博碩士論文 103421058 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:18.216.250.143
姓名 翁詩韻(ONG SHI YUN)  查詢紙本館藏   畢業系所 企業管理學系
論文名稱 微網誌使用者週中日的發文情緒對產品推薦效果之影響
(The Impact of User Sentiment aroused by The-Day-Of-The-Week on the Recommendation Effectiveness in Microblog)
相關論文
★ 在社群網站上作互動推薦及研究使用者行為對其效果之影響★ 以AHP法探討伺服器品牌大廠的供應商遴選指標的權重決定分析
★ 以AHP法探討智慧型手機產業營運中心區位選擇考量關鍵因素之研究★ 太陽能光電產業經營績效評估-應用資料包絡分析法
★ 建構國家太陽能電池產業競爭力比較模式之研究★ 以序列採礦方法探討景氣指標與進出口值的關聯
★ ERP專案成員組合對績效影響之研究★ 推薦期刊文章至適合學科類別之研究
★ 品牌故事分析與比較-以古早味美食產業為例★ 以方法目的鏈比較Starbucks與Cama吸引消費者購買因素
★ 探討創意店家創業價值之研究- 以赤峰街、民生社區為例★ 以領先指標預測企業長短期借款變化之研究
★ 應用層級分析法遴選電競筆記型電腦鍵盤供應商之關鍵因子探討★ 以互惠及利他行為探討信任關係對知識分享之影響
★ 結合人格特質與海報主色以類神經網路推薦電影之研究★ 資料視覺化圖表與議題之關聯
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 自社群網站興起後,在虛擬世界交流的人數驟增。其中的微網誌平台因使用者發文簡短、方便且容易吸引關注者回應,而累積了龐大的資料量。然而如何利用這些含有情緒成分的大量訊息,並結合人們在一週中的不同日子表現的不同情緒,有效推薦可能投合他們所需產品或服務的相關研究付之闕如。
本研究根據情緒詞庫,採擷微網誌Plurk使用者發文中的情緒成分,並設計自動回覆機器人,推薦帶有正、負情緒字詞的產品,然後透過T檢定,探討使用者在各週中日不同的情緒成分以及對應的推薦效果。
實驗結果發現,Plurk使用者星期一發文顯著呈現強烈負情緒,星期五到星期日發文則顯著呈現強烈正情緒。但星期一和星期六,推測因趨避理論而使得帶有正情緒字詞的產品推薦效果顯著優於負情緒字詞。星期五白天可能因連續工作五天而處於壓抑的情緒,使得帶有負情緒字詞的產品推薦效果好,晚上獲得真正放鬆後則是正情緒字詞產品的推薦效果較佳。星期日或許受到隔日要上班的影響,以負情緒字詞推薦產品獲得的點擊數顯著高於正情緒字詞產品。
這些實驗結果有助於行銷商了解與掌握潛在目標顧客的情緒變化,並以不同的情緒字詞描述所銷售的產品或服務,投合他們當下的情緒,引起他們最大的興趣,以提高產品推薦的效果,進而增進營業收益。
摘要(英) With the rise of social networking sites, microblogging has become an increasingly popular platform for users to post their views and comments online due to the ease of posting and replying. This generated an abundance of sentiment database which could be used to study the-day-of-the-week sentiment patterns of users. However, previous studies never focus on this phenomenon to recommend products or services.
In this study, we adopted sentiment database to extract sentiment expressions from the posted Plurk messages to investigate whether there are sentiment fluctuations in the days of a week and if there are opportunities to use the-day-of-the-week sentiment patterns to maximize the effectiveness of sentiment-based product recommendation.
The experimental results showed that users’ posts are significantly strong negative on Monday and strong positive on Friday, Saturday, and Sunday. We speculate that the recommended products with positive sentiment words were more effective during Monday and Saturday because of the approach-avoidance motivation. People would usually have negative sentiment after 5 days continuous work during Friday working hours, so that recommended products with negative sentiment words are more effective. Whereas on Friday night the positive sentiment increased after off duty, and caused the recommendation products with positive sentiment words more effective. Negative sentiment on Sunday due to the coming blue Monday may cause negative sentiment recommendations more effective.
This study is helpful for marketers to employ sentiment-based recommendation and determine how to focus their limited financial resources to appeal to the most likely interested in customers based on their sentiment patterns and thus maximize sales revenue.
關鍵字(中) ★ 社群網站
★ 微網誌
★ 情緒字詞
★ 週中日
關鍵字(英) ★ social network
★ microblog
★ sentiment word
★ Plurk
★ the-day-of-the-week
論文目次 中文摘要 i
Abstract ii
目錄 iii
表目錄 v
圖目錄 vi
第一章 緒論 1
1-1研究背景與動機 1
1-2研究目的 3
1-3研究架構 4
第二章 文獻探討 6
2-1社群網站平台及其應用 6
2-2情緒分析與應用 7
2-3週中日效應(The-day-of-the-week effect) 9
2-4情緒字詞來源 11
第三章 研究方法 12
3-1 Plurk微網誌社群網路 12
3-2實驗設計 13
3-3系統推薦方法 14
3-4研究假設 18
3-5變數定義及操作性定義(operational definition) 21
3-6分析方法 23
第四章 研究實作 24
4-1資料分析 24
4-1-1 資料前處理 24
4-1-2 實驗結果 24
4-1-3 假設結果討論 34
第五章 管理與實務意涵 36
第六章 結論與未來研究建議 38
6-1結論 38
6-2研究限制及未來研究建議 39
參考文獻 40
附錄一:218個情緒描述詞的正負向度分數(部分示例) 48
附錄二:395個情緒誘發詞的正負向度分數(部分示例) 49
參考文獻 [1] 吳明隆.(2009). SPSS操作與應用-問卷統計設計分析實務:五南出版.
[2] 張春興. (1991). 現代心理學: 現代人研究自身問題的科學. 臺灣東華.
[3] 陳建中, 卓淑玲, & 曾榮瑜. (2013). 台灣地區華人情緒與相關心理生理資料庫—專業表演者臉部表情常模資料. Chinese Journal of Psychology, 55(4), 439-454.
[4] 顏乃欣. 情緒對決策歷程的影響. 人文與社會科學簡訊,心理學前瞻研究 2010年9月,11卷4期. 113.
[5] 中時電子報.(2015). 研究:週一11時最憂鬱2點心情才好。取自於2015年10月12日,從 http://www.chinatimes.com/realtimenews/20151012003541-260408
[6] 東森新聞(2016). 打入正妹的內心世界?鄉民神解:抒壓的Plurk是關鍵。取自於2016年1月20日,從 http://www.ettoday.net/news/20160120/634107.htm
[7] Aggarwal, R., & Rivoli, P. (1989). Seasonal and day‐of‐the‐week effects in four emerging stock markets. Financial review, 24(4), 541-550.
[8] Bai, S.-W(2013)考量時間因素的微網誌上產品推薦之研究; Recommendations via short messages with time factors. 2013.
[9] Bakshy, E., Hofman, J. M., Mason, W. A., & Watts, D. J. (2011, February). Everyone′s an influencer: quantifying influence on twitter. InProceedings of the fourth ACM international conference on Web search and data mining, ACM, 65-74.
[10] Banerjee, N., Chakraborty, D., Dasgupta, K., Mittal, S., Joshi, A., Nagar, S., ... & Madan, S. (2009, November). User interests in social media sites: an exploration with micro-blogs. In Proceedings of the 18th ACM conference on Information and knowledge management, ACM, 1823-1826.
[11] Baumeister, R. F., Vohs, K. D., DeWall, C. N., & Zhang, L. (2007). How emotion shapes behavior: Feedback, anticipation, and reflection, rather than direct causation. Personality and Social Psychology Review, 11(2), 167-203.
[12] Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market.Journal of Computational Science, 2(1), 1-8.
[13] Chang, P. S., Ting, I. H., & Wang, S. L. (2011). Towards social recommendation system based on the data from microblogs. In Advances in Social Networks Analysis and Mining (ASONAM), 2011 International Conference on. IEEE.672-677.
[14] Chen, M., & Bargh, J. A. (1999). Consequences of automatic evaluation: Immediate behavioral predispositions to approach or avoid the stimulus. Personality and social psychology bulletin, 25(2), 215-224.
[15] Chen, Y. L., Cheng, L. C., & Chuang, C. N. (2008). A group recommendation system with consideration of interactions among group members. Expert systems with applications, 34(3), 2082-2090.
[16] Chiu, C. M., Hsu, M. H., & Wang, E. T. (2006). Understanding knowledge sharing in virtual communities: An integration of social capital and social cognitive theories.Decision support systems, 42(3), 1872-1888.
[17] Christensen, I. A., & Schiaffino, S. (2011). Entertainment recommender systems for group of users. Expert Systems with Applications, 38(11), 14127-14135.
[18] Christie, M. J., & Venables, P. H. (1973). Mood changes in relation to age, EPI scores, time and day. British Journal of Social and Clinical Psychology, 12(1), 61-72.
[19] Cross, F. (1973). The behavior of stock prices on Fridays and Mondays. Financial analysts journal, 29(6), 67-69.
[20] Dellarocas, C., Zhang, X. M., & Awad, N. F. (2007). Exploring the value of online product reviews in forecasting sales: The case of motion pictures. Journal of Interactive marketing, 21(4), 23-45.
[21] Dhar, V., & Chang, E. A. (2009). Does chatter matter? The impact of user-generated content on music sales. Journal of Interactive Marketing, 23(4), 300-307.
[22] Dong, R., Schaal, M., O’Mahony, M. P., McCarthy, K., & Smyth, B. (2013). Opinionated product recommendation. InCase-Based Reasoning Research and Development, 44-58. Springer Berlin Heidelberg.
[23] Drever, J. (1952). A dictionary of psychology.
[24] Elliot, A. J., & Thrash, T. M. (2002). Approach-avoidance motivation in personality: approach and avoidance temperaments and goals. Journal of personality and social psychology, 82(5), 804.
[25] Esparza, S. G., O’Mahony, M. P., & Smyth, B. (2012). Mining the real-time web: a novel approach to product recommendation.Knowledge-Based Systems, 29, 3-11.
[26] Farber, M. L. (1953). Time-perspective and feeling-tone: A study in the perception of the days. The Journal of Psychology, 35(2), 253-257.
[27] Fontaine, J. R., Scherer, K. R., Roesch, E. B., & Ellsworth, P. C. (2007). The world of emotions is not two-dimensional.Psychological science, 18(12), 1050-1057.
[28] Fredrickson, B. L. (1998). What good are positive emotions?. Review of general psychology, 2(3), 300.
[29] French, K. R. (1980). Stock returns and the weekend effect. Journal of financial economics, 8(1), 55-69.
[30] Froggatt, P. (1970). Short-term absence from industry: I Literature, definitions, data, and the effect of age and length of service. British Journal of Industrial Medicine, 27(3), 199-210.
[31] Galati, D., Sini, B., Tinti, C., & Testa, S. (2008). The lexicon of emotion in the neo-Latin languages. Social science information,47(2), 205-220.
[32] Gibbons, M. R., & Hess, P. (1981). Day of the week effects and asset returns. Journal of business, 579-596.
[33] Glance, N., Hurst, M., & Tomokiyo, T. (2004, May). Blogpulse: Automated trend discovery for weblogs. In WWW 2004 workshop on the weblogging ecosystem: Aggregation, analysis and dynamics (Vol. 2004).
[34] Gondhalekar, V., & Mehdian, S. (2003). The Blue-Monday Hypothesis: Evidence Based on Nasdaq Stocks, 1971-2000. Quarterly Journal of Business and Economics, 73-89.
[35] Guo, J., Zhang, P., & Guo, L. (2012). Mining hot topics from Twitter streams. Procedia Computer Science, 9, 2008-2011.
[36] Hill, S., Provost, F., & Volinsky, C. (2006). Network-based marketing: Identifying likely adopters via consumer networks. Statistical Science, 256-276.
[37] Izard, C. E. (1991). The psychology of emotions. Springer Science & Business Media.
[38] Jacobs, B. I., & Levy, K. N. (1988). Calendar anomalies: Abnormal returns at calendar turning points. Financial Analysts Journal,44(6), 28-39.
[39] K. T. Strongman, 游恒山譯(1993).情緒心理學(第三版):五南圖書出版.
[40] Kamara, A. (1997). New evidence on the Monday seasonal in stock returns. Journal of Business, 63-84.
[41] Keim, D. B., & Stambaugh, R. F. (1984). A further investigation of the weekend effect in stock returns. The journal of finance, 39(3), 819-835.
[42] Kim, H., Suh, K. S., & Lee, U. K. (2013). Effects of collaborative online shopping on shopping experience through social and relational perspectives. Information & Management, 50(4), 169-180.
[43] Kiss, C., & Bichler, M. (2008). Identification of influencers—measuring influence in customer networks. Decision Support Systems, 46(1), 233-253.
[44] Lang, A. (2006). Using the limited capacity model of motivated mediated message processing to design effective cancer communication messages. Journal of Communication, 56(s1), S57-S80.
[45] Lazarus, R. S. (1975). A cognitively oriented psychologist looks at biofeedback. American Psychologist, 30(5), 553.
[46] Li, F., & Du, T. C. (2011). Who is talking? An ontology-based opinion leader identification framework for word-of-mouth marketing in online social blogs. Decision Support Systems, 51(1), 190-197.
[47] Li, Y. M., & Shiu, Y. L. (2012). A diffusion mechanism for social advertising over microblogs. Decision Support Systems,54(1), 9-22.
[48] Liao, D-H. (2015). Microblog User Emotion and its Impact on the Recommendation Effectiveness. 2015.

[49] Logunov, A., & Panchenko, V. (2011). Characteristics and predictability of Twitter sentiment series. In 19th International COngress on Modelling and Simulation, 1617-1623.
[50] Markese, J. (1989). Stock market anomalies: Folklore that may not be myth. American Association of Individual Investors Journal,11, 30-33.
[51] McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks. Annual review of sociology, 415-444.
[52] Mishne, G., & Glance, N. S. (2006, March). Predicting Movie Sales from Blogger Sentiment. In AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs, 155-158.
[53] Ng, C. S. P. (2013). Intention to purchase on social commerce websites across cultures: A cross-regional study. Information & management, 50(8), 609-620.
[54] O′Connor, B., Balasubramanyan, R., Routledge, B. R., & Smith, N. A. (2010). From Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series. ICWSM,11(122-129), 1-2.
[55] O′Mahony, M. P., & Smyth, B. (2009, October). Learning to recommend helpful hotel reviews. In Proceedings of the third ACM conference on Recommender systems. ACM. 305-308
[56] Pang, B., Lee, L., & Vaithyanathan, S. (2002, July). Thumbs up?: sentiment classification using machine learning techniques. InProceedings of the ACL-02 conference on Empirical methods in natural language processing-Volume 10 (pp. 79-86). Association for Computational Linguistics.
[57] Patel, J. M., & Wolfson, M. A. (1982). Good news, bad news, and the intraday timing of corporate disclosure. The Accounting Review, 57, 509-527.
[58] Pecjak, V. (1970). Verbal synesthesiae of colors, emotions, and days of the week.Journal of verbal learning and verbal behavior, 9(6), 623-626.
[59] Penman, S. H. (1987). The distribution of earnings news over time and seasonalities in aggregate stock returns. Journal of Financial Economics, 18(2), 199-228.
[60] Peter Pomerantsev. (2015). Nothing is True and Everything is possible: Abventures in Modern: Faber & Faber; Main edition (10 Dec. 2015)
[61] Pettengill, G. N. (1994). An experimental study of the “blue-Monday” hypothesis. The Journal of Socio-Economics, 22(3), 241-257.
[62] Phelan, O., McCarthy, K., & Smyth, B. (2009, October). Using twitter to recommend real-time topical news. In Proceedings of the third ACM conference on Recommender systems. ACM. 385-388
[63] Roblyer, M. D., McDaniel, M., Webb, M., Herman, J., & Witty, J. V. (2010). Findings on Facebook in higher education: A comparison of college faculty and student uses and perceptions of social networking sites. The Internet and higher education, 13(3), 134-140.
[64] Rogalski, R. J. (1984). New findings regarding day‐of‐the‐week returns over trading and non‐trading periods: a note. The Journal of Finance, 39(5), 1603-1614.
[65] Rogalski, R. J. (1984). New findings regarding day‐of‐the‐week returns over trading and non‐trading periods: a note. The Journal of Finance, 39(5), 1603-1614.
[66] Rossi, A. S., & Rossi, P. E. (1977). Body time and social time: Mood patterns by menstrual cycle phase and day of the week. Social Science Research, 6(4), 273-308.
[67] Russell, J. A. (1983). Pancultural aspects of the human conceptual organization of emotions. Journal of personality and social psychology, 45(6), 1281.
[68] Rystrom, D. S., & Benson, E. D. (1989). Investor psychology and the day-of-the-week effect. Financial Analysts Journal, 45(5), 75-78.
[69] Schumaker, R. P., Zhang, Y., Huang, C. N., & Chen, H. (2012). Evaluating sentiment in financial news articles. Decision Support Systems, 53(3), 458-464.
[70] Schwarz, N., & Clore, G. L. (1996). Feelings and phenomenal experiences. Social psychology: Handbook of basic principles, 2, 385-407.
[71] Smith, C. A., & Ellsworth, P. C. (1985). Patterns of cognitive appraisal in emotion.Journal of personality and social psychology,48(4), 813.
[72] Sprenger, T. O., Tumasjan, A., Sandner, P. G., & Welpe, I. M. (2014). Tweets and trades: The information content of stock microblogs. European Financial Management, 20(5), 926-957.
[73] Stone, A. A., Hedges, S. M., Neale, J. M., & Satin, M. S. (1985). Prospective and cross-sectional mood reports offer no evidence of a" blue Monday" phenomenon. Journal of Personality and Social Psychology, 49(1), 129.
[74] Thelwall, M., Buckley, K., & Paltoglou, G. (2011). Sentiment in Twitter events. Journal of the American Society for Information Science and Technology, 62(2), 406-418.
[75] Ting, I. H., Chang, P. S., & Wang, S. L. (2012). Understanding Microblog Users for Social Recommendation Based on Social Networks Analysis. J. UCS, 18(4), 554-576.
[76] Tomkins, S. S. (1962). Affect, imagery, consciousness: Vol. I. The positive affects.
[77] Tumasjan, A., Sprenger, T. O., Sandner, P. G., & Welpe, I. M. (2010). Predicting elections with twitter: What 140 characters reveal about political sentiment. ICWSM, 10, 178-185.
[78] Turney, P. D. (2002, July). Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews. InProceedings of the 40th annual meeting on association for computational linguistics (pp. 417-424). Association for Computational Linguistics.
[79] Van den Bulte, C., & Wuyts, S. H. K. (2007). Social networks in marketing. MSI Relevant Knowledge Series.
[80] Venables, P. H., & Christie, M. J. (1974). Neuroticism, physiological state and mood: An exploratory study of Friday/Monday changes. Biological psychology, 1(3), 201-211.
[81] Wang, K. Y., Ting, I. H., & Wu, H. J. (2013). Discovering interest groups for marketing in virtual communities: An integrated approach.Journal of Business Research, 66(9), 1360-1366.
[82] Wegener, D. T., & Petty, R. E. (1994). Mood management across affective states: the hedonic contingency hypothesis. Journal of personality and social psychology, 66(6), 1034.
[83] Westbrook, R. A. (1987). Product/consumption-based affective responses and postpurchase processes.Journal of marketing research, 258-270.
[84] Zhu, F., & Zhang, X. (2010). Impact of online consumer reviews on sales: The moderating role of product and consumer characteristics.Journal of marketing, 74(2), 133-148.
指導教授 許秉瑜 審核日期 2016-6-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明