參考文獻 |
1. Kim JJ, Rini BI, and Hansel DE. Diseases of DNA Repair. Springer; 2010:228-49.
2. Haddad NMN, Cavallerano JD, and Silva PS. Seminars in ophthalmology. Taylor & Francis; 2013:377-86.
3. Chou A, Toon C, Pickett J, and Gill AJ. Endocrine Tumor Syndromes and Their Genetics. Karger Publishers; 2013:30-49.
4. Kaelin WG. Molecular basis of the VHL hereditary cancer syndrome. Nature Reviews Cancer. 2002;2(9):673-82.
5. Kawamoto S, Johnson PT, Shi C, Singhi AD, Hruban RH, Wolfgang CL, Edil BH, and Fishman EK. Pancreatic neuroendocrine tumor with cystlike changes: evaluation with MDCT. AJR American journal of roentgenology. 2013;200(3):W283.
6. Belldegrun AS, Klatte T, Shuch B, LaRochelle JC, Miller DC, Said JW, Riggs SB, Zomorodian N, Kabbinavar FF, and DeKernion JB. Cancer‐specific survival outcomes among patients treated during the cytokine era of kidney cancer (1989‐2005). Cancer. 2008;113(9):2457-63.
7. Störkel S, Eble JN, Adlakha K, Amin M, Blute ML, Bostwick DG, Darson M, Delahunt B, and Iczkowski K. Classification of renal cell carcinoma. Cancer. 1997;80(5):987-9.
8. Tamboli P, Ro JY, Amin MB, Ligato S, and Ayala AG. Benign Tumors and Tumor-Like Lesions of the Adult Kidney Part II: Benign Mesenchymal and Mixed Neoplasms, and Tumor-Like Lesions. Advances in anatomic pathology. 2000;7(1):47-66.
9. Zagzag D, Krishnamachary B, Yee H, Okuyama H, Chiriboga L, Ali MA, Melamed J, and Semenza GL. Stromal cell–derived factor-1α and CXCR4 expression in hemangioblastoma and clear cell-renal cell carcinoma: von Hippel-Lindau loss-of-function induces expression of a ligand and its receptor. Cancer research. 2005;65(14):6178-88.
10. Brauch H, Weirich G, Brieger J, Glavač D, Rödl H, Eichinger M, Feurer M, Weidt E, Puranakanitstha C, and Neuhaus C. VHL alterations in human clear cell renal cell carcinoma: association with advanced tumor stage and a novel hot spot mutation. Cancer Research. 2000;60(7):1942-8.
11. Beck SD, Patel MI, Snyder ME, Kattan MW, Motzer RJ, Reuter VE, and Russo P. Effect of papillary and chromophobe cell type on disease-free survival after nephrectomy for renal cell carcinoma. Annals of surgical oncology. 2004;11(1):71-7.
12. Su D, Metwalli AR, and Srinivasan R. Rare Genitourinary Tumors. Springer; 2016:1-29.
13. Speicher MR, Schoell B, du Manoir S, Schröck E, Ried T, Cremer T, Störkel S, Kovacs A, and Kovacs G. Specific loss of chromosomes 1, 2, 6, 10, 13, 17, and 21 in chromophobe renal cell carcinomas revealed by comparative genomic hybridization. The American journal of pathology. 1994;145(2):356.
14. Sükösd F, Digon B, Fischer J, Pietsch T, and Kovacs G. Allelic loss at 10q23. 3 but lack of mutation of PTEN/MMAC1 in chromophobe renal cell carcinoma. Cancer genetics and cytogenetics. 2001;128(2):161-3.
15. Tazi EM, Essadi I, Tazi MF, Ahellal Y, M′rabti H, and Errihani H. Metastatic collecting duct carcinoma of the kidney treated with sunitinib. World journal of surgical oncology. 2011;9(1):1.
16. Dason S, Allard C, Sheridan-Jonah A, Gill J, Jamshaid H, Aziz T, Kajal B, and Kapoor A. Management of renal collecting duct carcinoma: a systematic review and the McMaster experience. Current Oncology. 2013;20(3):223-32.
17. Wahal SP, and Mardi K. Multilocular cystic renal cell carcinoma: a rare entity with review of literature. Journal of laboratory physicians. 2014;6(1):50.
18. Lam ET, Kessler ER, Flaig TW, and La Rosa FG. Collision renal cell papillary and medullary carcinoma in a 66-year-old man. Oncology. 2013;27(9):893-.
19. Banks RE, Tirukonda P, Taylor C, Hornigold N, Astuti D, Cohen D, Maher ER, Stanley AJ, Harnden P, and Joyce A. Genetic and epigenetic analysis of von Hippel-Lindau (VHL) gene alterations and relationship with clinical variables in sporadic renal cancer. Cancer research. 2006;66(4):2000-11.
20. Nyhan MJ, O′Sullivan GC, and McKenna SL. Role of the VHL (von Hippel–Lindau) gene in renal cancer: a multifunctional tumour suppressor. Biochemical Society Transactions. 2008;36(3):472-8.
21. Richard S, Gardie B, Couvé S, and Gad S. Seminars in cancer biology. Elsevier; 2013:26-37.
22. Moore LE, Nickerson ML, Brennan P, Toro JR, Jaeger E, Rinsky J, Han SS, Zaridze D, Matveev V, and Janout V. Von Hippel-Lindau (VHL) inactivation in sporadic clear cell renal cancer: associations with germline VHL polymorphisms and etiologic risk factors. PLoS Genet. 2011;7(10):e1002312.
23. Pritchett T, Bader H, Henderson J, and Hsu T. Conditional inactivation of the mouse von Hippel–Lindau tumor suppressor gene results in wide-spread hyperplastic, inflammatory and fibrotic lesions in the kidney. Oncogene. 2015;34(20):2631-9.
24. Pritchett TL, Bader H, and Hsu T. Novel conditional knockout of VHL in the kidney leads to precancerous lesions that exhibit an inflammatory response. Cancer Research. 2013;73(8 Supplement):2300-.
25. Coussens LM, and Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860-7.
26. König B, Steinbach F, Janocha B, Drynda A, Stumm M, Philipp C, Allhoff E, and König W. The differential expression of proinflammatory cytokines IL-6, IL-8 and TNF-alpha in renal cell carcinoma. Anticancer research. 1998;19(2C):1519-24.
27. Tan W, Hildebrandt MA, Pu X, Huang M, Lin J, Matin SF, Tamboli P, Wood CG, and Wu X. Role of inflammatory related gene expression in clear cell renal cell carcinoma development and clinical outcomes. The Journal of urology. 2011;186(5):2071-7.
28. Sen Banerjee S, Thirunavukkarasu M, Rishi MT, Sanchez JA, Maulik N, and Maulik G. HIF–prolyl hydroxylases and cardiovascular diseases. Toxicology mechanisms and methods. 2012;22(5):347-58.
29. Debigaré R, and Price SR. Proteolysis, the ubiquitin-proteasome system, and renal diseases. American Journal of Physiology-Renal Physiology. 2003;285(1):F1-F8.
30. Krek W. VHL takes HIF’s breath away. Nature Cell Biology. 2000;2(7):E121-E3.
31. Clark PE. The role of VHL in clear-cell renal cell carcinoma and its relation to targeted therapy. Kidney international. 2009;76(9):939-45.
32. Maranchie JK, Vasselli JR, Riss J, Bonifacino JS, Linehan WM, and Klausner RD. The contribution of VHL substrate binding and HIF1-α to the phenotype of VHL loss in renal cell carcinoma. Cancer cell. 2002;1(3):247-55.
33. MUZ B, KHAN MN, KIRIAKIDIS S, and PALEOLOG EM. The role of hypoxia and HIF-dependent signalling events in rheumatoid arthritis. Arthritis research & therapy. 2009;11(1):234-42.
34. Lehnert S. Biomolecular action of ionizing radiation. CRC Press; 2007.
35. Fenton TR, and Gout IT. Functions and regulation of the 70kDa ribosomal S6 kinases. The international journal of biochemistry & cell biology. 2011;43(1):47-59.
36. Hou J, Lam F, Proud C, and Wang S. Targeting Mnks for cancer therapy. 2012.
37. Dowling RJ, Topisirovic I, Fonseca BD, and Sonenberg N. Dissecting the role of mTOR: lessons from mTOR inhibitors. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics. 2010;1804(3):433-9.
38. Magnuson B, Ekim B, and Fingar DC. Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochemical Journal. 2012;441(1):1-21.
39. Sonenberg N, and Hinnebusch AG. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell. 2009;136(4):731-45.
40. Qiu B, Ackerman D, Sanchez DJ, Li B, Ochocki JD, Grazioli A, Bobrovnikova-Marjon E, Diehl JA, Keith B, and Simon MC. HIF2α-dependent lipid storage promotes endoplasmic reticulum homeostasis in clear-cell renal cell carcinoma. Cancer discovery. 2015;5(6):652-67.
41. Schönenberger MJ, and Kovacs WJ. Hypoxia signaling pathways: modulators of oxygen-related organelles. Frontiers in cell and developmental biology. 2015;3(
42. Zheng J. Energy metabolism of cancer: Glycolysis versus oxidative phosphorylation (Review). Oncology letters. 2012;4(6):1151-7.
43. Adeva-Andany M, López-Ojén M, Funcasta-Calderón R, Ameneiros-Rodríguez E, Donapetry-García C, Vila-Altesor M, and Rodríguez-Seijas J. Comprehensive review on lactate metabolism in human health. Mitochondrion. 2014;17(76-100.
44. Kim J-w, Tchernyshyov I, Semenza GL, and Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell metabolism. 2006;3(3):177-85.
45. Sano R, and Reed JC. ER stress-induced cell death mechanisms. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2013;1833(12):3460-70.
46. Torres M, Encina G, Soto C, and Hetz C. Abnormal calcium homeostasis and protein folding stress at the ER: A common factor in familial and infectious prion disorders. Communicative & integrative biology. 2011;4(3):258-61.
47. Ozcan L, and Tabas I. Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annual review of medicine. 2012;63(317.
48. Shimura H, Hattori N, Kubo S-i, Mizuno Y, Asakawa S, Minoshima S, Shimizu N, Iwai K, Chiba T, and Tanaka K. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nature genetics. 2000;25(3):302-5.
49. Lee YH, and White MF. Insulin receptor substrate proteins and diabetes. Archives of pharmacal research. 2004;27(4):361-70.
50. Gregor MF, Yang L, Fabbrini E, Mohammed BS, Eagon JC, Hotamisligil GS, and Klein S. Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss. Diabetes. 2009;58(3):693-700.
51. Cnop M, Welsh N, Jonas J-C, Jörns A, Lenzen S, and Eizirik DL. Mechanisms of pancreatic β-cell death in Type 1 and Type 2 diabetes many differences, few similarities. Diabetes. 2005;54(suppl 2):S97-S107.
52. Oyadomari S, Koizumi A, Takeda K, Gotoh T, Akira S, Araki E, and Mori M. Targeted disruption of the Chop gene delays endoplasmic reticulum stress–mediated diabetes. The Journal of clinical investigation. 2002;109(4):525-32.
53. Lee A-H, Heidtman K, Hotamisligil GS, and Glimcher LH. Dual and opposing roles of the unfolded protein response regulated by IRE1α and XBP1 in proinsulin processing and insulin secretion. Proceedings of the National Academy of Sciences. 2011;108(21):8885-90.
54. Diraison F, Dusserre E, Vidal H, Sothier M, and Beylot M. Increased hepatic lipogenesis but decreased expression of lipogenic gene in adipose tissue in human obesity. American Journal of Physiology-Endocrinology And Metabolism. 2002;282(1):E46-E51.
55. Kammoun HL, Chabanon H, Hainault I, Luquet S, Magnan C, Koike T, Ferré P, and Foufelle F. GRP78 expression inhibits insulin and ER stress–induced SREBP-1c activation and reduces hepatic steatosis in mice. The Journal of clinical investigation. 2009;119(5):1201-15.
56. Oyadomari S, Harding HP, Zhang Y, Oyadomari M, and Ron D. Dephosphorylation of translation initiation factor 2α enhances glucose tolerance and attenuates hepatosteatosis in mice. Cell metabolism. 2008;7(6):520-32.
57. Tardif KD, Mori K, Kaufman RJ, and Siddiqui A. Hepatitis C virus suppresses the IRE1-XBP1 pathway of the unfolded protein response. Journal of Biological Chemistry. 2004;279(17):17158-64.
58. Xu Z, Jensen G, and Yen T. Activation of hepatitis B virus S promoter by the viral large surface protein via induction of stress in the endoplasmic reticulum. Journal of virology. 1997;71(10):7387-92.
59. Wang S, and Kaufman RJ. The impact of the unfolded protein response on human disease. The Journal of cell biology. 2012;197(7):857-67.
60. Oslowski CM, and Urano F. Measuring ER stress and the unfolded protein response using mammalian tissue culture system. Methods in enzymology. 2011;490(71.
61. Plácido A, Pereira C, Duarte A, Candeias E, Correia S, Santos R, Carvalho C, Cardoso S, Oliveira C, and Moreira P. The role of endoplasmic reticulum in amyloid precursor protein processing and trafficking: implications for Alzheimer′s disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2014;1842(9):1444-53.
62. Zhang K, and Kaufman RJ. Signaling the unfolded protein response from the endoplasmic reticulum. Journal of Biological Chemistry. 2004;279(25):25935-8.
63. Ali MM, Bagratuni T, Davenport EL, Nowak PR, Silva‐Santisteban MC, Hardcastle A, McAndrews C, Rowlands MG, Morgan GJ, and Aherne W. Structure of the Ire1 autophosphorylation complex and implications for the unfolded protein response. The EMBO journal. 2011;30(5):894-905.
64. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, and Ron D. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature. 2002;415(6867):92-6.
65. Yoshida H, Matsui T, Hosokawa N, Kaufman RJ, Nagata K, and Mori K. A time-dependent phase shift in the mammalian unfolded protein response. Developmental cell. 2003;4(2):265-71.
66. Coelho DS, and Domingos PM. Physiological roles of regulated Ire1 dependent decay. Endoplasmic Reticulum Stress Response and Transcriptional Reprogramming. 2014:68.
67. Hetz C, Chevet E, and Harding HP. Targeting the unfolded protein response in disease. Nature reviews Drug discovery. 2013;12(9):703-19.
68. Shi Y, Vattem KM, Sood R, An J, Liang J, Stramm L, and Wek RC. Identification and characterization of pancreatic eukaryotic initiation factor 2 α-subunit kinase, PEK, involved in translational control. Molecular and cellular biology. 1998;18(12):7499-509.
69. Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, and Ron D. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Molecular cell. 2000;6(5):1099-108.
70. Novoa I, Zeng H, Harding HP, and Ron D. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2α. The Journal of cell biology. 2001;153(5):1011-22.
71. Yoshida H, Haze K, Yanagi H, Yura T, and Mori K. Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins Involvement of basic leucine zipper transcription factors. Journal of Biological Chemistry. 1998;273(50):33741-9.
72. Yoshida H, Okada T, Haze K, Yanagi H, Yura T, Negishi M, and Mori K. ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Molecular and cellular biology. 2000;20(18):6755-67.
73. Zhao J, Wang L, Dong X, Hu X, Zhou L, Liu Q, Song B, Wu Q, and Li L. The c-Jun N-terminal kinase (JNK) pathway is activated in human interstitial cystitis (IC) and rat protamine sulfate induced cystitis. Scientific reports. 2016;6(
74. Alam U. Immunity: The Immune Response to Infectious and Inflammatory Disease. The Yale journal of biology and medicine. 2007;80(3):137.
75. Chen ZJ. Ubiquitin signalling in the NF-κB pathway. Nature cell biology. 2005;7(8):758-65.
76. Korennykh AV, Egea PF, Korostelev AA, Finer-Moore J, Stroud RM, Zhang C, Shokat KM, and Walter P. Cofactor-mediated conformational control in the bifunctional kinase/RNase Ire1. BMC biology. 2011;9(1):1. |