參考文獻 |
1. T. H. Jamieson, “Thermal effects in optical systems,” Opt. Eng. 20, 156-160 (1981).
2. R. W. Wood, “Refraction of Light,” in Handbook of PhysicalOptics (Optical Society of America, Washington, DC, 1911).
3. R. Hill, “A Lens for Whole Sky Photography,” in Proceedings of the Optical Convention , (London, 1926) , pp.878-883.
4. J. Y. Zheng and S. G. Li, “Employing a fish-eye for scene tunnel Scanning,” in Asian Conference on Computer Vision,( Hyderabad, 2006), pp. 509.
5. W. Feng, B. Zhang, J. Röning, Z. Cao, X. Zong, “An Embedded Omnidirectional Vision Navigator for Automatic Guided Vehicles,” Proc. SPIE 7878 (2011).
6. Z. Huang, J. Bai and X. Hou, “A multi-spectrum fish-eye lens for rice canopy detecting,” Proc. SPIE 7849, 78491Z (2010).
7. W. S. Sun, C. L. Tien, Y. H. Chen, P. Y. Chu, “Ultra-wide angle lens design with relative illumination analysis,” J. Eur. Opt. Soc. –Rapid 11, 16001 (2016).
8. D. S. Grey, “Athermalization of Optical Systems,” J. Opt. Soc. Am, 38, 542-546 (1948).
9. M. J. Duggin, “Discrimination of targets from background of similar temperature, using two-channel data in the 3.5-4.1-m and 11–12-m regions,” Appl. Opt. 25(7), 1186–1195 (1986).
10. M. H. Horman, “Temperature analysis from multispectral infrared data,” Appl. Opt. 15(9), 2099–2104 (1976).
11. T. H. Jamieson, “Ultrawide waveband optics,” Opt. Eng. 23(2), 111–116 (1984).
12. M. Roberts and P. J. Rogers, “Wide waveband infrared optics,” Proc. SPIE 1013, 84–91 (1988).
13. Y. Tamagawa and T. Tajime, “Dual-band optical systems with a projective athermal chart: design,” Appl. Opt. 36(1), 297–301 (1997).
14. J. L. Rayces, L. Lebich, “Thermal compensation of infrared achromatic objectives with three optical materials,” Proc. SPIE 1354, 752-759 (1990).
15. I. Friedman, “Thermo-optical analysis of two long-focal length aerial reconnaissance lenses,” Opt. Eng. 20, 161-165 (1981).
16. W. Shi, M. E. Couture, “Long wave infrared zoom projector thermal analysis and compensation,” Opt. Eng. 39, 2705-2714 (2000).
17. M. Bayar, Ő. F. Farsakoğlu, “Mechanically active athermalization of a forward looking infrared system,” Infrared Physics & Technology 43, 91-99 (2002).
18. C. W. Kuo, C. L. Lin, and C. Y. Han, “Dual field-of-view midwave infrared optical design and athermalization analysis,” Appl. Opt. 49(19), 3691–3700 (2010).
19. D. W. Anderson, “M1A2 tank commander’s independent thermal viewer optics: optics design perspective,” Proc. SPIE 1970, 128–138 (1993).
20. M. Norland, A. Rodland, A. Ingulstad and K. Kråkenes, “Design of high performance IR sensor,” Proc. SPIE 2269, 462–471 (1994).
21. A. Goldberg, T. Fischer, and S. Kennerly, “Dual band QWIP MWIR/LWIR focal plane array test results,” Proc. SPIE 4028, 276–287 (2000).
22. R. Simmons, P. A. Manning, and T. Chamberlain, “The design of passively athermalised narrow and wide field of view infrared objectives for OBSERVER unmanned air vehicle,” Proc. SPIE 5612, 236–248 (2004).
23. Gao Ming, Chen Yang, Liu Jun, Lv Hong, “Design of dual-band shared-aperture Co-zoom optical system,” Infrared Physics & Technology 64, 40-46 (2014).
24. C. W. Kuo, “Achromatic triplet and athermalized lens assembly for both midwave and longwave infrared spectra,” Opt. Eng. 53, 021102 (2014).
25. Y. Tamagawa, S. Wakabayashi, T. Tajime, and T. Hashimoto, “Multilens system design with an athermal chart,” Appl. Opt. 33, 8009-8013 (1994).
26. Y. Tamagawa, T. Tajime, “Expansion of an athermal chart into a multilens system with thick lenses spaced apart,” Opt. Eng. 35, 3001-3006 (1996).
27. Y. J. Kim, Y. S. Kim, and S. C. Park, “Simple graphical selection of optical materials for an athermal and achromatic design using equivalent Abbe number and thermal glass constant,” Journal of the optical society of Korea 19, 182-187 (2015).
28. R. C. Simmons and P. A. Blaine, ‘‘Stability of aberrations with temperature in fast thermal imaging zoom telescopes,’’ Proc. SPIE 916, 19–26 (1988).
29. C. W. Kuo, J. M. Miao, and C. H. Tai, “Midwave infrared optical zooming design and kinoform degrading evaluation methods,” Appl. Opt. 50(18), 3043–3049 (2011).
30. G. P. Behrmann and John P. Bowen, “Influence of temperature on diffractive lens performance,” Appl. Opt. 32, 2483-2489 (1993).
31. C. Londoňo, W. T. Plummer, P. P. Clark, “Athermalization of a single-component lens with diffractive optics,” Appl. Opt. 32(13), 2295-2302 (1993).
32. R. M. Hudyma, “Athermal MWIR Objectives,” Proc. SPIE 2540, 229-235 (1995).
33. V. Povey, “Athermalisation technique in infrared systems,” Proc. SPIE, 655, 142–153 (1986).
34. R. Q. Wu, K. Huang, H. Yang, J. Wang, Y. Liu, “Analysis of athermalizing performance of thermal infrared optical system with Cassegrain antenna,” Optik 121, 1904-1907 (2010).
35. H. S. Yang et al., “Three-shell-based lens barrel for the effective athermalization of an IR optical system,” Appl. Opt. 50(33), 6206-6213 (2011).
36. A. H. Wang, Q. H. Wang, X. F. Li and D. H. Li, “Combined lenticular lens for autostereoscopic three dimensional display,” Optik 123, 827-830 (2012).
37. O. V. Ponin and A. A. Sharov, “Apochromatic thermally nonmisadjustable objectives for wide-range multispectral space imaging,” J. Opt. Technol. 80, 230-232 (2013).
38. B. N. Walker, R. H. James, D. Calogero, and I. K. Iiev, “Impact of environmental temperature on optical power properties of intraocular lenses,” Appl. Opt. 53, 453-457 (2014).
39. Schott, Optical Glass Catalogue Excel (Schott Inc., Germany, June, 2012).
40. P. J. Rogers, “Athermalized FLIR optics,” Proc. SPIE 1354, 742-751 (1990).
41. Schott, “TIE-29: Refractive index and dispersion,” in Proc. Schott Technical information (Schott Inc., Germany, 2015).
42. Schott, “TIE-19: Temperature coefficient of the refractive index,” in Proc. Schott Technical information (Schott Inc., Germany, July 2008).
43. Y. Bai, T. W. Xing, W. M. Lin and W. M. Xie, “Athermalization of middle infrared optical system,” J. Appl. Opt. 33(1),181-185 (2012).
44. S. Thibault, J. Gauvin, M. Doucet and M. Wang, “Enhanced optical design by distortion control,” Proc. SPIE 5962, 596211 (2005).
45. 陳筠涵,「行車紀錄器超廣角鏡頭設計」,國立中央大學,碩士論文,民國103年。 |