參考文獻 |
1. H. W. Kroto, A. W. Allaf, and S. P. Balm, "C60 - Buckminsterfullerene," Chem. Rev. 91, 1213-1235 (1991).
2. S. Iijima, "Helical Microtubules Of Graphitic Carbon," Nature 354, 56-58 (1991).
3. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science 306, 666-669 (2004).
4. A. K. Geim, and K. S. Novoselov, "The rise of graphene," Nat. Mater. 6, 183-191 (2007).
5. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Rev. Mod. Phys. 81, 109-162 (2009).
6. C. Bena, and G. Montambaux, "Remarks on the tight-binding model of graphene," New J. Phys. 11, 15 (2009).
7. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, "Fine structure constant defines visual transparency of graphene," Science 320, 1308-1308 (2008).
8. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, "Ultrahigh electron mobility in suspended graphene," Solid State Commun. 146, 351-355 (2008).
9. H.M.Lv,H.Q.Wu,J.B.Liu,J.H.Yu,J.B.Niu,J.F.Li,Q.X.Xu,X.M.Wu, and H. Qian, "High carrier mobility in suspended-channel graphene field effect transistors," Appl. Phys. Lett. 103, 4 (2013).
10. E. Y. Andrei, G. H. Li, and X. Du, "Electronic properties of graphene: a perspective from scanning tunneling microscopy and magnetotransport," Rep. Prog. Phys. 75, 47 (2012).
11. S.Stankovich,D.A.Dikin,R.D.Piner,K.A.Kohlhaas,A.Kleinhammes,Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide," Carbon 45, 1558-1565 (2007).
12. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, "The chemistry of graphene oxide," Chem. Soc. Rev. 39, 228-240 (2010).
13. R. Trusovas, K. Ratautas, G. Raciukaitis, J. Barkauskas, I. Stankeviciene, G. Niaura, and R. Mazeikiene, "Reduction of graphite oxide to graphene with laser irradiation," Carbon 52, 574-582 (2013).
14. S. Thakur, and N. Karak, "Green reduction of graphene oxide by aqueous phytoextracts," Carbon 50, 5331-5339 (2012).
15. J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, and S. Guo, "Reduction of graphene oxide via L-ascorbic acid," Chemical Communications 46, 1112-1114 (2010).
16. C. Celebi, C. Yanik, A. G. Demirkol, and Kaya, II, "The effect of a SIC cap on the growth of epitaxial graphene on SIC in ultra high vacuum," Carbon 50, 3026-3031 (2012).
17. Z. Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, and J. M. Tour, "Growth of graphene from solid carbon sources," Nature 468, 549-552 (2010).
18. X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," Science 324, 1312-1314 (2009).
19. M. Losurdo, M. M. Giangregorio, P. Capezzuto, and G. Bruno, "Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure," Physical Chemistry Chemical Physics 13, 20836-20843 (2011).
20. D. B. Williams, and C. B. Carter, The transmission electron microscope (Springer, 1996).
21. J. C. Meyer, A. K. Geim, M. Katsnelson, K. Novoselov, T. Booth, and S. Roth, "The structure of suspended graphene sheets," Nature 446, 60-63 (2007).
22. P. Y. Huang, C. S. Ruiz-Vargas, A. M. van der Zande, W. S. Whitney, M. P. Levendorf, J. W. Kevek, S. Garg, J. S. Alden, C. J. Hustedt, and Y. Zhu, "Grains and grain boundaries in single-layer graphene atomic patchwork quilts," Nature 469, 389-392 (2011).
23. Z. Liu, Y.-C. Lin, C.-C. Lu, C.-H. Yeh, P.-W. Chiu, S. Iijima, and K. Suenaga, "In situ observation of step-edge in-plane growth of graphene in a STEM," Nature communications 5 (2014).
24. I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres, and S. Smirnov, "Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene," Acs Nano 5, 6069-6076 (2011).
25. J.-H. Lee, E. K. Lee, W.-J. Joo, Y. Jang, B.-S. Kim, J. Y. Lim, S.-H. Choi, S. J. Ahn, J. R. Ahn, and M.-H. Park, "Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium," Science 344, 286-289 (2014).
26. X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, "Chemically derived, ultrasmooth graphene nanoribbon semiconductors," Science 319, 1229-1232(2008).
27. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, "Improved synthesis of graphene oxide," ACS nano 4, 4806-4814 (2010).
28. P. Lauffer, K. Emtsev, R. Graupner, T. Seyller, L. Ley, S. Reshanov, and H. Weber, "Atomic and electronic structure of few-layer graphene on SiC (0001) studied with scanning tunneling microscopy and spectroscopy," Physical Review B 77, 155426 (2008).
29. C. Jia, J. Jiang, L. Gan, and X. Guo, "Direct optical characterization of graphene growth and domains on growth substrates," Scientific reports 2 (2012). 30. A. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoselov, and S. Roth, "Raman spectrum of graphene and graphene layers," Physical review letters 97, 187401 (2006).
31. A. C. Ferrari, and D. M. Basko, "Raman spectroscopy as a versatile tool for studying the properties of graphene," Nature nanotechnology 8, 235-246 (2013). 32. P. Venezuela, M. Lazzeri, and F. Mauri, "Theory of double-resonant Raman spectra in graphene: Intensity and line shape of defect-induced and two-phonon bands," Physical Review B 84, 035433 (2011).
33. M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, "Perspectives on carbon nanotubes and graphene Raman spectroscopy," Nano letters 10, 751-758 (2010).
34. Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, and Z. X. Shen, "Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening," ACS nano 2, 2301-2305 (2008).
35. S. Berciaud, S. Ryu, L. E. Brus, and T. F. Heinz, "Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers," Nano letters 9, 346-352 (2008).
36. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, "Spatially resolved Raman spectroscopy of single-and few-layer graphene," Nano letters 7, 238-242 (2007).
37. A. C. Ferrari, "Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects," Solid state communications 143, 47-57 (2007).
38. L. Malard, M. Pimenta, G. Dresselhaus, and M. Dresselhaus, "Raman spectroscopy in graphene," Physics Reports 473, 51-87 (2009).
39. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. Saha, U. Waghmare, K. Novoselov, H. Krishnamurthy, A. Geim, and A. Ferrari, "Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor," Nature nanotechnology 3, 210-215 (2008).
40. K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud′Homme, I. A. Aksay, and R. Car, "Raman spectra of graphite oxide and functionalized graphene sheets," Nano letters 8, 36-41 (2008).
41. I. Calizo, A. Balandin, W. Bao, F. Miao, and C. Lau, "Temperature dependence of the Raman spectra of graphene and graphene multilayers," Nano letters 7, 2645-2649 (2007).
42. A. Ferrari, and J. Robertson, "Interpretation of Raman spectra of disordered and amorphous carbon," Physical review B 61, 14095 (2000).
43. W. Kohn, "Image of the Fermi Surface in the Vibration Spectrum of a Metal," Physical Review Letters 2, 393 (1959).
44. A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K. S. Novoselov, and C. Casiraghi, "Probing the nature of defects in graphene by Raman spectroscopy," Nano letters 12, 3925-3930 (2012).
45. T. Wehling, K. Novoselov, S. Morozov, E. Vdovin, M. Katsnelson, A. Geim, and A. Lichtenstein, "Molecular doping of graphene," Nano letters 8, 173-177 (2008).
46. X. S. Li, W. W. Cai, L. Colombo, and R. S. Ruoff, "Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling," Nano Letters 9, 4268-4272 (2009).
47. J. M. Wofford, S. Nie, K. F. McCarty, N. C. Bartelt, and O. D. Dubon, "Graphene Islands on Cu Foils: The Interplay between Shape, Orientation, and Defects," Nano Letters 10, 4890-4896 (2010).
48. J. D. Wood, S. W. Schmucker, A. S. Lyons, E. Pop, and J. W. Lyding, "Effects of Polycrystalline Cu Substrate on Graphene Growth by Chemical Vapor Deposition," Nano Letters 11, 4547-4554 (2011).
49. L.B.Gao,W.C.Ren,J.P.Zhao,L.P.Ma,Z.P.Chen,andH.M.Cheng, "Efficient growth of high-quality graphene films on Cu foils by ambient pressure chemical vapor deposition," Appl. Phys. Lett. 97, 3 (2010).
50. T. Kobayashi, M. Bando, N. Kimura, K. Shimizu, K. Kadono, N. Umezu, K. Miyahara, S. Hayazaki, S. Nagai, Y. Mizuguchi, Y. Murakami, and D. Hobara, "Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process," Appl. Phys. Lett. 102, 4 (2013).
51. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, and Y. I. Song, "Roll-to-roll production of 30-inch graphene films for transparent electrodes," Nature nanotechnology 5, 574-578 (2010).
52. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, "Transfer of large-area graphene films for high-performance transparent conductive electrodes," Nano letters 9, 4359-4363 (2009).
53. Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, and H.-M. Cheng, "Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition," Nature materials 10, 424-428 (2011).
54. L. Gomez De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. Zhou, "Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics," ACS nano 4, 2865-2873 (2010).
55. L. Song, L. Ci, H. Lu, P. B. Sorokin, C. Jin, J. Ni, A. G. Kvashnin, D. G. Kvashnin, J. Lou, and B. I. Yakobson, "Large scale growth and characterization of atomic hexagonal boron nitride layers," Nano letters 10, 3209-3215 (2010).
56. X. Li, C. W. Magnuson, A. Venugopal, J. An, J. W. Suk, B. Han, M. Borysiak, W. Cai, A. Velamakanni, and Y. Zhu, "Graphene films with large domain size by a two-step chemical vapor deposition process," Nano letters 10, 4328-4334 (2010). 57. S. Bhaviripudi, X. Jia, M. S. Dresselhaus, and J. Kong, "Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst," Nano letters 10, 4128-4133 (2010).
58. J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, "Transfer of CVD-grown monolayer graphene onto arbitrary substrates," ACS nano 5, 6916-6924 (2011).
59. X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, "High efficiency graphene solar cells by chemical doping," Nano letters 12, 2745-2750 (2012).
60. J. Rafiee, X. Mi, H. Gullapalli, A. V. Thomas, F. Yavari, Y. Shi, P. M. Ajayan, and N. A. Koratkar, "Wetting transparency of graphene," Nature Materials 11, 217-222 (2012).
61. A. Kasry, M. A. Kuroda, G. J. Martyna, G. S. Tulevski, and A. A. Bol, "Chemical doping of large-area stacked graphene films for use as transparent, conducting electrodes," ACS nano 4, 3839-3844 (2010).
62. X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, and Q. Li, "Toward clean and crackless transfer of graphene," ACS nano 5, 9144-9153 (2011).
63. H. Park, J. A. Rowehl, K. K. Kim, V. Bulovic, and J. Kong, "Doped graphene electrodes for organic solar cells," Nanotechnology 21, 505204 (2010).
64. Y.-C. Lin, C.-C. Lu, C.-H. Yeh, C. Jin, K. Suenaga, and P.-W. Chiu, "Graphene annealing: how clean can it be?," Nano letters 12, 414-419 (2011).
65. A. W. Tsen, L. Brown, M. P. Levendorf, F. Ghahari, P. Y. Huang, R. W. Havener, C. S. Ruiz-Vargas, D. A. Muller, P. Kim, and J. Park, "Tailoring electrical transport across grain boundaries in polycrystalline graphene," Science 336, 1143-1146 (2012).
66. H. Ago, K. Kawahara, Y. Ogawa, S. Tanoue, M. A. Bissett, M. Tsuji, H. Sakaguchi, R. J. Koch, F. Fromm, and T. Seyller, "Epitaxial Growth and Electronic Properties of Large Hexagonal Graphene Domains on Cu (111) Thin Film," Applied Physics Express 6, 075101 (2013).
67. L. Gao, J. R. Guest, and N. P. Guisinger, "Epitaxial graphene on Cu (111)," Nano letters 10, 3512-3516 (2010).
68. B. Hu, H. Ago, Y. Ito, K. Kawahara, M. Tsuji, E. Magome, K. Sumitani, N. Mizuta, K.-i. Ikeda, and S. Mizuno, "Epitaxial growth of large-area single-layer graphene over Cu (111)/sapphire by atmospheric pressure CVD," Carbon 50, 57-65 (2012).
69. D. L. Miller, M. W. Keller, J. M. Shaw, A. N. Chiaramonti, and R. R. Keller, "Epitaxial (111) films of Cu, Ni, and Cu x Ni y on α-Al 2 O 3 (0001) for graphene growth by chemical vapor deposition," Journal of Applied Physics 112, 064317-064317-064319 (2012).
70. Z. R. Robinson, P. Tyagi, T. R. Mowll, C. A. Ventrice Jr, and J. B. Hannon, "Argon-assisted growth of epitaxial graphene on Cu (111)," Physical Review B 86, 235413 (2012).
71. R. G. Van Wesep, H. Chen, W. Zhu, and Z. Zhang, "Communication: Stable carbon nanoarches in the initial stages of epitaxial growth of graphene on Cu (111)," The Journal of chemical physics 134, 171105 (2011).
72. H. K. Yu, K. Balasubramanian, K. Kim, J.-L. Lee, M. Maiti, C. Ropers, J. Krieg, K. Kern, and A. M. Wodtke, "Chemical Vapor Deposition of Graphene on a “Peeled-Off” Epitaxial Cu (111) Foil: A Simple Approach to Improved Properties," ACS nano 8, 8636-8643 (2014).
73. H. Ago, K. Kawahara, Y. Ogawa, S. Tanoue, M. A. Bissett, M. Tsuji, H. Sakaguchi, R. J. Koch, F. Fromm, T. Seyller, K. Komatsu, and K. Tsukagoshi, "Epitaxial Growth and Electronic Properties of Large Hexagonal Graphene Domains on Cu(111) Thin Film," Applied Physics Express 6 (2013).
74. Y. Yao, and C.-p. Wong, "Monolayer graphene growth using additional etching process in atmospheric pressure chemical vapor deposition," Carbon 50, 5203-5209 (2012).
75. M. Kalbac, O. Frank, and L. Kavan, "The control of graphene double-layer formation in copper-catalyzed chemical vapor deposition," Carbon 50, 3682-3687 (2012).
76. H. J. Park, J. Meyer, S. Roth, and V. Skákalová, "Growth and properties of few-layer graphene prepared by chemical vapor deposition," Carbon 48, 1088-1094 (2010).
77. W. Liu, H. Li, C. Xu, Y. Khatami, and K. Banerjee, "Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition," Carbon 49, 4122-4130 (2011).
78. Y. Kim, W. Song, S. Lee, C. Jeon, W. Jung, M. Kim, and C.-Y. Park, "Low-temperature synthesis of graphene on nickel foil by microwave plasma chemical vapor deposition," Applied physics letters 98, 263106 (2011).
79. J. Kim, M. Ishihara, Y. Koga, K. Tsugawa, M. Hasegawa, and S. Iijima, "Low-temperature synthesis of large-area graphene-based transparent conductive films using surface wave plasma chemical vapor deposition," Applied physics letters 98, 091502 (2011).
80. G. Kalita, K. Wakita, and M. Umeno, "Low temperature growth of graphene film by microwave assisted surface wave plasma CVD for transparent electrode application," RSC Advances 2, 2815-2820 (2012).
81. K. Clay, S. Speakman, G. Amaratunga, and S. Silva, "Characterization of a‐
C: H: N deposition from CH4/N2 rf plasmas using optical emission spectroscopy," Journal of applied physics 79, 7227-7233 (1996).
82. R. L. Mills, "The hydrogen atom revisited," International journal of hydrogen energy 25, 1171-1183 (2000).
83. A. Obraztsov, A. Zolotukhin, A. Ustinov, A. Volkov, Y. Svirko, and K. Jefimovs, "DC discharge plasma studies for nanostructured carbon CVD," Diamond and related materials 12, 917-920 (2003).
84. D. M. Gruen, "Nanocrystalline Diamond Films 1," Annual Review of Materials Science 29, 211-259 (1999).
85. T. Wu, G. Ding, H. Shen, H. Wang, L. Sun, D. Jiang, X. Xie, and M. Jiang, "Triggering the Continuous Growth of Graphene Toward Millimeter‐Sized Grains," Advanced Functional Materials 23, 198-203 (2013). |