姓名 |
余秋金(Chiu-Chin Yu)
查詢紙本館藏 |
畢業系所 |
光電科學與工程學系 |
論文名稱 |
導熱添加物對複合材料導熱的影響 (The thermal conductivity effect of the composite material by thermally conductive additives)
|
相關論文 | |
檔案 |
[Endnote RIS 格式]
[Bibtex 格式]
[相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放)
|
摘要(中) |
隨著光電產品小型化裝置的應用趨勢,經常出現熱飄移影響電氣特性或熱應力破壞裝置的問題,故需要使用有導熱性添加物之複合材料協助系統傳熱與散熱,同時也要考慮電氣絕緣性與機構上可撓柔軟性安裝,進而簡化生產程序也提高產品的可靠度。
不同配比添加物之複合材料具有不同熱阻抗值RM與熱傳導係數kM,本研究論文中選擇1~4μm粒度尺寸及120~150[W/m∙℃] 熱傳導值範圍之黑石墨Graphite、碳化矽SiC與氮化鋁AlN等三種市場常見添加物材料,其中黑石墨與碳化矽為導體,氮化鋁為絶緣體。
相關複合材料可使用標準ASTM D5470進行量測,但需要二小時以上的時間穩定熱流狀態才能得知RM與kM之正確性量測值,同時比對於用熱傳遞學理論與熱容積原理所推導RM或kM理論計算值,可得知ΔRM的最大誤差是0.20[℃/W] ,最小誤差是0.01[℃/W],而ΔkM的最大誤差是0.11[W/m∙℃] ,最小誤差是0.01[W/m∙℃] ,其可證明所推導出理論公式具有學術研究參考價值,在相關產業界上可以提供快速計算而事先預知複合矽膠的熱傳導特性。
本研究結論發現複合矽膠的熱傳導物理新特性: 若添加小於30wt% 導電性材料Graphite或SiC,kM無明顯影響變化量,當添加大於40wt%時 kM成正比增加,直至68wt%的kM值優於同樣配比之AlN的kM,若持續添加至85wt%以上則複合矽膠的機構強度脆弱。若添加非導電性AlN達到75wt% 以上之RM較同樣配比SiC小,傳熱性良好。若持續添加至80wt% AlN,則kM值為0.85傳熱效果更佳。 |
摘要(英) |
The optoelectronic device with the trending minimization of application, often affect the electrical properties on thermal drift or breakdown device by thermal stress, it is required the compound silicone with thermal conductive components to transfer heat and to assist heat from the device, that consider simultaneously the electrically insulating or install with flexibility on mechanism, thereby simplifying the production process also improves the reliability of the product.
Different proportions of the compound silicone has a different thermal resistance RM and thermal conductivity kM, this research paper, in accordance with 1 ~ 4μm particle size and 120 ~ 150[W/m℃] thermal conductivity value range, to selecting the Graphite, Silicon carbide (SiC) and Aluminum nitride (AlN) that three additive materials is common in market, which the black graphite and silicon carbide is a conductor, aluminum nitride is an insulator.
Compound silicone were measured by using standard ASTM D5470, it must take more than two hours to steady state heat, then get the correct measured value of RM and kM , Derived formula of RM and kM with heat transfer theory and the principles of derived heat volume for calculate the theoretical value to comparing measured value.
Then can be available the maximum ΔRM is 0.20 [℃/W], the smallest tolerance is 0.01 [℃/W] ,while the maximum tolerance ΔkM is 0.11[W/(m∙℃)], the minimum tolerance is 0.01[W/(m∙℃)], that can be proved which the theoretical formula have useful reference in academic, and this can provide a quick calculation to predict heat transfer characteristics of the compound silicone in the relevant industry.
The conclusion that physical properties of the thermal conductive compound silicone: kM is no significant effect changes within mixing less than 30wt% conductive material as Graphite or SiC, then proportional increase kM until adding conductive material more than 40wt%, this is superior to AlN until more than each 68wt% mixing ratio. But the mechanical strength of the compound silicone is fragile when more than 85wt% mixing ratio. The RM of more than 75wt% AlN compound silicone less than the same ratio of SiC is good thermal conductivity. The 80wt% AlN compound silicone is better transferable heat and kM = 0.85. |
關鍵字(中) |
★ 黑石墨 ★ 碳化矽 ★ 氮化鋁 ★ 熱傳導率 ★ 熱阻抗值 |
關鍵字(英) |
★ ASTM D5470 ★ Graphite ★ SiC ★ AlN ★ Thermal conductivity ★ Thermal Resistance |
論文目次 |
摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的與方法 3
1.3 論文架構 4
第二章 導熱添加物對複合材料導熱的影響 5
基本理論 5
2.1 熱傳遞理論 5
2.1.1 熱傳導(Thermal conduction) 6
2.1.2 熱對流(Thermal convection) 8
2.1.3 熱輻射(Thermal radiation) 9
2.2 熱阻與熱傳導係數 10
2.2.1 熱阻(Thermal resistance) 10
2.2.2 熱傳導係數(Thermal conductivity) 11
2.3 同質材料的熱傳導係數 12
2.4 不同截面積等效熱阻抗計算方法 13
2.5 熱等效電路轉換方法 15
第三章 研究方法與實驗 20
3.1 實驗方法 20
3.2 實驗設備 21
3.2.1 電源供應器 21
3.2.2 全自動插拔力試驗機 21
3.2.3 多路數據採集器開關單元控制主機 22
3.2.4 Notebook & 軟體支援 22
3.2.5 量測治具 23
3.3 ASTM D5470量測治具說明 24
3.4 實驗材料(導熱添加物) 28
3.4.1添加物材質特性 28
3.4.2導熱添加物粉末顆粒的大小 28
3.4.3 導熱添加物對複合材料的試片種類 30
3.5 實驗步驟 32
第四章 實驗結果 42
4.1 實驗結果 42
4.1.1 黑石墨實驗結果數據表說明 43
4.1.2 黑石墨熱阻與熱傳導係數理論計算結果 47
4.1.3 碳化矽熱阻與熱傳導係數理論計算結果 52
4.1.4 氮化鋁熱阻與熱傳導係數理論計算結果 57
4.2 各類複合材料實驗結果比較 61
第五章 結論與未來展望 63
5.1 結論 63
5.2 未來展望 64
參考文獻 71 |
參考文獻 |
[1]ASTM D5470-06,Standard Test Method for Thermal Transmission Properties of Thermally Conductive Electrical Insulation Materials
[2]千輝淳二,《實用傳熱計算(1982)》
[3]石延平,《熱傳遞學(1984)》
[4]M. Necati ӦZISIK,《Heat Transfer A Basic Approach (1985)》
[5]Jerry Sergent,Al Krum,《THERMAL MANAGEMENT HANDBOOK,McGraw-Hill Companies (1998)》
[6]許正達,《奈米材料應用在散熱技術設計與量測(2009)》
[7]王曉剛 ,《熱傳學講義(2009)》
[8]中文百科在線-網路百科新概念,《熱阻的介紹》
http://www.zwbk.org/MyLemmaShow.aspx?zh=zh-tw&lid=217782
[9]維基百科,《物質的熱導率》
https://zh.wikipedia.org/wiki/熱導率
[10]科邁斯集團-產業知識庫,《熱傳導-HD 材料的熱傳導係數探討》
http://www.techmaxasia.com/articles/detail/1196063583
[11]泰菱-電子儀器
http://www.tecpel.com.tw/gps-3303c.html
[12]全自動插拔力試驗機
http://www.114pifa.com/p2908/4921220.html
[13]Agilent 34970A 數據採集/開關單元系列 產品概述
http://cp.literature.agilent.com/litweb/pdf/5965-290CHCN.pdf
[14]林育才教授-計算流力實驗室,《熱介面材料之熱傳導係數的量測方法改良研究》
[15]凱樂士股份有限公司,《材料特性比較表》
http://www.kallex.com.tw/comparison.php
[16]Yunus A . Cangel,《熱傳遞(2000)》
[17]莊文亮,《熱傳導測試儀-瞬變平面熱源法》
[18]John H. Lienhard IV/John H. Lienhard V,《A HEAT TRANSFER TEXTBOOK"Third Edition. Version 1.31 - MIT》
http://web.mit.edu/lienhard/www/ahttv131.pdf
[19]Lee ,《Compact-Thermal-Network-Model-of-the-Thermal Interface Material Measurement Apparatus with Multi-Dimensional Heat FlowIEEE Transactions on components, packaging and manufacturing technology vol. 1, NO. 8,August,《 2011)》
[20]Michael H. Bunyan and Miksa de Sorgo,《Measurement, Significance and Application of Thermal Properties of Thermal Interface Materials Using ASTM D5470,《 2003)》 |
指導教授 |
張榮森(Rong-Seng Chang)
|
審核日期 |
2016-8-18 |
推文 |
facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu
|
網路書籤 |
Google bookmarks del.icio.us hemidemi myshare
|