博碩士論文 992406010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.141.47.163
姓名 詹世豪(Shih-Hao Chan)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 化學氣相沉積石墨烯透明導電膜之製程與分析
(Synthesis and Analysis of Transparent Conductive CVD Graphene)
相關論文
★ 膜堆光學導納量測儀★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究
★ 軟性電子阻水氣膜之有機層組成研究★ 利用介電質-金屬對稱膜堆設計雙曲超穎材料並分析其光學特性
★ 以奈米壓印改善陽極氧化鋁週期性★ 含氫矽薄膜太陽電池材料之光電特性研究
★ 自我複製結構膜光學性質之研究★ 溫度及應力對高密度分波多工器(DWDM)濾光片中心波長飄移之研究
★ 以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之研究★ 以奈米小球提升矽薄膜太陽能電池吸收之研究
★ 定光電流量測法在氫化矽薄膜特性的研究★ 動態干涉儀量測薄膜之光學常數
★ 反應式濺鍍過渡態矽薄膜之研究★ 光子晶體偏振分光鏡之設計與製作
★ 偏壓對射頻濺鍍非晶矽太陽能薄膜特性之研究★ 負折射率材料應用於抗反射與窄帶濾光片之設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 石墨烯在數十年前已被理論預測出來,但卻沒有適當的方法可以製造出 來。2004 年,第一片單層石墨烯被英國科學家從高向熱解石墨上,以膠帶 分離出來,從此開啟了石墨烯研究的黃金十年。石墨烯是碳原子以蜂窩狀 晶格的二維材料,獨特的物理特性使其有望取代現有的舊材料;在電特性 上,室溫下的電子遷移率可達 20000 cm2/Vs,在光特性上,於可見光範圍 只有 2.3%的吸收率。
本論文的重點著重在石墨烯的製程開發,主要分為三個主題,首先我們 為了得知石墨烯的成長時間,我們推導了石墨烯的成長模型,可以精確的 預估出石墨烯的成膜時間,我們將石墨烯的晶粒成長超過 100 μm,最後得 到的片電阻為 310 Ω/□,在波長 550 nm 的光學穿透率為 97.7%。
接著為了使大面積石墨烯薄膜的特性趨向單晶特性,我們製作了單指向 性的銅(111)基板,並在上面成長單一旋轉角的六角型石墨烯。此外,我們 發展了六角模型並且利用傅氏轉換法來驗證六角石墨烯晶粒的旋轉角,在 頻域空間得到的遠場繞射圖形可以得知旋轉角誤差值為 2~3 度。最後得到 的石墨烯薄膜片電阻為 354 Ω/□,而在可見光區的平均穿透率為 97.52%, 而此時的石墨烯晶粒大小只有 10~20 μm。
最後,為了降低石墨烯的製程溫度,我們利用的電漿輔助的方法將溫度 降至 600 度,並且量測電漿解離後的原子光譜來瞭解石墨烯在低溫下的成 長機制,我們調整了氫氣的流量,在原子光譜及拉曼光譜的比較下,可以 發現石墨烯的品質與氫氣的流量成正比。另外我們也注意到當碳氫氣體解 離後會有氫氣及其他附產物被解離出來,意思是在製造石墨烯時不需要通 入額外的氫氣,基於這個概念,我們只使用甲烷解離後的電漿來低溫成長 石墨烯,最後在拉曼光譜量測下可得知為高品質石墨烯。
摘要(英) Graphene, a sp2-hybridized carbon film with unique physical and chemical properties. Geim and Novoselov are first discovered the single layer graphene by using tape method in 2004, and became the hottest topic in various research area decade.
This dissertation first focuses on the growth model of graphene crystal in order to pursue the precision growth time for graphene thin film. The graphene grain size was reached to 100 μm, the sheet resistance was 310 Ω/□ and the optical transmittance at 550 nm was 97.7%. Numerous samples were verified the growth model.
Second, in order to get the large-scale graphene film which endued with single crystal properties, the single orientation of hexagonal graphene crystals have been fabricated on Cu (111) substrate. Moreover, Fourier Transformation was used as a notion to calculate the orientation of hexagonal graphene crystals, the result of the orientation was about 2 ~ 3o when graphene been synthesized on Cu (111). Graphene has been transferred to a BK7 glass substrate from Cu (111) for the sheet resistance and the average optical transmittance measurements, were 354 Ω/□ and 97.52%.
Last part of this study is low temperature synthesis of graphene. We applied plasma-assisted CVD growing graphene film at operated temperature of 600oC on Cu foil. Pursuing the mechanism of low temperature synthesis of graphene, we measured the atomic spectra after hydrogen and methane ionized by electric field. In the experiment, the hydrogen flow rate was varied from 10 to 50 sccm, the 2D peak of Raman spectrum was increased with increasing the hydrogen flow rate, and this result was corresponded to the atomic spectra of hydrogen. In addition, we noticed that the content sources of plasma including hydrogen and by-products, meaning the additional hydrogen gas is not necessary. Finally, the high quality of graphene film was certified by using Raman spectroscopy.
關鍵字(中) ★ 石墨烯
★ 薄膜
★ 透明導電膜
關鍵字(英) ★ Graphene
★ Thin film
★ Transparent conductive electrode
論文目次 Abstract............................................................................................................... i
Acknowledgements ............................................................................................ v Contents............................................................................................................ vi
Figure Captions ................................................................................................. ix
Table Captions..................................................................................................xvi
CHAPTER 1. GRAPHENE ...................................................................................... 1
1.1 Introduction.......................................................................................... 1
1.2 Graphene band structure...................................................................... 3
1.3 Graphene synthesis .............................................................................. 7
1.3.1 Mechanical exfoliation ............................................................... 7
1.3.2 Wet chemical exfoliation............................................................ 8
1.3.3 Graphitization of silicon carbide................................................. 9
1.3.4 Annealing solid carbon source ................................................. 10
1.3.5 Chemical vapor deposition....................................................... 11
CHAPTER 2. GAPHENE CHARACTERIZATION ..................................................... 14
2.1 Graphene structure observed by TEM ................................................ 14
2.2 Graphene morphology observed by SEM............................................ 17
2.3 Profile graphene using AFM ................................................................ 19
2.4 Contrast observation of graphene under Optical microscope ............. 21
2.5 Raman Spectra of graphene................................................................ 23
2.5.1 Graphene phonon dispersion................................................... 23
2.5.2 Raman bands in graphene........................................................ 24
2.5.3 Graphene doping ..................................................................... 27
CHAPTER 3. FABRICATION AND TRANSFER PROCESS ........................................ 30
3.1 Graphene fabrication .......................................................................... 30
3-2 Transferring process ........................................................................... 34
CHAPTER 4. GROWTH MODEL OF GRAPHENE .................................................. 38
4.1 Experimental parameters.................................................................... 38
4.2 Influence of surface roughness ........................................................... 39
4.3 Growth model derivation.................................................................... 41
4.4 Experimental results ........................................................................... 45
CHAPTER 5. FOURIER ANALYSIS OF GRAPHENE ................................................ 48
5.1 Fabrication of Cu (111) foil .................................................................. 49
5.2 Orientation measurement of Cu (111) film ......................................... 51
5.3 Graphene synthesized on Cu (111) foil................................................ 53
5.4 Fourier analysis on graphene crystal ................................................... 54
5.5 Raman analysis of graphene film ........................................................ 59
5.6 Experimental results ........................................................................... 62
CHAPTER 6. LOW TEMPERATURE SYNTHESIS OF GRAPHENE ............................ 66
6.1 Experimental method ......................................................................... 67
6.2 Growth mechanism and effective length ............................................ 69
6.3 Plasma emission spectra ..................................................................... 70
6.4 Raman analysis ................................................................................... 72
6.5 Hydrogen free for synthesizing graphene using CH4 plasma ............... 75
6.5.1 Synthesis parameters ............................................................... 75
6.5.2 Growth mechanism for graphnen using CH4 plasma ................ 76
6.5.3 Raman analysis ........................................................................ 77
CHAPTER 7. SUMMARY AND FUTURE WORK .................................................... 81 References........................................................................................................ 84
參考文獻 1. H. W. Kroto, A. W. Allaf, and S. P. Balm, "C60 - Buckminsterfullerene," Chem. Rev. 91, 1213-1235 (1991).
2. S. Iijima, "Helical Microtubules Of Graphitic Carbon," Nature 354, 56-58 (1991).
3. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science 306, 666-669 (2004).
4. A. K. Geim, and K. S. Novoselov, "The rise of graphene," Nat. Mater. 6, 183-191 (2007).
5. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Rev. Mod. Phys. 81, 109-162 (2009).
6. C. Bena, and G. Montambaux, "Remarks on the tight-binding model of graphene," New J. Phys. 11, 15 (2009).
7. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, "Fine structure constant defines visual transparency of graphene," Science 320, 1308-1308 (2008).
8. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, "Ultrahigh electron mobility in suspended graphene," Solid State Commun. 146, 351-355 (2008).
9. H.M.Lv,H.Q.Wu,J.B.Liu,J.H.Yu,J.B.Niu,J.F.Li,Q.X.Xu,X.M.Wu, and H. Qian, "High carrier mobility in suspended-channel graphene field effect transistors," Appl. Phys. Lett. 103, 4 (2013).
10. E. Y. Andrei, G. H. Li, and X. Du, "Electronic properties of graphene: a perspective from scanning tunneling microscopy and magnetotransport," Rep. Prog. Phys. 75, 47 (2012).
11. S.Stankovich,D.A.Dikin,R.D.Piner,K.A.Kohlhaas,A.Kleinhammes,Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide," Carbon 45, 1558-1565 (2007).
12. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, "The chemistry of graphene oxide," Chem. Soc. Rev. 39, 228-240 (2010).
13. R. Trusovas, K. Ratautas, G. Raciukaitis, J. Barkauskas, I. Stankeviciene, G. Niaura, and R. Mazeikiene, "Reduction of graphite oxide to graphene with laser irradiation," Carbon 52, 574-582 (2013).
14. S. Thakur, and N. Karak, "Green reduction of graphene oxide by aqueous phytoextracts," Carbon 50, 5331-5339 (2012).
15. J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, and S. Guo, "Reduction of graphene oxide via L-ascorbic acid," Chemical Communications 46, 1112-1114 (2010).
16. C. Celebi, C. Yanik, A. G. Demirkol, and Kaya, II, "The effect of a SIC cap on the growth of epitaxial graphene on SIC in ultra high vacuum," Carbon 50, 3026-3031 (2012).
17. Z. Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, and J. M. Tour, "Growth of graphene from solid carbon sources," Nature 468, 549-552 (2010).
18. X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," Science 324, 1312-1314 (2009).
19. M. Losurdo, M. M. Giangregorio, P. Capezzuto, and G. Bruno, "Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure," Physical Chemistry Chemical Physics 13, 20836-20843 (2011).
20. D. B. Williams, and C. B. Carter, The transmission electron microscope (Springer, 1996).
21. J. C. Meyer, A. K. Geim, M. Katsnelson, K. Novoselov, T. Booth, and S. Roth, "The structure of suspended graphene sheets," Nature 446, 60-63 (2007).
22. P. Y. Huang, C. S. Ruiz-Vargas, A. M. van der Zande, W. S. Whitney, M. P. Levendorf, J. W. Kevek, S. Garg, J. S. Alden, C. J. Hustedt, and Y. Zhu, "Grains and grain boundaries in single-layer graphene atomic patchwork quilts," Nature 469, 389-392 (2011).
23. Z. Liu, Y.-C. Lin, C.-C. Lu, C.-H. Yeh, P.-W. Chiu, S. Iijima, and K. Suenaga, "In situ observation of step-edge in-plane growth of graphene in a STEM," Nature communications 5 (2014).
24. I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres, and S. Smirnov, "Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene," Acs Nano 5, 6069-6076 (2011).
25. J.-H. Lee, E. K. Lee, W.-J. Joo, Y. Jang, B.-S. Kim, J. Y. Lim, S.-H. Choi, S. J. Ahn, J. R. Ahn, and M.-H. Park, "Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium," Science 344, 286-289 (2014).
26. X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, "Chemically derived, ultrasmooth graphene nanoribbon semiconductors," Science 319, 1229-1232(2008).
27. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, "Improved synthesis of graphene oxide," ACS nano 4, 4806-4814 (2010).
28. P. Lauffer, K. Emtsev, R. Graupner, T. Seyller, L. Ley, S. Reshanov, and H. Weber, "Atomic and electronic structure of few-layer graphene on SiC (0001) studied with scanning tunneling microscopy and spectroscopy," Physical Review B 77, 155426 (2008).
29. C. Jia, J. Jiang, L. Gan, and X. Guo, "Direct optical characterization of graphene growth and domains on growth substrates," Scientific reports 2 (2012). 30. A. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoselov, and S. Roth, "Raman spectrum of graphene and graphene layers," Physical review letters 97, 187401 (2006).
31. A. C. Ferrari, and D. M. Basko, "Raman spectroscopy as a versatile tool for studying the properties of graphene," Nature nanotechnology 8, 235-246 (2013). 32. P. Venezuela, M. Lazzeri, and F. Mauri, "Theory of double-resonant Raman spectra in graphene: Intensity and line shape of defect-induced and two-phonon bands," Physical Review B 84, 035433 (2011).
33. M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, "Perspectives on carbon nanotubes and graphene Raman spectroscopy," Nano letters 10, 751-758 (2010).
34. Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, and Z. X. Shen, "Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening," ACS nano 2, 2301-2305 (2008).
35. S. Berciaud, S. Ryu, L. E. Brus, and T. F. Heinz, "Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers," Nano letters 9, 346-352 (2008).
36. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, "Spatially resolved Raman spectroscopy of single-and few-layer graphene," Nano letters 7, 238-242 (2007).
37. A. C. Ferrari, "Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects," Solid state communications 143, 47-57 (2007).
38. L. Malard, M. Pimenta, G. Dresselhaus, and M. Dresselhaus, "Raman spectroscopy in graphene," Physics Reports 473, 51-87 (2009).
39. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. Saha, U. Waghmare, K. Novoselov, H. Krishnamurthy, A. Geim, and A. Ferrari, "Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor," Nature nanotechnology 3, 210-215 (2008).
40. K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud′Homme, I. A. Aksay, and R. Car, "Raman spectra of graphite oxide and functionalized graphene sheets," Nano letters 8, 36-41 (2008).
41. I. Calizo, A. Balandin, W. Bao, F. Miao, and C. Lau, "Temperature dependence of the Raman spectra of graphene and graphene multilayers," Nano letters 7, 2645-2649 (2007).
42. A. Ferrari, and J. Robertson, "Interpretation of Raman spectra of disordered and amorphous carbon," Physical review B 61, 14095 (2000).
43. W. Kohn, "Image of the Fermi Surface in the Vibration Spectrum of a Metal," Physical Review Letters 2, 393 (1959).
44. A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K. S. Novoselov, and C. Casiraghi, "Probing the nature of defects in graphene by Raman spectroscopy," Nano letters 12, 3925-3930 (2012).
45. T. Wehling, K. Novoselov, S. Morozov, E. Vdovin, M. Katsnelson, A. Geim, and A. Lichtenstein, "Molecular doping of graphene," Nano letters 8, 173-177 (2008).
46. X. S. Li, W. W. Cai, L. Colombo, and R. S. Ruoff, "Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling," Nano Letters 9, 4268-4272 (2009).
47. J. M. Wofford, S. Nie, K. F. McCarty, N. C. Bartelt, and O. D. Dubon, "Graphene Islands on Cu Foils: The Interplay between Shape, Orientation, and Defects," Nano Letters 10, 4890-4896 (2010).
48. J. D. Wood, S. W. Schmucker, A. S. Lyons, E. Pop, and J. W. Lyding, "Effects of Polycrystalline Cu Substrate on Graphene Growth by Chemical Vapor Deposition," Nano Letters 11, 4547-4554 (2011).
49. L.B.Gao,W.C.Ren,J.P.Zhao,L.P.Ma,Z.P.Chen,andH.M.Cheng, "Efficient growth of high-quality graphene films on Cu foils by ambient pressure chemical vapor deposition," Appl. Phys. Lett. 97, 3 (2010).
50. T. Kobayashi, M. Bando, N. Kimura, K. Shimizu, K. Kadono, N. Umezu, K. Miyahara, S. Hayazaki, S. Nagai, Y. Mizuguchi, Y. Murakami, and D. Hobara, "Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process," Appl. Phys. Lett. 102, 4 (2013).
51. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, and Y. I. Song, "Roll-to-roll production of 30-inch graphene films for transparent electrodes," Nature nanotechnology 5, 574-578 (2010).
52. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, "Transfer of large-area graphene films for high-performance transparent conductive electrodes," Nano letters 9, 4359-4363 (2009).
53. Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, and H.-M. Cheng, "Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition," Nature materials 10, 424-428 (2011).
54. L. Gomez De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. Zhou, "Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics," ACS nano 4, 2865-2873 (2010).
55. L. Song, L. Ci, H. Lu, P. B. Sorokin, C. Jin, J. Ni, A. G. Kvashnin, D. G. Kvashnin, J. Lou, and B. I. Yakobson, "Large scale growth and characterization of atomic hexagonal boron nitride layers," Nano letters 10, 3209-3215 (2010).
56. X. Li, C. W. Magnuson, A. Venugopal, J. An, J. W. Suk, B. Han, M. Borysiak, W. Cai, A. Velamakanni, and Y. Zhu, "Graphene films with large domain size by a two-step chemical vapor deposition process," Nano letters 10, 4328-4334 (2010). 57. S. Bhaviripudi, X. Jia, M. S. Dresselhaus, and J. Kong, "Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst," Nano letters 10, 4128-4133 (2010).
58. J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, "Transfer of CVD-grown monolayer graphene onto arbitrary substrates," ACS nano 5, 6916-6924 (2011).
59. X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, "High efficiency graphene solar cells by chemical doping," Nano letters 12, 2745-2750 (2012).
60. J. Rafiee, X. Mi, H. Gullapalli, A. V. Thomas, F. Yavari, Y. Shi, P. M. Ajayan, and N. A. Koratkar, "Wetting transparency of graphene," Nature Materials 11, 217-222 (2012).
61. A. Kasry, M. A. Kuroda, G. J. Martyna, G. S. Tulevski, and A. A. Bol, "Chemical doping of large-area stacked graphene films for use as transparent, conducting electrodes," ACS nano 4, 3839-3844 (2010).
62. X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, and Q. Li, "Toward clean and crackless transfer of graphene," ACS nano 5, 9144-9153 (2011).
63. H. Park, J. A. Rowehl, K. K. Kim, V. Bulovic, and J. Kong, "Doped graphene electrodes for organic solar cells," Nanotechnology 21, 505204 (2010).
64. Y.-C. Lin, C.-C. Lu, C.-H. Yeh, C. Jin, K. Suenaga, and P.-W. Chiu, "Graphene annealing: how clean can it be?," Nano letters 12, 414-419 (2011).
65. A. W. Tsen, L. Brown, M. P. Levendorf, F. Ghahari, P. Y. Huang, R. W. Havener, C. S. Ruiz-Vargas, D. A. Muller, P. Kim, and J. Park, "Tailoring electrical transport across grain boundaries in polycrystalline graphene," Science 336, 1143-1146 (2012).
66. H. Ago, K. Kawahara, Y. Ogawa, S. Tanoue, M. A. Bissett, M. Tsuji, H. Sakaguchi, R. J. Koch, F. Fromm, and T. Seyller, "Epitaxial Growth and Electronic Properties of Large Hexagonal Graphene Domains on Cu (111) Thin Film," Applied Physics Express 6, 075101 (2013).
67. L. Gao, J. R. Guest, and N. P. Guisinger, "Epitaxial graphene on Cu (111)," Nano letters 10, 3512-3516 (2010).
68. B. Hu, H. Ago, Y. Ito, K. Kawahara, M. Tsuji, E. Magome, K. Sumitani, N. Mizuta, K.-i. Ikeda, and S. Mizuno, "Epitaxial growth of large-area single-layer graphene over Cu (111)/sapphire by atmospheric pressure CVD," Carbon 50, 57-65 (2012).
69. D. L. Miller, M. W. Keller, J. M. Shaw, A. N. Chiaramonti, and R. R. Keller, "Epitaxial (111) films of Cu, Ni, and Cu x Ni y on α-Al 2 O 3 (0001) for graphene growth by chemical vapor deposition," Journal of Applied Physics 112, 064317-064317-064319 (2012).
70. Z. R. Robinson, P. Tyagi, T. R. Mowll, C. A. Ventrice Jr, and J. B. Hannon, "Argon-assisted growth of epitaxial graphene on Cu (111)," Physical Review B 86, 235413 (2012).
71. R. G. Van Wesep, H. Chen, W. Zhu, and Z. Zhang, "Communication: Stable carbon nanoarches in the initial stages of epitaxial growth of graphene on Cu (111)," The Journal of chemical physics 134, 171105 (2011).
72. H. K. Yu, K. Balasubramanian, K. Kim, J.-L. Lee, M. Maiti, C. Ropers, J. Krieg, K. Kern, and A. M. Wodtke, "Chemical Vapor Deposition of Graphene on a “Peeled-Off” Epitaxial Cu (111) Foil: A Simple Approach to Improved Properties," ACS nano 8, 8636-8643 (2014).
73. H. Ago, K. Kawahara, Y. Ogawa, S. Tanoue, M. A. Bissett, M. Tsuji, H. Sakaguchi, R. J. Koch, F. Fromm, T. Seyller, K. Komatsu, and K. Tsukagoshi, "Epitaxial Growth and Electronic Properties of Large Hexagonal Graphene Domains on Cu(111) Thin Film," Applied Physics Express 6 (2013).
74. Y. Yao, and C.-p. Wong, "Monolayer graphene growth using additional etching process in atmospheric pressure chemical vapor deposition," Carbon 50, 5203-5209 (2012).
75. M. Kalbac, O. Frank, and L. Kavan, "The control of graphene double-layer formation in copper-catalyzed chemical vapor deposition," Carbon 50, 3682-3687 (2012).
76. H. J. Park, J. Meyer, S. Roth, and V. Skákalová, "Growth and properties of few-layer graphene prepared by chemical vapor deposition," Carbon 48, 1088-1094 (2010).
77. W. Liu, H. Li, C. Xu, Y. Khatami, and K. Banerjee, "Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition," Carbon 49, 4122-4130 (2011).
78. Y. Kim, W. Song, S. Lee, C. Jeon, W. Jung, M. Kim, and C.-Y. Park, "Low-temperature synthesis of graphene on nickel foil by microwave plasma chemical vapor deposition," Applied physics letters 98, 263106 (2011).
79. J. Kim, M. Ishihara, Y. Koga, K. Tsugawa, M. Hasegawa, and S. Iijima, "Low-temperature synthesis of large-area graphene-based transparent conductive films using surface wave plasma chemical vapor deposition," Applied physics letters 98, 091502 (2011).
80. G. Kalita, K. Wakita, and M. Umeno, "Low temperature growth of graphene film by microwave assisted surface wave plasma CVD for transparent electrode application," RSC Advances 2, 2815-2820 (2012).
81. K. Clay, S. Speakman, G. Amaratunga, and S. Silva, "Characterization of a‐
C: H: N deposition from CH4/N2 rf plasmas using optical emission spectroscopy," Journal of applied physics 79, 7227-7233 (1996).
82. R. L. Mills, "The hydrogen atom revisited," International journal of hydrogen energy 25, 1171-1183 (2000).
83. A. Obraztsov, A. Zolotukhin, A. Ustinov, A. Volkov, Y. Svirko, and K. Jefimovs, "DC discharge plasma studies for nanostructured carbon CVD," Diamond and related materials 12, 917-920 (2003).
84. D. M. Gruen, "Nanocrystalline Diamond Films 1," Annual Review of Materials Science 29, 211-259 (1999).
85. T. Wu, G. Ding, H. Shen, H. Wang, L. Sun, D. Jiang, X. Xie, and M. Jiang, "Triggering the Continuous Growth of Graphene Toward Millimeter‐Sized Grains," Advanced Functional Materials 23, 198-203 (2013).
指導教授 陳昇暉、郭倩丞(Sheng-Hui Chen Chien-Cheng Kuo) 審核日期 2016-6-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明