博碩士論文 103286010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.216.70.205
姓名 林睿騏(Raychiy J. Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 結合散射面之穿透式二次光學設計用於白光LED 照明
(White LED Lighting based on Second-Level Optical Design with Transmission Scattering Surfaces)
相關論文
★ 奈米電漿子感測技術於生物分子之功能分析★ 表面結構擴散片之設計、製作與應用
★ 結合柱狀透鏡陣列之非成像車頭燈光型設計★ CCD 量測儀器之研究與探討
★ 鈦酸鋇晶體非均向性自繞射之研究及其在光資訊處理之應用★ 多光束繞射光學元件應用在DVD光學讀取頭之設計
★ 高位移敏感度之全像多工光學儲存之研究★ 利用亂相編碼與體積全像之全光學式光纖感測系統
★ 體積光柵應用於微物3D掃描之研究★ 具有偏極及光強分佈之孔徑的繞射極限的研究
★ 三維亂相編碼之體積全像及其應用★ 透鏡像差的量測與MTF的驗證
★ 二位元隨機編碼之全像光學鎖之研究★ 亂相編碼於體積全像之全光學分佈式光纖感測系統之研究
★ 自發式相位共軛鏡之相位穩定與應用於自由空間光通訊之研究★ 體積全像空間濾波器應用於物體 三度空間微米級位移之量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 於一般發光二極體光源(Light Emitting Diode, LED)照明應用中,因LED光源之配光曲線具有高指向性,其會造成不舒適之眩光效應,因此於LED光源之二階光學透鏡設計上,除了需達成照明配光曲線之規格要求外,還需要減少對人眼不舒適之眩光影響。本論文提出在LED照明二階光學設計時採用中場光源擬合法、自由曲面與哈維雙向散射分布函數模型設計方法,設計出新式塑膠材質之LED二階光學鏡片。首先,於LED塑膠二階光學鏡片上,其達到89.89 %之高穿透率、角度場半高全寬70度與±45度範圍內之光學有效利用率51.8 %之實心自由曲面鏡片,其可達到節能環保之功效;再者,除了角度場半高全寬70度之塑膠二階光學鏡片設計,運用光學橫向整合之半鏡片曲線設計之自由曲面,而設計之窄角度場LED塑膠二階光學鏡片上,其達到82 %之高穿透率與角度場半高全寬40度之實心自由曲面鏡片;最後,運用光學縱向整合之薄鏡片曲線設計之自由曲面,而設計出達到91.92 %之高穿透率、角度場半高全寬70度與±45度範圍內光學有效利用率55.73 %之薄片自由曲面鏡片,與上面提及之角度場半高全寬70度實心自由曲面鏡片相比,薄片自由曲面鏡片更具備生產效率高16倍與成本減少90%之優勢,其可達到LED塑膠二階光學鏡片大量生產之可行性。
摘要(英) Since the LED light emitting characteristic is strongly direction oriented and could be
causing the strong glare effect, the optical design of LED lens is necessary for
improving the lighting energy distribution in the areas of interest and reducing the
uncomfortable glare effect for the general illumination applications. In this dissertation,
the novel transparent plastic optical lens would be designed by using the free form
surface and scattering surface technologies. First, using the precise mid field angular
distribution model of the LED light source and the optical scattering surface property
of the Harvey BSDF scattering model and performing the optical simulation to develop
and design a novel plastic high transmission optical thick solid lens with free form
inner surface to achieve the optical performance of 89.89% light energy transmission
optics for the sake of energy saving reason, the 70 degrees angular light distribution
pattern defined at full width half maximum (FWHM) light energy level, and the optical
utilization factor of 51.8 % within -45 degrees and 45 degrees range in the areas of
interest with glare reduced for the down light illumination. Secondly, the free form
optical quasi-lens surface technology was utilized to develop and design a new solid
transparent plastic optical lens for the LED down light with the narrow angular light
distribution requirement in the LED lighting applications. In order to successfully
complete the mission, the precise mid field angular distribution model of the LED light
source was established and built. And also the optical scattering surface property of
the Harvey BSDF scattering model was designed, measured, and established. Then, the optical simulation for the entire optical system was performed to develop and
design this solid transparent plastic optical lens system. Finally, the goals of 40 degrees
angular light distribution pattern defined at full width half maximum (FWHM) with
glare reduced in the areas of interest and the optical performance of nearly 82% light
energy transmission optics were achieved for the LED down light illumination. Thirdly,
the goal of designing and developing a novel plastic optical thin piece lens couple
consisting of a plastic inner thin piece lens with free form optical scattering surfaces
and a plastic outer thin piece lens with an aspherical optical scattering front surface
was to match or exceed the optical performance with the angular light distribution
pattern defined from the previously designed plastic optical thick solid lens. With the
precise mid field angular distribution model of the LED light source and the optical
scattering surface property of the Harvey BSDF scattering models established, both the
performance of 91.92% light energy transmission optics of this novel plastic optical
thin piece lens down light and the optical utilization factor of 55.73 % within -45
degrees and 45 degrees range in the areas of interest with glare reduced were achieved.
Besides the above optical performance achieved, the production rate of the plastic thin
piece lens couples was raised to be 16 times higher than the production rate of the
previously designed plastic optical thick solid lenses. Moreover, the total costs of
producing one plastic thin piece lens couple were calculated to be only 10% of the total
costs of producing one plastic thick solid lens. With both the above advantages of
much higher production rate and much lower costs for producing this plastic optical
thin piece lens couple, the feasibility of the massive production purpose was highly
promising and practical to be achieved for the general LED illumination.
關鍵字(中) ★ 光學設計
★ 自由曲面透鏡
關鍵字(英) ★ Optical Design
★ free form lens
論文目次 Table of Contents
Abstract ........................................................................................................................ I
Acknowledgements ....................................................................................................III
Dedication .................................................................................................................... V
Table of Contents ....................................................................................................... VI
List of Figures ......................................................................................................... VIII
Table List ................................................................................................................. XIII
Chapter 1 Introduction ............................................................................................... 1
1.1 Illumination Background .................................................................................. 2
1.1.1 Fire Lighting devices ................................................................................... 3
1.1.2 Incandescence Lighting devices ................................................................. 3
1.1.3 Fluorescence/Discharge Lighting devices ................................................. 4
1.1.4 Solid-State Lighting devices ....................................................................... 5
1.2 Optical Design Levels for the LED Illumination ............................................ 6
1.3 Research Background and Motivation ............................................................ 8
Chapter 2 Theory ...................................................................................................... 21
2.1 Optics Theory ................................................................................................... 21
2.1.1 The Law of Reflection .............................................................................. 21
2.1.2 The Law of Refraction.............................................................................. 22
2.1.3 The Critical Angle ..................................................................................... 24
2.1.4 Total Internal Reflection .......................................................................... 25
2.1.5 Fresnel Equations ..................................................................................... 25
2.1.6 The Ray Tracing Methods ....................................................................... 27
2.1.7 Introduction to Radiometry and Photometry ....................................... 30
2.1.8 The AΩ Product ( étendue) ...................................................................... 36
2.2 Free Form Optical Surface Design ................................................................ 38
2.3 Optical Surface Scattering .............................................................................. 43
2.3.1 Introduction ............................................................................................... 43
2.3.2 Optical Scattering Surface Transfer Function ....................................... 46
2.3.3 Optical Surface Scattering Simulation ................................................... 48
Chapter 3 A Novel Plastic Light Scattering Free Form High Transmission Optical
Thick Solid Lens ...................................................................................... 54
3.1 Motivation ........................................................................................................ 54
3.2 Optical Modeling Techniques ......................................................................... 56
VII
3.3 Optical Design and Verification ..................................................................... 62
Chapter 4 A Novel Plastic Optical Lens Designed by Integrating the Hex and Fan
Quasi-Lens Surface Curves in the Transverse Direction ................... 69
4.1 Motivation ........................................................................................................ 69
4.2 Optical Modeling Techniques ......................................................................... 70
4.3 Optical Design and Verification ..................................................................... 74
Chapter 5 A Novel Plastic Optical Thin Piece Lens Designed by Integrating the
Inner Thin Piece Lens and the Outer Thin Piece Lens in the
Longitudinal Direction ......................................................................... 85
5.1 Motivation ........................................................................................................ 85
5.2 Optical Modeling Techniques ......................................................................... 87
5.3 Optical Design and Verification ..................................................................... 89
Chapter 6 Conclusions ............................................................................................ 104
References ................................................................................................................ 107
參考文獻 References
[1] T. A. Edison, "Improvement in electric lights," US Patent No. 214,636 (1878).
[2] M. Josephson, Edison: a biography (McGraw-Hill, New York, 1959).
[3] R. Kane and H. Sell, Revolution in lamps: a chronicle of 50 years of progress
(The Fairmont Press, 2001).
[4] H. J. Round, "A note on carborundum," Electrical World 49, 309 (1907).
[5] N. Holonyak and S. F. Bevacqua, "Coherent (visible) light emission from
Ga(As1-xPx) junctions," Appl. Phys. Lett. 1, 82-83 (1962).
[6] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, "Thermal annealing effets on
p-type Mg-doped GaN films," Jpn. J. Appl. Phys. 31, L139-L142 (1992).
[7] S. Nakamura, M. Senoh, and T. Mukai, "P-GaN/n-InGaN/n-GaN doubleheterostructure
blue-light-emitting diodes," Jpn. J. Appl. Phys. 32, L8-L11
(1993).
[8] S. Nakamura, M. Senoh, and T. Mukai, "High-power InGaN/GaN doubleheterostructure
violet light-emitting diodes," Appl. Phys. Lett. 62, 2390-2392
(1993).
[9] S. Nakamura, T. Mukai, and M. Senoh, "Candela-class high-brightness
InGaN/AlGaN double-heterostructure blue-light-emitting diodes," Appl. Phys.
Lett. 64, 1687-1689 (1994).
[10] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, "High-brightness InGaN
blue, green, and yellow light-emitting diodes with quantum well structures,"
Jpn. J. Appl. Phys. 34, L797-L799 (1995).
[11] S. Nakamura, T. Mukai, and N. Iwasa, "Light-emitting gallium nitride-based
compound semiconductor device," US Patent No. 5,578,839 (1996).
108
[12] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, "Light emitting device
having a nitride compound semiconductor and a phosphor containing a garnet
fluorescent material," US Patent No. 5,998,925 (1999).
[13] S. Nakamura and G. Fasol, The Blue Laser Diode (Springer, Berlin, 1997).
[14] C. C. Sun, "Four-level optical design in LED lighting," SPIE Newsroom
(November 28, 2011).
[15] J. Kaufman, IES Lighting Handbook 1981 Reference Volume (Illuminating
Engineering Society of North America, New York, 1981).
[16] B. W. D′Andrade and S. R. Forrest, "White organic light‐emitting devices for
solid‐state lighting," Adv. Mater. 16, 1585-1595 (2004).
[17] E. F. Schubert and J. K. Kim, "Solid-state light sources getting smart," Science
308, 1274-1278 (2005).
[18] Philips, http://www.lighting.philips.com/.
[19] J. Y. Tsao, Light emitting diodes (LEDs) for general illumination: an OIDA
technology roadmap update 2002 (OIDA, Washington, D. C., 2002).
[20] Cree Inc., http://www.cree.com/.
[21] US Department of Energy, Solid-State Lighting Research and Development:
Multi-Year Program Plan (May 2014).
[22] International Energy Agency, Light’s labour’s lost: policies for energy- efficient
lighting (OECD/IEA, Paris, 2006).
[23] X. S. Liu, A. Vedlitz, and L. Alston, "Regional news portrayals of global
warming and climate change," Environ. Sci. Policy 11, 379-393 (2008).
[24] Navigant Consulting, Inc., "2010 U.S. Lighting Market Characterization," U.S.
Department of Energy, Washington, DC, 2012.
[25] U.S. Energy Information Administration, http://www.eia.gov/, "Annual Energy
Outlook 2014 Table: Renewable Energy Generating Capacity and Generation,
109
Reference Case," 2014.
[26] Navigant Consulting, Inc., "Energy Savings Potential of Solid-State Lighting in
General Illumination Applications," U.S. Department of Energy, Washington,
DC, 2012.
[27] Navigant Consulting, Inc., "Adoption of Light Emitting Diodes in Common
Lighting Applications: Snapshot of 2013 Trends," U.S. Department of Energy,
Washington DC, 2014.
[28] Cree Inc., http://www.cree.com/, CREE, "News & Events," 23 January 2014.
[29] Philips, http://www.lighting.philips.com/, "Inside Innovation," April 2013.
[30] United Nations Environment Programme, http://www.enlighten-initiative.org/,
"en.lighten: Efficient lighting for developing and emerging countries," 18 March
2014.
[31] A. Tao, "LED Market Overview: LEDs & the SSL Ecosystem," IHS, Boston,
USA, 2013.
[32] K. Evstratyeva, "Market Overview for Global LED Industry: 2013-2018,"
Strategies Unlimited/Pennwell, February 25-27, 2014.
[33] Philips, http://www.lighting.philips.com/, "Q4 2013 Quarterly Report," 28
January 2014.
[34] Cree Inc., http://www.cree.com/, "Financial Results By Operating Segment," 21
January 2014.
[35] OSRAM Licht Group, http://www.osram-licht.com/, "Interim Report: Q1 FY
2014," 31 December 2013.
[36] Zumtobel AG, http://www.zumtobelgroup.com/, "Q1-Q3 (May 2013 - January
2014): Report on the First Three Quarters 2013/14 of Zumtobel AG," 4 March
2014.
[37] J. Foote and B. Gohn, "Energy Efficient Lighting for Commercial Markets- LED
110
Lighting Adoption and Global Outlook for LED, Fluorescent, Halogen, and HID
Lamps and Luminaires in Commercial Buildings: Market Analysis and
Forecasts," Navigant Research, 2013.
[38] P. Smallwood, "The World Market for Lamps & Luminaires in General
Lighting," IHS, 2012.
[39] Department of Industrial Research, CSA, "Industrial Data and Development
Overview for China Solid State Lighting 2013," 2014.
[40] Clasp, "Estimating potential additional energy savings from upcoming revisions
to existing regulations under the ecodesign and energy labelling directives - a
contribution to the evidence base," 2013.
[41] Philips, http://www.lighting.philips.com/.
[42] J. Foote and E. Woods, "Smart Street Lighting: LEDs, Communications
Equipment, and Network Management Software for Public Outdoor Lighting:
Market Analysis and Forecasts," Pike Research, a part of Navigant′s Energy
Practice, Boulder, CO, 2012.
[43] Navigant Consulting, Inc., "Adoption of Light Emitting Diodes in Common
Lighting Applications: Snapshot of 2013 Trends," U.S. Department of Energy,
Washington DC, 2014.
[44] City of Los Angeles Department of Public Works, http://bsl.lacity.org/, "Bureau
of Street Lighting," 17 December 2013.
[45] New Streetlights, http://www.newstreetlights.com/news/, "Detroit Michigan, to
Install Over 42,000 LED Streetlights," 10 February 2014.
[46] EERE Building Technologies Office, "Life-Cycle Assessment of Energy and
Environmental Impacts of LED Lighting Products," U.S. Department of Energy,
April 2013.
[47] E. Hecht, Optics, 3rd ed. (Addison Wesley, San Francisco, 1998).
111
[48] R. Winston, Nonimaging Optics, (Academic, SanDiego, Calif, 2005).
[49] J. M. Palmer, The Art of Radiometry, (SPIE, Bellingham, Washington, 2010)
[50] CIE 1988 2° spectral luminous efficiency functions of photopic vision, CIE
Publication No. 86 (1988b).
[51] K. J. Garcia, "Non-rational and rational parametric descriptions of the geometric
propagation of light in an optical system," UMI Microform 9927448 (1999).
[52] Breault Research Corporation, Technical Guide: Scattering in ASAP, (Tucson,
Arizona, 2014)
[53] J. E. Harvey, "Light scattering characteristics of optical surfaces," in Stray Light
Instrum. Eng. 107, 41–47 (1977).
[54] J. E. Harvey, Light-scattering characteristics of optical surfaces, Ph.D.
Dissertation, University of Arizona (1976).
[55] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J.
Ludowise, P. S. Martin, and S. L. Rudaz, "Illumination with solid state lighting
technology," IEEE J. Sel. Top. Quantum Electron. 8(2), 310-320 (2002).
[56] A. Zukauskas, M. S. Shur, and R. Caska, Introduction to Solid-state Lighting
(John Wiley & Sons, 2002).
[57] F. Nguyen, B. Terao, and J. Laski, "Realizing LED illumination lighting
applications," Proc. SPIE 5941, 594105 (2005).
[58] J. Jiang, S. To, W. B. Lee, and B. Cheung, "Optical design of a freeform TIR lens
for LED streetlight," Optik 121, 1761-1765 (2010).
[59] Y. Luo, Z. Feng, Y, Han, and H Li, "Design of compact and smooth free-form
optical system with uniform illuminance for LED source," Opt. Express 18,
9055-9063 (2010).
[60] K. Wang, D. Wu, Z. Qin, F. Chen, X. Luo, and S. Liu, "New reversing design
method for LED uniform illumination," Opt. Express 19, A830-A840 (2011).
112
[61] H. W. Lee and B. S. Lin, "Improvement of illumination uniformity for LED flat
panel light by using micro-secondary lens array," Opt. Express 20, A788-A798
(2012).
[62] Y. S. Cheng, C. Y. Lin, C. M. Yeh, C. T. Kuo, C. W. Hsu, and H. C. Wang,
"Anti-glare LED lamps with adjustable illumination light field," Opt. Express
22, 5183-5195 (2014).
[63] C. W. Chiang, Y. K. Hsu, and J. W Pan, "Design and demonstration of high
efficiency anti-glare LED luminaires for indoor lighting," Opt. Express 23, A15-
A26 (2015).
[64] T. Kasahara, D. Aizawa, T. Irikura. T. Moriyama, M. Toda, and M. Iwamoto,
"Discomfort glare caused by white LED light sources," J. Light & Vis. Env. 30,
95-103 (2006).
[65] T. Tashiro, S. Kawanobe, T. K. Minoda, S. Kohko, T. Ishikawa, and M Ayama,
"Discomfort glare for white LED light sources with different spatial
arrangements," Lighting Res. Technol. 0, 1-22 (2014).
[66] C. H. Tsuei, J. W. Pen, and W. S. Sun, "Simulating the illuminance and the
efficiency of the LED and fluorescent lights used in indoor lighting design," Opt.
Express 16, 18692-18701 (2008).
[67] X. H. Lee, J. L. Tsai, S. H. Ma, and C. C. Sun, "Surface-structured diffuser by
iterative down-size molding with glass sintering technology," Opt. Express 20,
6135-6145 (2012).
[68] W. R. Ryckaert, K. A. G. Smet, I. A. A. Roelandts, M. V. Gils, and P. Hanselaer,
"Linear LED tubes versus fluorescent lamps: An evaluation," Energy and
Buildings 49, 429-436 (2012).
[69] S. Song, Y. Sun, Y Lin, and B. You, "A facile fabrication of light diffusing film
with LDP/polyacrylates composites coating for anti-glare LED application,"
113
Appl. Surf. Sci. 273, 652-660 (2013).
[70] C. C. Sun, W. T. Chien, I. Moreno, C. T. Hsieh, M. C. Lin, S. L. Hsiao, and X.
H. Lee, "Calculating model of light transmission efficiency of diffusers attached
to a lighting cavity," Opt. Express 18, 6137-6148 (2010).
[71] X. H. Lee, I. Moreno, and C. C. Sun, "High-performance LED street lighting
using microlens arrays," Opt. Express 21, 10612-10621 (2013).
[72] Y. C. Lo, J. Y. Cai, M. S. Tasi, Z. Y. Tasi, and C. C. Sun, "Side-illuminating LED
luminaires with accurate projection in high uniformity and high optical
utilization factor for large-area field illumination," Opt. Express 22, A365-A375
(2014).
[73] C. C. Sun, Y. Y. Chang, T. H. Yang, T. Y. Chung, C. C. Chen, T. X. Lee, D. R. Li,
C. Y. Lu, Z. Y. Ting, B. Glorieux, Y. C. Chen, K. Y. Lai, and C. Y. Liu, "Packaging
efficiency in phosphor-converted white LEDs and its impact to the limit of
luminous efficacy," Journal of Solid State Lighting 1, 1-17 (2014).
[74] Prolight Opto Technology Corporation, http://www.prolightopto.com/.
[75] C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, "Precise optical
modeling for LED lighting verified by cross correlation in the midfield region,"
Opt. Lett. 31, 2193-2195 (2006).
[76] J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
[77] Breault Research Organization, http://www.breault.com/.
[78] J. C. Stover, Optical Scattering Measurement and Analysis (McGraw-Hill,
1990).
[79] Y. W. Yu, Y. L. Chen, W. H. Chen, H. X. Chen, X. H. Lee, C. C. Lin, and C. C.
Sun, "Bidirectional scattering distribution function by screen imaging synthsis,"
Opt. Express 20, 1268-1280 (2012).
[80] Opsira GmbH, http://www.opsira.de/.
114
[81] Energy Star, http:// www.energystar.gov/.
[82] W. T. Chien, C. C. Sun, and I. Moreno, "Precise optical model of multi-chip white
LEDs," Opt. Express 15, 7572-7577 (2007).
[83] I. Moreno and C. C. Sun, "Modeling the radiation pattern of LEDs," Opt. Express
16, 1808-1819 (2008).
[84] I. Moreno, C. C. Sun, and R. Ivanov, "Far-field condition for light-emitting diode
arrays," Appl. Opt. 48, 1190-1197 (2009).
[85] C. C. Sun, W. T. Chien, I. Moreno, C. C. Hsieh, and Y. C. Lo, "Analysis of the
far-field region of LEDs," Opt. Express 17, 13918-13927 (2009).
指導教授 孫慶成(Ching-Cherng Sun) 審核日期 2016-6-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明