博碩士論文 103826007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:18.223.108.134
姓名 方韋程(Wei-Cheng Fang)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 VHL基因突變在癌前期的組織發炎機制
(The Mechanism of VHL Mutant-induced Precancerous Tissue Inflammation)
相關論文
★ 由基因微陣列分析發炎與腎臟細胞癌發生之機制★ VHL剔除模型之轉錄體差異以及台灣透明細胞腎細胞癌族群之特定基因體變異之研究
★ VHL knockdown HK-2 cells induce macrophage endothelial extravasation★ ITPR2, an ER calcium channel, regulates ER stress and inflammatory response in pre-cancerous kidney tubule cells
★ 透明腎臟細胞癌發生前期與組織發炎之關係研究★ VHL與KIM-1的功能關係研究
★ 血管內皮細胞在腫瘤微環境中促進透明腎細胞癌形成之研究★ Study of the Interaction between VHL/Vhlh Deficient Kidney Epithelial Cells and Macrophages—Relevance to the Development of Clear-Cell Renal Cell Carcinoma
★ 應用大腸桿菌與酵母菌蛋白質體晶片系統性分析抗菌肽及抗生素作用之目標蛋白質★ Analysis of Gene Expression of Chronic Obstructive Pulmonary Disease and Chronic Kidney Disease to Illuminate Chronic Inflammation Associated with Tumor Microenvironment and Potential Treatment
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) VHL是一個抑癌基因,當此基因突變會造成透明細胞腎細胞癌。在VHL剔除的老鼠模式中,我們發現VHL的突變會在腎小管造成發炎跟纖維化的現象。因此,我們希望釐清發炎跟癌症之間的關聯性。VHL的突變會穩定HIF蛋白質,而使得過氧化物的產生以及蛋白大量合成,最終導致內質網壓力。UPR是為了適應與調適內質網壓力所產生的機制。在我們的數據中,我們發現人類腎小管上皮细胞中IRE1α路徑的下游蛋白質XBP1隨VHL的表現降低而提高,這個結果得知VHL突變會引起內質網壓力。另外也發現內質網壓力的增加會導致發炎相關的蛋白質在VHL突變的腎細胞中提高,如p-JNK和核中NF-κB 亞基p65。內質網壓力會活化IRE1α路徑造成JNK的活化,因此我們利用IRE1α抑制劑APY29,來分析p-JNK表現跟NF-κB/p65的移位,藉此釐清VHL突變調控IRE1α路徑的分子機制。結果顯示使用APY29可以有效在VHL突變的細胞中降低p-JNK表現跟NF-κB/p65的移位。最後我們推測,VHL突變會透過內質網壓力造成慢性發炎最後導致透明細胞腎細胞癌。
摘要(英) Mutations in the tumor suppressor gene von Hippel-Lindau (VHL) lead to clear-cell renal cell carcinoma (ccRCC). We found that VHL mutation in kidney tubules caused tissue inflammation and fibrosis in VHL knockout mouse model. We wanted to figure out the causal relationship between inflammation and cancer. VHL mutation stabilizes hypoxia inducible factor (HIF) which leads to reactive oxygen species (ROS) production and excessive protein synthesis then causing endoplasmic reticulum (ER) stress. ER stress initiates a series of adaptive mechanisms that together are known as the unfolded protein response (UPR). Our results showed that the level of XBP1, downstream of IRE1α, was increased in VHL knockdown HK-2 cells. It proved that VHL mutation caused ER stress. ER stress was also increased in VHL mutant kidney cells, and that inflammation-related proteins such as p-JNK and nuclearly-localized NF-κB subunit p65 were also increased. To further investigate the molecular mechanisms of VHL mutation-mediated IRE1α pathways, we used APY29, an inhibitor of IRE1α autophosphorylation, to analyze the p-JNK expression and NF-κB/p65 translocation. Results showed that APY29 reversed p-JNK expression and NF-κB/p65 translocation to nucleus in VHL mutant cells. In summary, we suggest that VHL mutation causes chronic inflammation via ER stress in the development of ccRCC.
關鍵字(中) ★ 透明細胞腎細胞癌
★ 癌前期組織發炎
★ 發炎
★ 內質網壓力
★ 腎臟癌
關鍵字(英)
論文目次 摘要 i
Abstract ii
目錄 iv
圖目錄 v
表目錄 vi
Chapter 1 Introduction 1
1-1 Von Hippel-Lindau syndrome 1
1-2 Renal cell carcinoma 4
1-3 VHL mutant-induced precancerous tissue inflammation in ccRCC 10
1-4 VHL mutation affects HIF-1α stabilization 12
1-5 Stabilization of HIF-1α regulates ER stress 16
1-6 ER Stress induces different diseases 20
1-7 ER stress initiates a series of adaptive mechanisms called unfolded protein response (UPR) 23
1-8 IRE1α pathway induces inflammation-related proteins 30
Chapter 2 Materials and Methods 32
2-1 Reagents 32
2-2 Methods 33
2-2-1 Transfection 33
2-2-2 RNA extraction 34
2-2-3 Reverse transcription 35
2-2-4 PCR 36
2-2-5 Protein preparation 37
2-2-6 Western blot analysis 38
Chapter 3 Results 39
Chapter 4 Conclusion 46
Chapter 5 Discussion 47
Chapter 6 Reference 51
參考文獻 1. Kim JJ, Rini BI, and Hansel DE. Diseases of DNA Repair. Springer; 2010:228-49.
2. Haddad NMN, Cavallerano JD, and Silva PS. Seminars in ophthalmology. Taylor & Francis; 2013:377-86.
3. Chou A, Toon C, Pickett J, and Gill AJ. Endocrine Tumor Syndromes and Their Genetics. Karger Publishers; 2013:30-49.
4. Kaelin WG. Molecular basis of the VHL hereditary cancer syndrome. Nature Reviews Cancer. 2002;2(9):673-82.
5. Kawamoto S, Johnson PT, Shi C, Singhi AD, Hruban RH, Wolfgang CL, Edil BH, and Fishman EK. Pancreatic neuroendocrine tumor with cystlike changes: evaluation with MDCT. AJR American journal of roentgenology. 2013;200(3):W283.
6. Belldegrun AS, Klatte T, Shuch B, LaRochelle JC, Miller DC, Said JW, Riggs SB, Zomorodian N, Kabbinavar FF, and DeKernion JB. Cancer‐specific survival outcomes among patients treated during the cytokine era of kidney cancer (1989‐2005). Cancer. 2008;113(9):2457-63.
7. Störkel S, Eble JN, Adlakha K, Amin M, Blute ML, Bostwick DG, Darson M, Delahunt B, and Iczkowski K. Classification of renal cell carcinoma. Cancer. 1997;80(5):987-9.
8. Tamboli P, Ro JY, Amin MB, Ligato S, and Ayala AG. Benign Tumors and Tumor-Like Lesions of the Adult Kidney Part II: Benign Mesenchymal and Mixed Neoplasms, and Tumor-Like Lesions. Advances in anatomic pathology. 2000;7(1):47-66.
9. Zagzag D, Krishnamachary B, Yee H, Okuyama H, Chiriboga L, Ali MA, Melamed J, and Semenza GL. Stromal cell–derived factor-1α and CXCR4 expression in hemangioblastoma and clear cell-renal cell carcinoma: von Hippel-Lindau loss-of-function induces expression of a ligand and its receptor. Cancer research. 2005;65(14):6178-88.
10. Brauch H, Weirich G, Brieger J, Glavač D, Rödl H, Eichinger M, Feurer M, Weidt E, Puranakanitstha C, and Neuhaus C. VHL alterations in human clear cell renal cell carcinoma: association with advanced tumor stage and a novel hot spot mutation. Cancer Research. 2000;60(7):1942-8.
11. Beck SD, Patel MI, Snyder ME, Kattan MW, Motzer RJ, Reuter VE, and Russo P. Effect of papillary and chromophobe cell type on disease-free survival after nephrectomy for renal cell carcinoma. Annals of surgical oncology. 2004;11(1):71-7.
12. Su D, Metwalli AR, and Srinivasan R. Rare Genitourinary Tumors. Springer; 2016:1-29.
13. Speicher MR, Schoell B, du Manoir S, Schröck E, Ried T, Cremer T, Störkel S, Kovacs A, and Kovacs G. Specific loss of chromosomes 1, 2, 6, 10, 13, 17, and 21 in chromophobe renal cell carcinomas revealed by comparative genomic hybridization. The American journal of pathology. 1994;145(2):356.
14. Sükösd F, Digon B, Fischer J, Pietsch T, and Kovacs G. Allelic loss at 10q23. 3 but lack of mutation of PTEN/MMAC1 in chromophobe renal cell carcinoma. Cancer genetics and cytogenetics. 2001;128(2):161-3.
15. Tazi EM, Essadi I, Tazi MF, Ahellal Y, M′rabti H, and Errihani H. Metastatic collecting duct carcinoma of the kidney treated with sunitinib. World journal of surgical oncology. 2011;9(1):1.
16. Dason S, Allard C, Sheridan-Jonah A, Gill J, Jamshaid H, Aziz T, Kajal B, and Kapoor A. Management of renal collecting duct carcinoma: a systematic review and the McMaster experience. Current Oncology. 2013;20(3):223-32.
17. Wahal SP, and Mardi K. Multilocular cystic renal cell carcinoma: a rare entity with review of literature. Journal of laboratory physicians. 2014;6(1):50.
18. Lam ET, Kessler ER, Flaig TW, and La Rosa FG. Collision renal cell papillary and medullary carcinoma in a 66-year-old man. Oncology. 2013;27(9):893-.
19. Banks RE, Tirukonda P, Taylor C, Hornigold N, Astuti D, Cohen D, Maher ER, Stanley AJ, Harnden P, and Joyce A. Genetic and epigenetic analysis of von Hippel-Lindau (VHL) gene alterations and relationship with clinical variables in sporadic renal cancer. Cancer research. 2006;66(4):2000-11.
20. Nyhan MJ, O′Sullivan GC, and McKenna SL. Role of the VHL (von Hippel–Lindau) gene in renal cancer: a multifunctional tumour suppressor. Biochemical Society Transactions. 2008;36(3):472-8.
21. Richard S, Gardie B, Couvé S, and Gad S. Seminars in cancer biology. Elsevier; 2013:26-37.
22. Moore LE, Nickerson ML, Brennan P, Toro JR, Jaeger E, Rinsky J, Han SS, Zaridze D, Matveev V, and Janout V. Von Hippel-Lindau (VHL) inactivation in sporadic clear cell renal cancer: associations with germline VHL polymorphisms and etiologic risk factors. PLoS Genet. 2011;7(10):e1002312.
23. Pritchett T, Bader H, Henderson J, and Hsu T. Conditional inactivation of the mouse von Hippel–Lindau tumor suppressor gene results in wide-spread hyperplastic, inflammatory and fibrotic lesions in the kidney. Oncogene. 2015;34(20):2631-9.
24. Pritchett TL, Bader H, and Hsu T. Novel conditional knockout of VHL in the kidney leads to precancerous lesions that exhibit an inflammatory response. Cancer Research. 2013;73(8 Supplement):2300-.
25. Coussens LM, and Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860-7.
26. König B, Steinbach F, Janocha B, Drynda A, Stumm M, Philipp C, Allhoff E, and König W. The differential expression of proinflammatory cytokines IL-6, IL-8 and TNF-alpha in renal cell carcinoma. Anticancer research. 1998;19(2C):1519-24.
27. Tan W, Hildebrandt MA, Pu X, Huang M, Lin J, Matin SF, Tamboli P, Wood CG, and Wu X. Role of inflammatory related gene expression in clear cell renal cell carcinoma development and clinical outcomes. The Journal of urology. 2011;186(5):2071-7.
28. Sen Banerjee S, Thirunavukkarasu M, Rishi MT, Sanchez JA, Maulik N, and Maulik G. HIF–prolyl hydroxylases and cardiovascular diseases. Toxicology mechanisms and methods. 2012;22(5):347-58.
29. Debigaré R, and Price SR. Proteolysis, the ubiquitin-proteasome system, and renal diseases. American Journal of Physiology-Renal Physiology. 2003;285(1):F1-F8.
30. Krek W. VHL takes HIF’s breath away. Nature Cell Biology. 2000;2(7):E121-E3.
31. Clark PE. The role of VHL in clear-cell renal cell carcinoma and its relation to targeted therapy. Kidney international. 2009;76(9):939-45.
32. Maranchie JK, Vasselli JR, Riss J, Bonifacino JS, Linehan WM, and Klausner RD. The contribution of VHL substrate binding and HIF1-α to the phenotype of VHL loss in renal cell carcinoma. Cancer cell. 2002;1(3):247-55.
33. MUZ B, KHAN MN, KIRIAKIDIS S, and PALEOLOG EM. The role of hypoxia and HIF-dependent signalling events in rheumatoid arthritis. Arthritis research & therapy. 2009;11(1):234-42.
34. Lehnert S. Biomolecular action of ionizing radiation. CRC Press; 2007.
35. Fenton TR, and Gout IT. Functions and regulation of the 70kDa ribosomal S6 kinases. The international journal of biochemistry & cell biology. 2011;43(1):47-59.
36. Hou J, Lam F, Proud C, and Wang S. Targeting Mnks for cancer therapy. 2012.
37. Dowling RJ, Topisirovic I, Fonseca BD, and Sonenberg N. Dissecting the role of mTOR: lessons from mTOR inhibitors. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics. 2010;1804(3):433-9.
38. Magnuson B, Ekim B, and Fingar DC. Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochemical Journal. 2012;441(1):1-21.
39. Sonenberg N, and Hinnebusch AG. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell. 2009;136(4):731-45.
40. Qiu B, Ackerman D, Sanchez DJ, Li B, Ochocki JD, Grazioli A, Bobrovnikova-Marjon E, Diehl JA, Keith B, and Simon MC. HIF2α-dependent lipid storage promotes endoplasmic reticulum homeostasis in clear-cell renal cell carcinoma. Cancer discovery. 2015;5(6):652-67.
41. Schönenberger MJ, and Kovacs WJ. Hypoxia signaling pathways: modulators of oxygen-related organelles. Frontiers in cell and developmental biology. 2015;3(
42. Zheng J. Energy metabolism of cancer: Glycolysis versus oxidative phosphorylation (Review). Oncology letters. 2012;4(6):1151-7.
43. Adeva-Andany M, López-Ojén M, Funcasta-Calderón R, Ameneiros-Rodríguez E, Donapetry-García C, Vila-Altesor M, and Rodríguez-Seijas J. Comprehensive review on lactate metabolism in human health. Mitochondrion. 2014;17(76-100.
44. Kim J-w, Tchernyshyov I, Semenza GL, and Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell metabolism. 2006;3(3):177-85.
45. Sano R, and Reed JC. ER stress-induced cell death mechanisms. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2013;1833(12):3460-70.
46. Torres M, Encina G, Soto C, and Hetz C. Abnormal calcium homeostasis and protein folding stress at the ER: A common factor in familial and infectious prion disorders. Communicative & integrative biology. 2011;4(3):258-61.
47. Ozcan L, and Tabas I. Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annual review of medicine. 2012;63(317.
48. Shimura H, Hattori N, Kubo S-i, Mizuno Y, Asakawa S, Minoshima S, Shimizu N, Iwai K, Chiba T, and Tanaka K. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nature genetics. 2000;25(3):302-5.
49. Lee YH, and White MF. Insulin receptor substrate proteins and diabetes. Archives of pharmacal research. 2004;27(4):361-70.
50. Gregor MF, Yang L, Fabbrini E, Mohammed BS, Eagon JC, Hotamisligil GS, and Klein S. Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss. Diabetes. 2009;58(3):693-700.
51. Cnop M, Welsh N, Jonas J-C, Jörns A, Lenzen S, and Eizirik DL. Mechanisms of pancreatic β-cell death in Type 1 and Type 2 diabetes many differences, few similarities. Diabetes. 2005;54(suppl 2):S97-S107.
52. Oyadomari S, Koizumi A, Takeda K, Gotoh T, Akira S, Araki E, and Mori M. Targeted disruption of the Chop gene delays endoplasmic reticulum stress–mediated diabetes. The Journal of clinical investigation. 2002;109(4):525-32.
53. Lee A-H, Heidtman K, Hotamisligil GS, and Glimcher LH. Dual and opposing roles of the unfolded protein response regulated by IRE1α and XBP1 in proinsulin processing and insulin secretion. Proceedings of the National Academy of Sciences. 2011;108(21):8885-90.
54. Diraison F, Dusserre E, Vidal H, Sothier M, and Beylot M. Increased hepatic lipogenesis but decreased expression of lipogenic gene in adipose tissue in human obesity. American Journal of Physiology-Endocrinology And Metabolism. 2002;282(1):E46-E51.
55. Kammoun HL, Chabanon H, Hainault I, Luquet S, Magnan C, Koike T, Ferré P, and Foufelle F. GRP78 expression inhibits insulin and ER stress–induced SREBP-1c activation and reduces hepatic steatosis in mice. The Journal of clinical investigation. 2009;119(5):1201-15.
56. Oyadomari S, Harding HP, Zhang Y, Oyadomari M, and Ron D. Dephosphorylation of translation initiation factor 2α enhances glucose tolerance and attenuates hepatosteatosis in mice. Cell metabolism. 2008;7(6):520-32.
57. Tardif KD, Mori K, Kaufman RJ, and Siddiqui A. Hepatitis C virus suppresses the IRE1-XBP1 pathway of the unfolded protein response. Journal of Biological Chemistry. 2004;279(17):17158-64.
58. Xu Z, Jensen G, and Yen T. Activation of hepatitis B virus S promoter by the viral large surface protein via induction of stress in the endoplasmic reticulum. Journal of virology. 1997;71(10):7387-92.
59. Wang S, and Kaufman RJ. The impact of the unfolded protein response on human disease. The Journal of cell biology. 2012;197(7):857-67.
60. Oslowski CM, and Urano F. Measuring ER stress and the unfolded protein response using mammalian tissue culture system. Methods in enzymology. 2011;490(71.
61. Plácido A, Pereira C, Duarte A, Candeias E, Correia S, Santos R, Carvalho C, Cardoso S, Oliveira C, and Moreira P. The role of endoplasmic reticulum in amyloid precursor protein processing and trafficking: implications for Alzheimer′s disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2014;1842(9):1444-53.
62. Zhang K, and Kaufman RJ. Signaling the unfolded protein response from the endoplasmic reticulum. Journal of Biological Chemistry. 2004;279(25):25935-8.
63. Ali MM, Bagratuni T, Davenport EL, Nowak PR, Silva‐Santisteban MC, Hardcastle A, McAndrews C, Rowlands MG, Morgan GJ, and Aherne W. Structure of the Ire1 autophosphorylation complex and implications for the unfolded protein response. The EMBO journal. 2011;30(5):894-905.
64. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, and Ron D. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature. 2002;415(6867):92-6.
65. Yoshida H, Matsui T, Hosokawa N, Kaufman RJ, Nagata K, and Mori K. A time-dependent phase shift in the mammalian unfolded protein response. Developmental cell. 2003;4(2):265-71.
66. Coelho DS, and Domingos PM. Physiological roles of regulated Ire1 dependent decay. Endoplasmic Reticulum Stress Response and Transcriptional Reprogramming. 2014:68.
67. Hetz C, Chevet E, and Harding HP. Targeting the unfolded protein response in disease. Nature reviews Drug discovery. 2013;12(9):703-19.
68. Shi Y, Vattem KM, Sood R, An J, Liang J, Stramm L, and Wek RC. Identification and characterization of pancreatic eukaryotic initiation factor 2 α-subunit kinase, PEK, involved in translational control. Molecular and cellular biology. 1998;18(12):7499-509.
69. Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, and Ron D. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Molecular cell. 2000;6(5):1099-108.
70. Novoa I, Zeng H, Harding HP, and Ron D. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2α. The Journal of cell biology. 2001;153(5):1011-22.
71. Yoshida H, Haze K, Yanagi H, Yura T, and Mori K. Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins Involvement of basic leucine zipper transcription factors. Journal of Biological Chemistry. 1998;273(50):33741-9.
72. Yoshida H, Okada T, Haze K, Yanagi H, Yura T, Negishi M, and Mori K. ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Molecular and cellular biology. 2000;20(18):6755-67.
73. Zhao J, Wang L, Dong X, Hu X, Zhou L, Liu Q, Song B, Wu Q, and Li L. The c-Jun N-terminal kinase (JNK) pathway is activated in human interstitial cystitis (IC) and rat protamine sulfate induced cystitis. Scientific reports. 2016;6(
74. Alam U. Immunity: The Immune Response to Infectious and Inflammatory Disease. The Yale journal of biology and medicine. 2007;80(3):137.
75. Chen ZJ. Ubiquitin signalling in the NF-κB pathway. Nature cell biology. 2005;7(8):758-65.
76. Korennykh AV, Egea PF, Korostelev AA, Finer-Moore J, Stroud RM, Zhang C, Shokat KM, and Walter P. Cofactor-mediated conformational control in the bifunctional kinase/RNase Ire1. BMC biology. 2011;9(1):1.
指導教授 徐沺 審核日期 2016-8-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明