參考文獻 |
[1] Allport, G. W., & Postman, L. (1946). An analysis of rumor. Public Opinion Quarterly, 10(4), 501-517.
[2] Allport, G. W., & Postman, L. (1947). The psychology of rumor.
[3] Basuroy, S., Chatterjee, S., & Ravid, S. A. (2003). How critical are critical reviews? The box office effects of film critics, star power, and budgets. Journal of marketing, 67(4), 103-117.
[4] Brown, G., Wyatt, J., Harris, R., & Yao, X. (2005). Diversity creation methods: a survey and categorisation. Information Fusion, 6(1), 5-20.
[5] Chevalier, J. A., & Mayzlin, D. (2006). The effect of word of mouth on sales: Online book reviews. Journal of marketing research, 43(3), 345-354.
[6] Competeinc.(2006):Embracing Consumer Buzz Creates Measurement Challenges for Marketers. 2006年12月,取自 http://class.classmatandread.net/am1/Buzz.pdf
[7] Da Silva, N. F., Hruschka, E. R., & Hruschka, E. R. (2014). Tweet sentiment analysis with classifier ensembles. Decision Support Systems, 66, 170-179.
[8] Dietterich, T. G. (2000). Ensemble methods in machine learning. In Multiple classifier systems (pp. 1-15). Springer Berlin Heidelberg.
[9] Elliott, C. (2006). New risk in travel: fake hotel ratings. International Herald Tribune, February, 8, 2006.
[10] eMarketer.(2013):Users Seek Out the Truth in Online Reviews. 2013年2月7日,取自 http://www.emarketer.com/Article/Users-Seek-Truth-Online-Reviews/1009656
[11] eMarketers.(2014):Consumers Read More Local Online Reviews—Thanks to Rumors of Fakes? 2014年8月6日,取自http://www.emarketer.com/Article/Consumers-Read-More-Local-Online-ReviewsThanks-Rumors-of-Fakes/1011078
[12] eMarketers.(2015):Online Reviews Influence Travel-Related Purchases in the UK. 2015年6月29日,取自http://www.emarketer.com/Article/Online-Reviews-Influence-Travel-Related-Purchases-UK/1012664
[13] Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., & Uthurusamy, R. (1996). Advances in knowledge discovery and data mining.
[14] Feldman, R., & Dagan, I. (1995, August). Knowledge Discovery in Textual Databases (KDT). In KDD (Vol. 95, pp. 112-117).
[15] Feng, S., Banerjee, R., & Choi, Y. (2012, July). Syntactic stylometry for deception detection. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Short Papers-Volume 2 (pp. 171-175). Association for Computational Linguistics.
[16] Gretzel, U., & Yoo, K. H. (2008). Use and impact of online travel reviews.Information and communication technologies in tourism 2008, 35-46.
[17] Hancock, J. T., Curry, L., Goorha, S., & Woodworth, M. (2005, January). Automated linguistic analysis of deceptive and truthful synchronous computer-mediated communication. In System Sciences, 2005. HICSS′05. Proceedings of the 38th Annual Hawaii International Conference on (pp. 22c-22c). IEEE.
[18] Hearst, M. A. (1997, July). Text data mining: Issues, techniques, and the relationship to information access. In Presentation notes for UW/MS workshop on data mining (pp. 112-117).
[19] Hospitality Marketing.(2014):How Online Hotel Reviews Affect Booking Decisions: The Research, Stats, Viewpoints & Strategies. 2014年12月5日,取自http://hospitality.cvent.com/blog/cvb-internet-marketing-2/how-online-hotel-reviews-affect-booking-decisions-the-research-stats-viewpoints-strategies
[20] Hu, N., Liu, L., & Sambamurthy, V. (2011). Fraud detection in online consumer reviews. Decision Support Systems, 50(3), 614-626.
[21] International student .(2013):Hospitality Industry. 2013年1月,取自http://blog.internationalstudent.com/2013/01/hospitality-industry/
[22] Jindal, N., & Liu, B. (2007, October). Analyzing and detecting review spam. InData Mining, 2007. ICDM 2007. Seventh IEEE International Conference on (pp. 547-552). IEEE.
[23] Jindal, N., & Liu, B. (2008, February). Opinion spam and analysis. InProceedings of the 2008 International Conference on Web Search and Data Mining (pp. 219-230). ACM.
[24] Jing, L. P., Huang, H. K., & Shi, H. B. (2002). Improved feature selection approach TFIDF in text mining. In Machine Learning and Cybernetics, 2002. Proceedings. 2002 International Conference on (Vol. 2, pp. 944-946). IEEE.
[25] Kantardzic, M. (2011). Data mining: concepts, models, methods, and algorithms. John Wiley & Sons.
[26] Kapferer, J. N. (2013). Rumors: Uses, interpretations, and images. Transaction Publishers.
[27] Kohonen, T., Schroeder, M. R., Huang, T. S., & Maps, S. O. (2001). Springer-Verlag New York. Inc., Secaucus, NJ, 43.
[28] Krogh, A., & Vedelsby, J. (1995). Neural network ensembles, cross validation, and active learning. Advances in neural information processing systems, 7, 231-238.
[29] Kuncheva, L. I. (2004). Combining pattern classifiers: methods and algorithms. John Wiley & Sons.
[30] Kuncheva, L. I., & Whitaker, C. J. (2003). Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine learning, 51(2), 181-207.
[31] Lee, D., Kim, H. S., & Kim, J. K. (2012). The role of self-construal in consumers’ electronic word of mouth (eWOM) in social networking sites: A social cognitive approach. Computers in Human Behavior, 28(3), 1054-1062.
[32] Leopold, E., & Kindermann, J. (2002). Text categorization with support vector machines. How to represent texts in input space?. Machine Learning, 46(1-3), 423-444.
[33] Litvin, S. W., Goldsmith, R. E., & Pan, B. (2008). Electronic word-of-mouth in hospitality and tourism management. Tourism management, 29(3), 458-468.
[34] Losiewicz, P., Oard, D. W., & Kostoff, R. N. (2000). Textual data mining to support science and technology management. Journal of Intelligent Information Systems, 15(2), 99-119.
[35] Mihalcea, R., & Strapparava, C. (2009, August). The lie detector: Explorations in the automatic recognition of deceptive language. In Proceedings of the ACL-IJCNLP 2009 Conference Short Papers (pp. 309-312). Association for Computational Linguistics.
[36] Mowen, J. C., & Minor M. (1990). Consumer Behavior, 2nd Macmilliam.
[37] Mukherjee, A., Venkataraman, V., Liu, B., & Glance, N. (2013). Fake review detection: Classification and analysis of real and pseudo reviews. UIC-CS-03-2013. Technical Report.
[38] Mukherjee, A., Venkataraman, V., Liu, B., & Glance, N. S. (2013, July). What yelp fake review filter might be doing?. In ICWSM.
[39] Ott, M., Choi, Y., Cardie, C., & Hancock, J. T. (2011, June). Finding deceptive opinion spam by any stretch of the imagination. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1 (pp. 309-319). Association for Computational Linguistics.
[40] Overnight-success.(2014):Survey: How Travelers Use Online Hotel Reviews. 2014年6月11日,取自http://overnight-success.softwareadvice.com/survey-how-travelers-use-online-hotel-reviews-0614/
[41] Reiter, C. (2007). Travel Web sites clamp down on bogus reviews. International Herald Tribune, 16(2), 2007.
[42] Rosnow, R. L. (1980). Psychology of rumor reconsidered.
[43] Schindler, R. M., & Bickart, B. (2005). Published word of mouth: Referable, consumer-generated information on the Internet. Online consumer psychology: Understanding and influencing consumer behavior in the virtual world, 32.
[44] Schlosser, A. E. (2005). Source Perceptions and the Persuasiveness of Internet World-of-Mouth Communication. Advances in Consumer Research, 32, 202.
[45] Shibutani, T. (1966). Improvised news: A sociological study of rumor. Ardent Media.
[46] Simoudis, E. (1996). Reality check for data mining. IEEE Intelligent Systems, (5), 26-33.
[47] Sullivan, D. (2001). Document warehousing and text mining: techniques for improving business operations, marketing, and sales. John Wiley & Sons, Inc..
[48] Tan, A. H. (1999, April). Text mining: The state of the art and the challenges. In Proceedings of the PAKDD 1999 Workshop on Knowledge Disocovery from Advanced Databases (Vol. 8, pp. 65-70).
[49] Techcrunch.(2015):Amazon Files Suit Against Individuals Offering Fake Product Reviews On Fiverr.com. 2015年10月16日,取自http://techcrunch.com/2015/10/16/amazon-files-suit-against-individuals-offering-fake-product-reviews-on-fiverr-com/
[50] TEDxTaipei.(2015):噓 有人在說謊!當別人說的話裡出現這四個特徵,小心你已經被騙了! 2015年7月24日,取自http://tedxtaipei.com/articles/the_language_of_lying/
[51] Tumer, K., & Ghosh, J. (1996). Error correlation and error reduction in ensemble classifiers. Connection science, 8(3-4), 385-404.
[52] Wu, G., Greene, D., Smyth, B., & Cunningham, P. (2010, July). Distortion as a validation criterion in the identification of suspicious reviews. In Proceedings of the First Workshop on Social Media Analytics (pp. 10-13). ACM.
[53] Xia, R., Zong, C., & Li, S. (2011). Ensemble of feature sets and classification algorithms for sentiment classification. Information Sciences, 181(6), 1138-1152.
[54] Yoo, K. H., & Gretzel, U. (2009). Comparison of deceptive and truthful travel reviews. Information and communication technologies in tourism 2009, 37-47.
[55] Zhou, L., & Sung, Y. W. (2008, January). Cues to deception in online Chinese groups. In Hawaii international conference on system sciences, proceedings of the 41st annual (pp. 146-146). IEEE.
[56] Zhou, Z. H. (2012). Ensemble methods: foundations and algorithms. CRC Press.
[57] 曾元顯. (1997). 關鍵詞自動擷取技術之探討. 中國圖書館學會, 會訊, (106).
[58] 黃愛萍(2002):網路謠言傳播型態的初探。2002年5月14日,取自 http://www.zijin.net/06masters/huangaiping/2001/1/net%20rumor.htm
[59] 電子商務網.(2016):每一筆評論都重要,線上評論影響消費者線下購買決策。 2016年3月28日,取自https://www.smartm.com.tw/article/32313739cea3
[60] 林美玉. (2015). 識別攻擊評論之研究-以旅館業為例. 中央大學企業管理學系學位論文, 1-36.
[61] 張甜. (2014). 辨別虛假評論之研究-以旅館業為例. 中央大學企業管理學系學位論文, 1-38.
[62] 鄭若麟, & 邊芹. (1992). 謠言. Kapferer, JN (1990). Rumors: uses, interpretations, and images, New Brunswick: Transaction Publishers. |