參考文獻 |
[1] National renewable energy laboratory. (2013, Nov. 18). Solar spectra [Online] Avaliable:
http://rredc.nrel.gov/solar/spectra/
[2] T. P. White, and K. R. Catchpole,“Plasmon-enhanced internal photoemission for photovoltaics: Theoretical efficiency limits,” Appl. Phys. Lett., vol. 101, no. 7, pp. 073905, Aug. 2012.
[3] Mark. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nature Nanotechnology, vol. 10, no. 1, pp. 25-34, Jan. 2015.
[4] R. H. Fowler, “The analysis of photoelectric sensitivity curves for clean metals at various temperatures,” Phys. Rev., vol. 38, no. 1, pp. 45-56, Jul. 1931.
[5] C. N. Berglund, and W. E. Spicer, “Photoemission studies of copeer and silver: Experiment,” Phys. Rev., vol. 136, no. 4A, pp. 1044-1064, Nov. 1964.
[6] R. Y. Koyama, and Neville V. Smith, “Photoemission properties of simple metals,” Phys. Rev. B, vol. 2, no. 8, pp. 3049-3059, Oct. 1970.
[7] N. V. Smith, “Photoelectron energy spectra and the band structures of the noble metals,” Phys. Rev. B, vol. 3, no. 6, pp. 1862-1878, Mar. 1971.
[8] N. E. Christensen, and B. O. Seraphin, “Relativistic band calculation and the optical properties of gold,” Phys. Rev. B, vol. 4, no. 10, pp. 3321-3343, Nov. 1971.
[9] E. W. McFarland, and J. Tang, “A photovoltaic device structure based on internal electron emission,” Science, vol. 421, no. 6923, pp. 616-618, Feb. 2003.
[10] M. W. Knight, H. Sobhani, H. Sobhani, and N. J. Halas, “Photodetection with active optical antennas,” Science, vol. 332, no. 6, pp. 702-704, May 2011.
[11] M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron
emission,” Nano Lett., vol. 13, no. 4, pp. 1687-1692, Mar. 2013.
[12] W. Li, and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,”
Nano Lett., vol. 14, no. 6, pp. 3510-3514, May 2014.
[13] H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett., vol. 14, no. 3, pp. 1374-1380, Feb. 2014.
[14] S. V. Boriskina, J. Zhou, W.-C. Hsu, B. Liao, and G. Chen, “Limiting efficiencies of solar energy conversion and photo-detection via internal emission of hot electrons and hot holes in gold,” Proc. SPIE, vol. 9608, pp. 960816, Sep. 2015.
[15] A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater, “Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates,” J. Appl. Phys., vol. 115, no. 13, pp. 134301, Apr. 2014.
[16] C. Scales, and P. Berini, “Thin-film Schottky barrier photodetector models,” J. Quamtum Electro., Vol. 46, No. 5, pp. 633-643, May 2010.
[17] D. A. Kovacs, J. Winter, S. Meyer, A. Wucher, and D. Diesing, “Photo and particle induced transport of excited carriers in thin film tunnel junctions,” Phys. Rev. B, vol. 76, no. 23, pp. 235408, Dec. 2007.
[18] F. Wang, and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett., vol. 11, no. 12, pp. 5426-5430, Oct. 2011.
[19] F. Wang, and N. A. Melosh, “Power-independent wavelength determination by hot carrier collection in metal-insulator-metal devices,” Nature Commun., vol. 4, no. 1711, Apr. 2013.
[20] T. Gong, and J. N. Munday, “Angle-independent hot carrier generation and collection using transparent conducting oxides,” Nano Lett., vol. 15, no. 1, pp. 147-152, Dec. 2014.
[21] P.-Y. Yu, and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties, Springer, 2010.
[22] M. Casalino, “Internal photoemission theory: Comments and theoretical limitations on the performance of near-infrared silicon Schottky photdetectors,” J. Quantum Electron., vol. 52, no. 4, pp. 4000110, Apr. 2016.
[23] D. A. Neamen, Semiconductor Physics and Devices, 4th ed., McGraw-Hill, New York, 2012.
[24] A. M. Brown, R. Sundararaman, P. Narang, W. A. Goddard, and H. A. Atwater, “Nonradiative plasmon decay and hot carrier dynamics: Effects of phonons, surfaces,
and geometry,” ACS Nano, vol. 10, no. 1, pp. 957-966, Dec. 2015.
[25] W. A. Harrison, Pseudopotential in the Theory of Metals, W. A. Benjamin, 1966.
[26] M. L. Cohen, and J. R. Chelikowsky, Electronic Structure and Optical Properties of Semiconductors, Springer, 1988.
[27] P. Harrison, Quantum Wells, Wires and Dots, 2nd ed., Wiley, 2005.
[28] C.-Y. Fong, and M. L. Cohen, “Energy band structure of copper by the empirical pseudopotential method,” Phys. Rev. Lett., vol. 24, no. 7, pp. 306-309, Feb. 1970.
[29] C.-Y. Fong, J. P. Walter, and M. L. Cohen, “Comparison of band structures and charge distributions of copper and silver,” Phys. Rev. B, vol. 11, no. 8, pp. 2759-2767, Apr. 1975.
[30] R. Mehrem, “The plane wave expansion, infinite integrals and identities involving spherical Bessel functions,” Appl. Math. Comput., vol. 217, no. 12, pp. 5360-5365, Feb. 2011.
[31] G. B. Arfken, and H. J. Weber, Nathematical methods for physics, 4th ed., Academic Press Inc., 1995.
[32] Y.-M. Zheng, R.-Z. Wang, and Y.-B. Li, “The empirical pseudopotential method in the calculation of heterostructure band offsets,” J. Phys.: Condens. Matter, vol. 8, no. 39, pp. 7321-7327, May 1996.
[33] H. J. Levinson, F. Greuter, and E. W. Plummer, “Experimental band structure of Aluminum,” Phys. Rev. B, vol. 27, no. 2 pp. 727-747, Jan. 1983.
[34] C.-Y. Fong, M. L. Cohen, R. R. L. Zucca, J. Stokes, and Y.-R. Shen, “Wavelength modulation spectrum of copper,” Phys. Rev. Lett., vol. 25, no. 21 pp. 1486-1489, Nov. 1970.
[35] J. Stokes, Y.-R. Shen, Y.-W. Tsang, M. L. Cohen, and C.- Y. Fong, “Wavelength modulation spectra of single crystals of silver and gold,” Phys. Lett., vol. 38A, no. 5, pp. 347-348, Feb. 1972.
[36] J. P. Walter, C.-Y. Fong, and M. L. Cohen, “Electronic charge density of aluminum,” Solid State Commun., vol. 12, no. 5, pp. 303-307, Mar. 1973.
[37] M. Fox, Optical Properties of Solids, USA: Oxford Press Inc., 2001.
[38] A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski. “Optical properties of
metallic films for vertical-cavity optoelectronic devices,” Appl. Opt., vol. 37, no. 22, pp. 5271-5283 Aug. 1998.
[39] A. D. Rakic. “Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum,” Appl. Opt., vol. 34, no. 22, pp. 4755-4767, Aug. 1995.
[40] C. Kittel, Introduction to Solid State Physics, 8th ed., Wiley, New York, 2004.
[41] M. Bauer, S. Pawlik, and M. Aeschlimann, “Electron dynamics of aluminum investigated by means of time-resolved photoemission,” Proc. SPIE, Vol. 3272, no. 201, pp. 201-210, Apr. 1998.
[42] R. Matzdorf, A. Gerlach, F. Theilmann, G. Meister, and A. Goldmann, “New lifetime estimates for d-band holes at noblemetal surfaces,” Appl. Phys. B, Vol. 68, no. 3, pp. 393-395, Oct. 1998.
[43] J. R. Chelikowsky, and M. L. Cohen, “Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors,” Phys. Rev. B, vol. 14, no. 2, pp. 556-582, Jul. 1976.
[44] M.KarthickRaj, “Polarization-insensitive two-dimensional periodic metallic absorbers
in structured metal-insulator-metal configuration for plasmon-enhanced photoelectric conversion,” M.S. thesis, Dept. Optics and Photonics, National Central Univ.,
Taoyuan, Taiwan, 2016.
[45] J. Robertson, “Band offsets of high dielectric constant gate oxides on silicon,” J.
Non-Cryst. Solids, vol. 303, no. 1, pp. 94-100, May 2002.
[46] E. D. Palik, Handbook of Optical Constants of Solids I-III, Elsevier, 1997.
[47] H. R. Philipp, “Optical properties of silicon nitride,” J. Electrochim. Soc., vol. 120, no. 2, pp. 295-300, Feb. 1973.
[48] T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A.Szeghalmi, E.-B. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater., vol. 4, no. 11, pp. 1780-1786, Jul. 2016.
[49] E. D. Palik, Handbook of Optical Constants of Solids, USA: Academic Press Inc., 1985.
[50] B. J. Eliasson, “Metal-insulator-metal diodes for solar energy conversion,” Ph.D. dissertation, Dept. Elect. Computer Eng., Univ. Colorado, Boulder, CO, 2001.
[51] Y. Nagao, A. Yoshikawa, K. Koumoto, T. Kato, Y. Ikuhara, and H. Ohta, “Experimental characterization of the electronic structure of anatase TiO2: Thermopower
modulation,” Appl. Phys. Lett., vol. 97, no. 17, p. 172112, Oct. 2010.
[52] E. B. Saff, and A. B. J. Kuijlaars, “Distributing many points on a sphere,” Math. Intell., vol. 19, no. 1, pp. 5-11, Dec. 1997. |