博碩士論文 103226063 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.144.85.96
姓名 邱俐雯(Li-Wen Chiu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 人臉三維取像與辨識
(Study of 3D Human Face Imaging and Identification)
相關論文
★ 奈米電漿子感測技術於生物分子之功能分析★ 表面結構擴散片之設計、製作與應用
★ 結合柱狀透鏡陣列之非成像車頭燈光型設計★ CCD 量測儀器之研究與探討
★ 鈦酸鋇晶體非均向性自繞射之研究及其在光資訊處理之應用★ 多光束繞射光學元件應用在DVD光學讀取頭之設計
★ 高位移敏感度之全像多工光學儲存之研究★ 利用亂相編碼與體積全像之全光學式光纖感測系統
★ 體積光柵應用於微物3D掃描之研究★ 具有偏極及光強分佈之孔徑的繞射極限的研究
★ 三維亂相編碼之體積全像及其應用★ 透鏡像差的量測與MTF的驗證
★ 二位元隨機編碼之全像光學鎖之研究★ 亂相編碼於體積全像之全光學分佈式光纖感測系統之研究
★ 自發式相位共軛鏡之相位穩定與應用於自由空間光通訊之研究★ 體積全像空間濾波器應用於物體 三度空間微米級位移之量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 對於現今的量測技術,由於條紋投影輪廓儀 (Projected Fringe Profilometry,PFP) 具有非接觸式的特色,目前被廣泛使用於量測物體三維形貌,本論文即利用條紋投影輪廓儀中的傅立葉輪廓術(Fourier transform profilometry,FTP) 重建物體的三維形貌,其優點具有快速、精準度高且只需單一影像即可還原物體三維形貌。本實驗運用FTP於人臉輪廓上的還原,並在重建的人臉三維形貌上擷取特徵值,利用每個人特徵值具有差異性的特性,提出雙重辨識方法達到辨識的效果。
但在實際拍攝時,人臉會因為傾斜與操作距離不同而產生計算之誤差,透過兩種傾斜修正方法將人臉正規化,並利用三角測距法推算出實際距離,使本系統具有小角度傾斜容忍度以及35~55公分的拍攝容許距離。
我們將人臉資料庫中的85人相互比對,總共比對3570次,藉由雙重辨識方法辨識,辨識率高達99.91%。
摘要(英) Because of fringe projection profilometry (PFP) has the advantages of non-contact measuring method, and it is widely use for measuring the three-dimensional shape of objects now. In this study, using Fourier transform profilometry (FTP) to reconstruct the three-dimensional shape of an object, which has the advantages of fast, high accuracy and only a single image that can restore the three-dimensional shape of an object. So we use FTP to restore three-dimensional shape of human face and get the feature value from it. Because of each person has unique feature, we proposed the method for double-identification to identification.
In the measuring process, there are some artificial errors which are occurred by human face tilting and shifting. To solve this problem, we proposed two kinds of tilt-correction methods to normalize each human face, and calculating actual distance by using optical triangulation. So that, it allows a small tilt angle tolerance for system and extend shooting distance to 35~55 centimeters. Finally, we compare 85 persons with each other from face database, a total of comparison is 3570 times. By using double-identification method to identify 85 persons for each other, the recognition rate reaches 99.91%.
關鍵字(中) ★ 人臉辨識
★ 條紋投影輪廓儀
★ 傅立業輪廓術
★ 重建
★ 三維形貌
關鍵字(英) ★ face recognition
★ Projected Fringe Profilometry
★ Fourier transform profilometry
★ reconstruct
★ three-dimensional shape
論文目次 摘要 I
Abstract II
致謝 IV
目錄 V
表目錄 XI
第一章 緒論 1
1.1背景與發展 1
1.2 條紋投影輪廓儀發展 5
1.3 研究動機 6
1.4 論文大綱與安排 7
第二章 實驗基本原理 8
2.1條紋投影輪廓儀基本原理 8
2.1.1 光學三角量測法 9
2.1.2 快速傅立葉轉換原理 12
2.2 相位展開演算法 16
2.3 三角測距法 22
第三章 人臉輪廓的建立與特徵值的選取 25
3.1 實驗量測架構 25
3.2 人臉輪廓的建立 27
3.3 系統理論精準度與實際量測結果比較 35
3.4特徵點的選擇與量測 40
3.5 結論 41
第四章人臉辨識與分析 43
4.1人臉傾斜的修正 43
4.1.1 方法ㄧ – 額頭線方程修正法 44
4.1.2 方法二 – 額頭區域性修正法 54
4.2 特徵值的量測 58
4.3 人臉的分析與辨識 59
4.3.1 閥值的設定與辨識 59
4.3.2 系統傾斜容忍度 73
4.4 不同距離的修正 77
4.4.1 定位點的選擇 78
4.4.2 不同距離的判定與分析 80
4.5結論 83
第五章 結論 84
參考文獻 86
中英文對照表 91
參考文獻 [1] H. A. Rowley, S. Baluja, and T. Kanade, “Neural Network-Based Face Detection,” IEEE Patt. Anal. Mach. Intell. 20, 23-38 (1998).
[2] K. K. Sung and T. Poggio, “Example-Based Learning for View-Based Human Face Detection,” IEEE Patt. Anal. Mach. Intell. 20, 39-51 (1998).

[3] M. Turk and A. Pentland, “Eigenfaces for Recognition,” J. Cognitive Neuroscience. 3, 71-86 (1991).

[4] P. Belhumeur, J. Hespanda and D. Kriegman, “Eigenfaces Versus Fisherfaces: Recognition Using Class Specific Linear Projection,” IEEE Patt. Anal. Mach. Intell. 19, 711-720 (1997).

[5] L. Wiskott, J. M. Fellous, N. Krü and C. V. D. Malsburg, “Face Recognition by Elastic Bunch Graph Matching,” IEEE Patt. Anal. Mach. Intell. 19, 775-779 (1997).

[6] J. A. K. Suykens and J. Vandewalle, “Least Squares Support Vector Machine Classifiers,” Neural Processing Lett. 9, 293-300 (1999).

[7] P. N Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection,” IEEE Patt. Anal. Mach. Intell. 19, 711-720 (1997).

[8] M. Kirby and L. Sirovich, “Application of The Karhunen-Loeve Procedure for The Characterization of Human Faces,” IEEE Patt. Anal. Mach. Intell. 12, 103-108 (1990).

[9] J. Zakzeski, P. C. A. Bruijnincx, A. L. Jongerius, and B. M. Weckhuysen, “The Catalytic Valorization of Lignin for The Production of Renewable Chemicals,” Chem. Rev. 110, 3552-3599 (2010).

[10] R. Brunelli and T. Poggio, “Face Recognition: Features Versus Templates,” IEEE Patt. Anal. Mach. Intell. 15, 1042-1052 (1993).

[11] Z. Pan, R. Adams, and H. Bolouri, “Image Redundancy Reduction for Neural Network Classification Using Discrete Cosine Transforms,” Proc. Int. Joint Conf. Neural Netw. 3, 149-154 (2000).

[12] P. Belhumeur and D. Kriegman, “What Is The Set of Images of An Object under All Possible Lighting Conditions,” J. Computer Vision. 28, 245-260 (1998).

[13] T. R. Raviv and A. Shashua, “The Quotient Image: Class Based Re-rendering and Recognition with Varying Illuminations,” CVPR. 23, 566–571 (1999).
[14] C. P. Chen and C. S. Chen, “Lighting Normalization with Generic Intrinsic Illumination Subspace for Face Recognition,” ICCV. 2, 1089-1096 (2005).

[15] S. H. Rowe and W. T. Welford, “Surface Topography of Non-Optical Surfaces by Projected Interference Fringes,” Nature 216, 786-788 (1967).
[16] S. H. Rowe, “Projected Interference Fringes in Holographic Interferometry,” JOSA 61, 1599-1603 (1971).
[17] R. Crane, “Interference Phase Measurement,” Appl. Opt. 8, 538 (1969).

[18] J. H. Bruning, J. E. Gallagher, D. P. Rosenfeld, A. D. White, D. J. Brangaccio, and D. R. Herriott, “Digital Wavefront Measuring Interferometer for Testing Optical Surfaces and Lenses,” Appl. Opt. 13, 2693 (1974).

[19] H. Takasaki, “Moiré topography,” Appl. Opt. 9, 1467–1472 (1970).

[20] V. Srinivasan, H. C. Liu, and M. Halioua, “Automated Phase-measuring Profilometry of 3-D Diffusive Objects,” Appl. Opt. 23, 3105-3108 (1984).

[21] V. Srinivasan, H. C. Liu, and M. Halioua, “Automated Phase-measuring Profilometry: A Phase Mapping Approach,” Appl. Opt. 24, 185–188 (1985).

[22] M. Takeda, H. Ina, and S. Koboyashi, “Fourier-transform Method of Fringe-pattern Analysis for Computer-based Topography and Interferometry,” JOSA 72, l56–l60 (1982).

[23] M. Takeda and K. Motoh, “Fourier Transform Profilometry for The Automatic Measurement of 3-D Object Shapes,” Appl. Opt. 22, 3977–3982 (1983).

[24] J. L. Li, H. J. Su, and X. Y. Su, “Two-frequency Grating Used in Phase-measuring Profilometry,” Appl. Opt. 36, 277–280 (1997).

[25] X. Y. Su, J. Li, and L. R. Gou, “An Improved Fourier Transform Profilometry,” Proc. SPIE 954, 32–35 (1988).

[26] J. F. Lin and X. Y. Su, “Two-dimensional Fourier Transform Profilometry for The Automatic Measurement of Three-dimensional Object Shapes,” Opt. Eng. 34, 3297–3302 (1995).

[27] M. Takeda, Q. Gu, M. Kinoshita, H. Takai and Y. Takahashi, “Frequency-multiplex Fourier-transform Profilometry: A Single-shot Three-dimensional Shape Measurement of Objects with Large Height Discontinuities and/or Surface Isolations,” Appl. Opt. 36, 5347–5354 (1997).

[28] Y. D. Hao, Y. Zhao, and D. C. Li, “Multifrequency Grating Projection Profilometry Based on The Nonlinear Excess Fraction Method,” Appl. Opt. 38, 4106–4110 (1999).

[29] K. G. Larkin and B. F. Oreb, “Design and Assessment of Symmetrical Phase-shifting Algorithms,” JOSA A 9, 1740-1748 (1992).
[30] S. Zhang, “High-resolution 3-D Profilometry with Binary Phase-shifting Methods,” Appl. Opt. 50, 1753–1757 (2011).

[31] X. Su and W. Chen, “Fourier Transform Profilometry: A Review,” Opt. Laser Eng. 35, 263–284 (2001).

[32] 柯韋廷,利用條紋投影技術進行物體表面之三維形變量量測,國立中山大學材料與光電科學學系研究所碩士論文,中華民國一百零一年。

[33] W. H. Su, “Color-encoded Fringe Projection for 3D Shape Measurements,” Opt. Express 15, 13167–13181 (2007).

[34] 徐維懋,鏡像輔助斷層掃描相位顯微鏡,國立中央大學光電所碩士論文,中華民國一百零三年。

[35] R. Cusack, J. Huntley, and H. Goldrein, “Improved Noise-immune Phase- unwrapping Algorithm,” Appl. Opt. 34, 781-789 (1995).

[36] B. Gutmann and H. Weber, “Phase Unwrapping with The Branch-cut Method: Role of Phase-field Direction,” Appl. Opt. 39, 4802-4816 (2000).

[37] L. An, Q. S. Xiang, and S. Chavez, “A Fast Implementation of The Minimum Spanning Tree Method for Phase Unwrapping,” IEEE Trans Med Imaging. 19, 805-808 (2000).

[38] D. C. Ghiglia, G. A. Mastin, and L. A. Romero, “Cellular-automata Method for Phase Unwrapping,” JOSA A 4, 267-280 (1987).

[39] D. C. Ghiglia and L. A. Romero, “Robust Two-dimensional Weighted and Unweighted Phase Unwrapping that Uses Fast Transforms and Iterative Methods,” JOSA A 11, 107-117 (1994).

[40] R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite Radar Interferometry: Two‐dimensional Phase Unwrapping,” Radio Science 23, 713-720 (1988).

[41] A. Buckingham, R. Disch, and D. Dunmur, “Matrix Formulation of the Reconstruction of Phase Values from Phase Differences,” Physica 23, 825-837 (1957).

[42] M. F. Costa, “Surface Inspection by An Optical Triangulation Method,” Opt. Eng. 35, 2743 (1996).

[43] Mitsuo and Kazuhiro Mutoh, “Fourier Transform Profilometry for The Automatic Measurement of 3-D Object Shapes,” Appl. Opt. 22, 3977-3982 (1983).

[44] 林信宏,以光學疊紋法作人臉辨別之研究,元智大學電機工程研究所碩士論文,中華民國八十九年。
指導教授 孫慶成(Ching-Cherng Sun) 審核日期 2016-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明