博碩士論文 962406021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.15.239.0
姓名 張華明(Huaming-Ming Chang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 LASER光源暨LED在老鼠毛生長的低能量光治療比較分析
(The effects of low level light therapy between LASER and LED on hair growth of mice)
相關論文
★ 非反掃描式平行接收之雙光子螢光超光譜顯微術★ 以二次通過成像量測架構及降低誤差迭代演算法重建人眼之點擴散函數
★ 應用線狀結構照明提升雙光子顯微鏡解析度★ 以同調結構照明顯微術進行散射樣本解析度之提升
★ 掃描式二倍頻結構照明顯微術★ 小貓自泵相位共軛鏡於數位光學相位共軛與時間微分之研究
★ 鏡像輔助斷層掃描相位顯微鏡★ 以數位全像術重建多波長環狀光束之研究
★ 相位共軛反射鏡用於散射介質中光學聚焦之研究★ 雙光子螢光超光譜顯微術於多螢光生物樣本之研究
★ 倍頻非螢光基態耗損超解析之顯微成像方法★ 葉綠素雙光子螢光超光譜影像於光合作用研究之應用
★ 雙光子掃描結構照明顯微術★ 微投影光學切片超光譜顯微術
★ 使用結構照明顯微術觀察活體小鼠毛囊生長週期之變化★ 一次性多角度漫射光譜量測系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 低能量光治療是利用雷射光源或發光二極體光源應用在醫學領域,用以治療疾病或改變細胞的生理機能。掉髮雖然不是嚴重的疾病,但足以影響外觀。2007年美國FDA證實使用波長660 nm的雷射梳可以治療男性禿。由於發光二極體(LED)具有成本低,低能量的優點,因此我們想要比較發光二極體光源與雷射光源在毛髮生長的治療效果。
我們設計一個可以比較不同光源的低能量光治療平台,這個平台的光源,可以有發光二極體,也有雷射光源,經過漫散器(diffuser),在均勻化的設計下,使輸出的能量均勻化,並且測試的結果,均勻化效果達到90%以上。藉由這個平台的應用,可以用來比較發光二極體光源與雷射光源在毛髮生長治療效果的比較分析。我們也比較不照光、白光LED(530 nm)、紅光LED(660 nm)、近紅外線LED(808 nm)、雷射紅光光源(660 nm)、雷射近紅外線光源(808 nm)在低能量光治療小鼠毛髮生長的效果分析。
我們進行了三次的小鼠實驗,小鼠品項是C57BL/6JNarl,俗稱B6小鼠。實驗結果,得到不論是發光二極體光源或是雷射組光源,在紅光波長660 nm的治療下,對於毛髮的生長,兩者均有效果且效果相近。而在皮膚組織切片螢光染色的觀察結果,也是發現在發光二極體及雷射光源兩者均是紅光波長660 nm有出現CD34及Ki67螢光染光的結果,顯示,在這個波長的治療效果,確實有促進毛囊從休止期進入生長期的效果。
在安全性上,低能量光治療,在本實驗對於溫度並無增加,表示不會造成皮膚灼傷,換言之對於溫度的增加,其安全性是可以被接受的。
這一個平台,未來也可以提供低能量光治療在其它醫學領域的研究,可以使用不同波長,在相同能量下,雷射光源與發光二極體光源治療效果的比較。
摘要(英) Low level light therapy (LLLT) is using the LASER or LED light source to apply in medical fields, which can treat disease or change the cell physical function. Although the hair loss is not a severely disease, it affects the outlook of people. In 2007, a laser comb design (wavelength 660nm) was approved by the FDA for the treatment of hair loss in males with androgenetic alopecia. The LED has the advantage of cheap and low power, therefore, we want to compare the therapeutic effect between the LED and LASER light source.
We designed a LLLT therapeutic platform which can compare treatment effect between different light sources. The light source of platform can be from LED and LASER light. After diffuser design, the output power can be uniformed and reach to more than 90% uniformity. By the design platform, we can compare the hair growth effect of mice between the LED and LASER light source. We can also compare the hair growth effect of LLLT in different wavelength, such as control (no light application), white LED (530 nm), red LED (660 nm), infra-red LED (808 nm), red LASER (660 nm) and infra-red LASER (808 nm).
We underwent three LLLT experiments of mice hair growth. All the mice was the inbred strain of C57BL/6JNarl(also called B6 mice). As the result, there were similar effect of mice hair growth between the LED (wavelength 660 nm) and LASER light (wavelength 660 nm). In the observation of skin tissues biopsy on fluorescence microscopy, there were similar postive findings of CD34 and Ki67 in LLLT with the wavelength 660 nm(ether from LED or LASER light source). This means that LLLT in wavelength 660nm could promote the hair follicle from telogen phase into anagen phase.
As for safty, the temperature was not increased in our experiment during LLLT and could not make burn injury of skin. In other words, the safty was accetable for the increase of temperature.
From this design platform, we can apply this LLLT design on other medical field research. We can compare the therapeutic effect between the LASER and LED light source in different wavelength with the same output power.
關鍵字(中) ★ 低能量光治療
★ 雷射
★ 發光二極體
★ 毛髮增生
關鍵字(英) ★ low level light therapy
★ LASER
★ LED
★ hair growth
論文目次 中文摘要 i
Abstract iii
誌謝 v
目錄 vi
表目錄 vii
圖目錄 vii
第一章 緒論與動機 1
1.1緒論 1
1.2實驗動機 9
1.3論文的簡介 10
第二章 雷射與發光二極體 11
2.1雷射(LASER) 11
2.2 發光二極體(LED) 14
第三章 毛髮 17
3.1毛髮在皮膚的解剖 17
3.2毛髮的生長週期 19
3.3掉髮的治療 22
第四章 實驗設計與材料 24
4.1實驗的設計 24
4.2實驗動物 35
4.3皮膚組織切片染色 36
第五章 實驗結果與討論 37
5.1實驗結果 40
5.2皮膚組織切片染色結果 54
5.3小鼠治療期間溫度的變化 58
5.4討論 61
第六章 結論 68
參考文獻 70
參考文獻 1. Mester E, Juhász J, Varga P, Karika G. Lasers in clinical practice. Acta Chir Acad Sci Hung. 1968;9:349-57.
2. Maria C, Angélica A, André P, and Marcos P, Effects of low-power light therapy on wound healing: LASER x LED*, An Bras Dermatol. 2014 Jul-Aug; 89(4): 616–623.
3. Wikramanayake TC, Rodriguez R, Choudhary S, Mauro LM, Nouri K, Schachner LA, Jimenez JJ. Effects of the Lexington LaserComb on hair regrowth in the C3H/HeJ mouse model of alopecia areata. Lasers Med Sci. 2012;27(2):431–436.
4. Vlachos SP, Kontoes PP. Development of terminal hair following skin lesion treatments with an intense pulsed light source. Aesthetic Plast Surg. 2002;26(4):303–307.
5. Moreno-Arias G, Castelo-Branco C, Ferrando J. Paradoxical effect after IPL photoepilation. Dermatol Surg. 2002;28(11):1013–1016.
6. Alajlan A, Shapiro J, Rivers JK, MacDonald N, Wiggin J, Lui H. Paradoxical hypertrichosis after laser epilation. J Am Acad Dermatol. 2005 Jul;53(1):85–8.
7. Desai S, Mahmoud BH, Bhatia AC, Hamzavi IH. Paradoxical hypertrichosis after laser therapy: a review. Dermatol Surg. 2010 Mar;36(3):291–8.
8. Bernstein EF. Hair growth induced by diode laser treatment. Dermatol Surg. 2005;31(5):584–586.
9. Bouzari N, Firooz AR. Lasers may induce terminal hair growth. Dermatol Surg. 2006;32(3):460.
10. Leavitt M, Charles G, Heyman E, Michaels D. HairMax LaserComb laser phototherapy device in the treatment of male androgenetic alopecia: A randomized, double-blind, sham device-controlled, multicentre trial. Clin Drug Investig. 2009;29(5):283–292.
11. Hamblin MR.; Waynant, Ronald W.; Mechanisms for Low-Light Therapy. Anders, Juanita. Proceedings of the SPIE, Volume 6140, pp. 1-12 (2006).
12. Huang YY, Chen ACH, Hamblin MR. Low-level laser therapy: an emerging clinical paradigm. SPIE Newsroom. 2009;9:1–3.
13. Karu TI. Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B. 1999;49:1–17.
14. Hashmi JT, Huang YY, Osmani BZ, Sharma SK, Naeser MA, and Hamblin MR, Role of Low-Level Laser Therapy in Neurorehabilitation. PM R. 2010 Dec; 2(12 Suppl 2): S292–S305.
15. Karu TI., L.V. Pyatibrat and N.I. Afanasyeva, Cellular effects of low power laser therapy can be mediated by nitric oxide, Lasers Surg Med 36 (2005) 307-14.
16. Tuby H., Maltz L. and Oron U., Modulations of VEGF and iNOS in the rat heart by low level laser therapy are associated with cardioprotection and enhanced angiogenesis, Lasers Surg Med 38 (2006) 682-8.
17. Gould, R. Gordon "The LASER, Light Amplification by Stimulated Emission of Radiation". In Franken, P.A. and Sands, R.H. (Eds.). The Ann Arbor Conference on Optical Pumping, the University of Michigan, 15 June through 18 June 1959. p. 128.
18. Bertolotti, Mario. The History of the Laser. Institute of Physics Publishing.2005. pp. 226–234.
19. Sanders DR, Vukich JA; Vukich (May 2003). "Comparison of Implantable Contact Lens and Laser Assisted In Situ Keratomileusis for Moderate to High Myopia". Cornea 22 (4): 324–331.
20. Akakura K, Kawaguchi M, Ueda T, Ichikawa T, Ito H; et al. (2005). "Outcomes of shockwave lithotripsy for upper urinary-tract stones: a large-scale study at a single institution". J Endourol 19 (7): 768–73.
21. Jonathan G F. Laser management of diabetic retinopathy. J R Soc Med. 2003 Jun; 96(6): 277–279.
22. Mataix J, Desco MC, Palacios E, Garcia-Pous M, Navea A. Photodynamic therapy for age-related macular degeneration treatment: epidemiological and clinical analysis of a long-term study. Ophthalmic Surg Lasers Imaging. 2009 May-Jun;40(3):277-84.
23. Wright V. C. Laser surgery: using the carbon dioxide laser. Can Med Assoc J. 1982 May 1; 126(9): 1035–1039.
24. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG. Optical coherence tomography. Science. 1991;254:1178–1181.
25. Zheludev N. The life and times of the LED — a 100-year history. Nature Photonics 1, 189 - 192 (2007).
26. 王修含、吳佩芬;除毛大作戰肝病防治學術基金會暨全民健康基金會出版,2011年7月第17期《好健康》會刊
27. Hordinsky M, Donati A." Alopecia areata: an evidence-based treatment update." American journal of clinical dermatology (July 2014):15 (3): 231–46.
28. Otomo S. Hair growth effect of minoxidil. Nihon Yakurigaku Zasshi. 2002 Mar;119(3):167-74.
29. Messenger AG, Rundegren J. Minoxidil: mechanisms of action on hair growth. Br J Dermatol. 2004 Feb;150(2):186-94.
30. Shorter K, Farjo NP, Picksley SM, Randall VA. Human hair follicles contain two forms of ATP-sensitive potassium channels, only one of which is sensitive to minoxidil. FASEB J. 2008 Jun;22(6):1725-36.
31. Varothai S, Bergfeld WF. "Androgenetic alopecia: an evidence-based treatment update." American journal of clinical dermatology. 2014 July:15 (3): 217–30.
32. Mella JM, Perret MC, Manzotti M, Catalano HN, Guyatt G . "Efficacy and safety of finasteride therapy for androgenetic alopecia: a systematic review." Archives of Dermatology. 2010 Oct.146 (10): 1141–50.
33. Sheen YS , Jee SH. The effect of low level light on hair follicle epithelial-mesenchymal interaction: theory and mechanism. 2009.
34. Paus R, Handjiski B, Czarnetzki BM, Eichmüller S. A murine model for inducing and manipulating hair follicle regression (catagen): effects of dexamethasone and cyclosporin A. J Invest Dermatol. 1994 Aug;103(2):143-7.
35. Satterthwaite AB, Burn TC, Le Beau MM, Tenen DG. "Structure of the gene encoding CD34, a human hematopoietic stem cell antigen". Genomics Apr 1992;12 (4): 788–94.
36. Scholzen T, Gerdes J. "The Ki-67 protein: from the known and the unknown". J. Cell. Physiol. March 2000;182 (3): 311–22.
37. Endl E1, Gerdes J. The Ki-67 protein: fascinating forms and an unknown function. Exp Cell Res. Jun 2000;15;257(2):231-7.
38. Messenger AG, Rundegren J. Minoxidil: mechanisms of action on hair growth. Br J Dermatol. 2004 Feb;150(2):186-94.
39. Karl H.N, Smith KC, Press P, The Science of Photobiology, 1977; p.400
40. Theodore AH and Larry DM, Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain? Neuropsychiatr Dis Treat. 2015; 11: 2191–2208.
41. Joaquin J. J, Tongyu C. Wikramanayake, Wilma B., Maria H., Janet G. Hickman, Michael R. H, and Lawrence A. S Efficacy and Safety of a Low-level Laser Device in the Treatment of Male and Female Pattern Hair Loss: A Multicenter, Randomized, Sham Device-controlled, Double-blind Study Am J Clin Dermatol. 2014; 15(2): 115–127
42. Poon V.K., Huang L. and Burd A., Biostimulation of dermal fibroblast by sublethal Q-switched Nd:YAG 532 nm laser: collagen remodeling and pigmentation, J Photochem Photobiol B 81 (2005) 1-8.
43. Kipshidze N., Nikolaychik V., Keelan M.H., Shankar L.R., Khanna A., R. Kornowski, Leon M. and Moses J., Low-power helium: neon laser irradiation enhances production of vascular endothelial growth factor and promotes growth of endothelial cells in vitro, Lasers Surg Med 28 (2001) 355-64.
44. Finasteride: potential risk of male breast cancer. Medicines and Healthcare products Regulatory Agency Drug Safety Update. December 2009
45. Zarei M, Wikramanayake TC, Falto-Aizpurua L, Schachner LA, Jimenez JJ. Low level laser therapy and hair regrowth: an evidence-based review. Lasers Med Sci. 2015 Dec 21.
指導教授 陳思妤(Szu-Yu Chen) 審核日期 2016-8-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明