, metal oxides, and polymers. The results show that zwitterionic SB-DA can be coated on the different surfaces via assembly of MPN and also provide an antifouling property. Consequently, this approach for substrate modification offers an easy, fast and environment friendly way to realize biocompatible coatings for all types of substrates. The work also provides insight into the construction of hierarchical structures by molecular assembly for functional biointerfaces.
關鍵字(中) ★ 非特異性吸附
★ 多酚
★ 金屬離子
★ 兩性離子
★ 平衡常數
關鍵字(英) ★ Non-specific adsorption
★ polyphenols
★ metal ions
★ zwitterionic materials
★ coordination interaction
論文目次 Table of Contents
摘要 v
Abstract vi
Acknowledgements viii
Table of Contents ix
List of Figures xi
List of Tables xiii
List of Abbreviations xiv
CHAPTER 1: Introduction 1
1.1 Biofouling 1
1.2 Biofilm growth 2
1.3 Biofouling in biomedical devices 4
1.4 Antifouling materials 5
1.5 Surface modifications 8
1.6 Metal–Phenolic Networks 10
CHAPTER 2: Research Objectives 12
CHAPTER 3: Materials and Methods 14
3.1 Materials 14
3.2 Binding Constant Measurement by UV-VIS 15
3.3 Coatings on Planar Substrates 16
3.4 Surface Wettability and Water Contact Angle Measurement 18
3.5 Surface Element Composition and Chemical States Analysis by XPS 18
3.6 Ellipsometric Thickness of films 18
3.7 Cytotoxicity of Coatings Tested by MTT Assay 19
3.8 Analysis of Bacterial Adhesion 19
3.9 Analysis of Cell Adhesion 20
CHAPTER 4: Results and Discussion 21
4.1 Binding Constant Measurements of SB-DA with iron ions 21
4.2 Surface Element Composition Analysis of Coatings 24
4.3 The Surface Wettability of Coatings 30
4.4 Cytotoxicity of Coatings 32
4.5 Resistance of Bacterial Adhesion 33
4.6 Resistance of Cell Adhesion 35
4.7 Universal Modification for Antibacterial Adhesion Surfaces. 36
CHAPTER 5: Conclusions 39
CHAPTER 6: Future Works 39
Bibliography 40
參考文獻 Bibliography
[1] Railkin, A.I., Marine biofouling colonization processes and defenses. 2004, CRC Press.
[2] Tuan, V.-D., Nanotechnology in Biology and Medicine, in Nanotechnology in Biology and Medicine. 2007, CRC Press.
[3] Bixler, G.D. and B. Bhushan, Biofouling: lessons from nature. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2012. 370(1967): p. 2381-2417.
[4] Smeltzer, M.S., Biofilms and Aseptic Loosening. 2008.
[5] Banerjee, I., R.C. Pangule, and R.S. Kane, Antifouling Coatings: Recent Developments in the Design of Surfaces That Prevent Fouling by Proteins, Bacteria, and Marine Organisms. Advanced Materials, 2011. 23(6): p. 690-718.
[6] Yeh, P.-Y.J., et al., Electric field and vibration-assisted nanomolecule desorption and anti-biofouling for biosensor applications. Colloids and Surfaces B: Biointerfaces, 2007. 59(1): p. 67-73.
[7] Dobretsov, S., 9 - Expected effect of climate change on fouling communities and its impact on antifouling research A2 - Hellio, Claire, in Advances in Marine Antifouling Coatings and Technologies, D. Yebra, Editor. 2009, Woodhead Publishing. p. 222-239.
[8] Pangarkar, B.L., M.G. Sane, and M. Guddad, Reverse Osmosis and Membrane Distillation for Desalination of Groundwater: A Review. ISRN Materials Science, 2011. 2011: p. 1-9.
[9] Lebret, K., M. Thabard, and C. Hellio, 4 - Algae as marine fouling organisms: adhesion damage and prevention, in Advances in Marine Antifouling Coatings and Technologies. 2009, Woodhead Publishing. p. 80-112.
[10] Costerton, J.W., et al., Bacterial Biofilms in Nature and Disease. Annual Review of Microbiology, 1987. 41(1): p. 435-464.
[11] Mah, T.-F.C. and G.A. O′Toole, Mechanisms of biofilm resistance to antimicrobial agents. Trends in Microbiology, 2001. 9(1): p. 34-39.
[12] Watnick, P. and R. Kolter, Biofilm, City of Microbes. Journal of Bacteriology, 2000. 182(10): p. 2675-2679.
[13] Costerton, J.W., et al., Microbial Biofilms. Annual Review of Microbiology, 1995. 49(1): p. 711-745.
[14] Stoodley, P., et al., Biofilms as complex differentiated communities. Annu Rev Microbiol, 2002. 56: p. 187-209.
[15] Palmer, J., S. Flint, and J. Brooks, Bacterial cell attachment, the beginning of a biofilm. J Ind Microbiol Biotechnol, 2007. 34(9): p. 577-88.
[16] Costerton, J.W., P.S. Stewart, and E.P. Greenberg, Bacterial Biofilms: A Common Cause of Persistent Infections. Science, 1999. 284(5418): p. 1318-1322.
[17] Estivill, D., et al., Biofilm formation by five species of Candida on three clinical materials. J Microbiol Methods, 2011. 86(2): p. 238-42.
[18] Klevens, R.M., et al., Estimating Health Care-Associated Infections and Deaths in U.S. Hospitals, 2002. Public Health Reports, 2007. 122(2): p. 160-166.
[19] Yebra, D.M., S. Kiil, and K. Dam-Johansen, Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Progress in Organic Coatings, 2004. 50(2): p. 75-104.
[20] Langer, R. and D.A. Tirrell, Designing materials for biology and medicine. Nature, 2004. 428(6982): p. 487-492.
[21] Gu, H., et al., Patterned biofilm formation reveals a mechanism for structural heterogeneity in bacterial biofilms. Langmuir, 2013. 29(35): p. 11145-53.
[22] Hucknall, A., S. Rangarajan, and A. Chilkoti, In Pursuit of Zero: Polymer Brushes that Resist the Adsorption of Proteins. Advanced Materials, 2009. 21(23): p. 2441-2446.
[23] Prime, K.L. and G.M. Whitesides, Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): a model system using self-assembled monolayers. Journal of the American Chemical Society, 1993. 115(23): p. 10714-10721.
[24] Ma, H., et al., “Non-Fouling” Oligo(ethylene glycol)- Functionalized Polymer Brushes Synthesized by Surface-Initiated Atom Transfer Radical Polymerization. Advanced Materials, 2004. 16(4): p. 338-341.
[25] Bearinger, J.P., et al., Chemisorbed poly(propylene sulphide)-based copolymers resist biomolecular interactions. Nat Mater, 2003. 2(4): p. 259-64.
[26] Banerjee, I., R.C. Pangule, and R.S. Kane, Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater, 2011. 23(6): p. 690-718.
[27] Jeon, S.I., et al., Protein—surface interactions in the presence of polyethylene oxide. Journal of Colloid and Interface Science, 1991. 142(1): p. 149-158.
[28] 28. Wischerhoff, E., et al., Controlled cell adhesion on PEG-based switchable surfaces. Angew Chem Int Ed Engl, 2008. 47(30): p. 5666-8.
[29] Zhang, M., T. Desai, and M. Ferrari, Proteins and cells on PEG immobilized silicon surfaces. Biomaterials, 1998. 19(10): p. 953-960.
[30] Luk, Y.-Y., M. Kato, and M. Mrksich, Self-Assembled Monolayers of Alkanethiolates Presenting Mannitol Groups Are Inert to Protein Adsorption and Cell Attachment. Langmuir, 2000. 16(24): p. 9604-9608.
[31] Ostuni, E., et al., A Survey of Structure−Property Relationships of Surfaces that Resist the Adsorption of Protein. Langmuir, 2001. 17(18): p. 5605-5620.
[32] Leckband, D., S. Sheth, and A. Halperin, Grafted poly(ethylene oxide) brushes as nonfouling surface coatings. Journal of Biomaterials Science, Polymer Edition, 1999. 10(10): p. 1125-1147.
[33] Jiang, S. and Z. Cao, Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater, 2010. 22(9): p. 920-32.
[34] Urakami, H. and Z. Guan, Living Ring-Opening Polymerization of a Carbohydrate-Derived Lactone for the Synthesis of Protein-Resistant Biomaterials. Biomacromolecules, 2008. 9(2): p. 592-597.
[35] Harder, P., et al., Molecular Conformation in Oligo(ethylene glycol)-Terminated Self-Assembled Monolayers on Gold and Silver Surfaces Determines Their Ability To Resist Protein Adsorption. The Journal of Physical Chemistry B, 1998. 102(2): p. 426-436.
[36] Li, L., et al., Protein Adsorption on Oligo(ethylene glycol)-Terminated Alkanethiolate Self-Assembled Monolayers:  The Molecular Basis for Nonfouling Behavior. The Journal of Physical Chemistry B, 2005. 109(7): p. 2934-2941.
[37] McPherson, T., et al., Prevention of Protein Adsorption by Tethered Poly(ethylene oxide) Layers:  Experiments and Single-Chain Mean-Field Analysis. Langmuir, 1998. 14(1): p. 176-186.
[38] Chen, S., et al., Strong Resistance of Phosphorylcholine Self-Assembled Monolayers to Protein Adsorption:  Insights into Nonfouling Properties of Zwitterionic Materials. Journal of the American Chemical Society, 2005. 127(41): p. 14473-14478.
[39] Zhang, Z., S. Chen, and S. Jiang, Dual-Functional Biomimetic Materials:  Nonfouling Poly(carboxybetaine) with Active Functional Groups for Protein Immobilization. Biomacromolecules, 2006. 7(12): p. 3311-3315.
[40] Ratner, B.H., AS., Biomaterials Science - An Introduction to Materials in Medicine. 2004, Elsevier Academic.
[41] Ahn, J.-H., et al., Heterogeneous Three-Dimensional Electronics by Use of Printed Semiconductor Nanomaterials. Science, 2006. 314(5806): p. 1754-1757.
[42] Alivisatos, P., The use of nanocrystals in biological detection. Nat Biotechnol, 2004. 22(1): p. 47-52.
[43] Langer, R., Drugs on Target. Science, 2001. 293(5527): p. 58-59.
[44] Love, J.C., et al., Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chemical Reviews, 2005. 105(4): p. 1103-1170.
[45] Decher, G., Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites. Science, 1997. 277(5330): p. 1232-1237.
[46] Whaley, S.R., et al., Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature, 2000. 405(6787): p. 665-668.
[47] Tamerler, C. and M. Sarikaya, Molecular biomimetics: utilizing nature′s molecular ways in practical engineering. Acta Biomater, 2007. 3(3): p. 289-99.
[48] Barlow, S.M. and R. Raval, Complex organic molecules at metal surfaces: bonding, organisation and chirality. Surface Science Reports, 2003. 50(6-8): p. 201-341.
[49] Schwartz, D.K., MECHANISMS AND KINETICS OF SELF-ASSEMBLED MONOLAYER FORMATION. Annual Review of Physical Chemistry, 2001. 52(1): p. 107-137.
[50] Schreiber, F., Structure and growth of self-assembling monolayers. Progress in Surface Science, 2000. 65(5–8): p. 151-257.
[51] Huang, C.J., Surface ener Engineering. 2013.
[52] http://www.azom.com/article.aspx?ArticleID=11433.
[53] Sanchez, C., H. Arribart, and M.M. Giraud Guille, Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat Mater, 2005. 4(4): p. 277-288.
[54] Munch, E., et al., Tough, Bio-Inspired Hybrid Materials. Science, 2008. 322(5907): p. 1516-1520.
[55] Barrett, J., Photo-oxidation of Magnesium Porphyrins and Formation of Protobiliviolin. Nature, 1967. 215(5102): p. 733-735.
[56] Alben, J.O., et al., Cytochrome oxidase (a3) heme and copper observed by low-temperature Fourier transform infrared spectroscopy of the CO complex. Proceedings of the National Academy of Sciences of the United States of America, 1981. 78(1): p. 234-237.
[57] Waite, J.H. and M.L. Tanzer, Polyphenolic Substance of Mytilus edulis: Novel Adhesive Containing L-Dopa and Hydroxyproline. Science, 1981. 212(4498): p. 1038-1040.
[58] Liang, G., J. Xu, and X. Wang, Synthesis and Characterization of Organometallic Coordination Polymer Nanoshells of Prussian Blue Using Miniemulsion Periphery Polymerization (MEPP). Journal of the American Chemical Society, 2009. 131(15): p. 5378-5379.
[59] Roy, X., et al., Prussian blue nanocontainers: selectively permeable hollow metal-organic capsules from block ionomer emulsion-induced assembly. J Am Chem Soc, 2011. 133(22): p. 8420-3.
[60] Shi, J., L. Zhang, and Z. Jiang, Facile construction of multicompartment multienzyme system through layer-by-layer self-assembly and biomimetic mineralization. ACS Appl Mater Interfaces, 2011. 3(3): p. 881-9.
[61] Wang, X., et al., Metal-organic coordination-enabled layer-by-layer self-assembly to prepare hybrid microcapsules for efficient enzyme immobilization. ACS Appl Mater Interfaces, 2012. 4(7): p. 3476-83.
[62] Ejima, H., et al., One-step assembly of coordination complexes for versatile film and particle engineering. Science, 2013. 341(6142): p. 154-7.
[63] Andjelkovic, M., et al., Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chemistry, 2006. 98(1): p. 23-31.
[64] Clemens, S., Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 2001. 212(4): p. 475-486.
[65] Sileika, T.S., et al., Colorless multifunctional coatings inspired by polyphenols found in tea, chocolate, and wine. Angew Chem Int Ed Engl, 2013. 52(41): p. 10766-70.
[66] Huang, C.J., et al., Developing antifouling biointerfaces based on bioinspired zwitterionic dopamine through pH-modulated assembly. Langmuir, 2014. 30(42): p. 12638-46.
[67] Kolaylı, S., et al., Does caffeine bind to metal ions? Food Chemistry, 2004. 84(3): p. 383-388.
[68] Theis, T.L. and P.C. Singer, Complexation of iron(II) by organic matter and its effect on iron(II) oxygenation. Environmental Science & Technology, 1974. 8(6): p. 569-573.
[69] Iffat, A.T., et al., Interaction of tannic acid with higher oxidation state of iron. Journal of the Chemical Society of Pakistan, 2004. 26(2): p. 151-156.
[70] Sungur, S. and A. Uzar, Investigation of complexes tannic acid and myricetin with Fe(III). Spectrochim Acta A Mol Biomol Spectrosc, 2008. 69(1): p. 225-9.
[71] Mori, T., et al., Tannic acid is a natural beta-secretase inhibitor that prevents cognitive impairment and mitigates Alzheimer-like pathology in transgenic mice. J Biol Chem, 2012. 287(9): p. 6912-27.
[72] Ross, T.K. and R.A. Francis, The treatment of rusted steel with mimosa tannin. Corrosion Science, 1978. 18(4): p. 351-361.
[73] Cao, G., E. Sofic, and R.L. Prior, Antioxidant and Prooxidant Behavior of Flavonoids: Structure-Activity Relationships. Free Radical Biology and Medicine, 1997. 22(5): p. 749-760.
[74] Hider, R.C., Z.D. Liu, and H.H. Khodr, Metal chelation of polyphenols, in Methods in Enzymology. 2001, Academic Press. p. 190-203.
[75] Pearson, R.G., Hard and Soft Acids and Bases. Journal of the American Chemical Society, 1963. 85(22): p. 3533-3539.
[76] Lindberg, B., et al., ESCA Studies of heparinized and related surfaces. Journal of Colloid and Interface Science, 1983. 95(2): p. 308-321.
[77] Baio, J.E., et al., Amine terminated SAMs: Investigating why oxygen is present in these films. Journal of Electron Spectroscopy and Related Phenomena, 2009. 172(1–3): p. 2-8.
[78] Gu, H., et al., Heterodimers of nanoparticles: formation at a liquid-liquid interface and particle-specific surface modification by functional molecules. J Am Chem Soc, 2005. 127(1): p. 34-5.
[79] Booth, A., Controlled release of active compounds from a magnetic nanoparticle-vesicle aggregate nanomaterial, in Engineering and Physical Sciences. 2014, Manchester.
[80] Zhang J.Y., Z.H., Tang J., Zhan L.Z., Song Z.P., Zhou Y.H. and Zhan C.M., Thioether Bond Containing Polymers as Novel Cathode Active Materials for Rechargeable Lithium Batteries, in Energy Storage in the Emerging Era of Smart Grids, R. Carbone, Editor. 2011.
[81] Angelova, P., et al., Chemisorbed monolayers of corannulene penta-thioethers on gold. Langmuir, 2013. 29(7): p. 2217-23.
指導教授 黃俊仁(Chun-Jen Haung) 審核日期 2016-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明