參考文獻 |
[1] 陳韡鼐, 以雷射雷達量測高空溫度, 中央大學物理系碩士論文, 1996.
[2] 林仲懿, 雷射雷達對卷雲微物理性質之研究, 中央大學物理系碩士論文, 1997.
[4] 王寶貫, 雲物理, 渤海堂文化公司, 1996.
[4] 鄒進上, 高空氣候學, 名文書局, 1992
[5] Ackermann, J., The extinction-to-backscatter ratio of tropospheric aerosol:
A numerical study, J. Atmos. and Oceanic Tech. 15, 1043–1050, 1998
[6] Antu˜na, J.C., A. Robock, G.L. Stenchikov, L.W. Thomason, and J.E.
Barnes, Lidar validation of SAGE II aerosol measurements after the 1991
Mount Pinatubo eruption, J. of Geophys. Res. 107, 10.1029/2001JD001441,
2002.
[7] Baker, M.B., Cloud microphysics and climate, Science 276, 1072-1078, 1997.
[8] Baray, J.L., G. Ancellet, F.G. Taupin, M. Bessafi, S. Baldy, and P. Keckhut,
Subtropical tropopause break as a possible stratospheric source of ozone in
the tropical tropopause, J. of Atmos. and Solar–Terr. Phys. 60, 27–36, 1998.
[9] Barnes, J.E. and D.J. Hofmann, Variability in the stratospheric background
aerosol over Mauna Loa Observatory, Geophys. Res. Lett. 28, 2895–2898,
2001.
[10] Behrendt, A. and J. Reichardt, Atmospheric temperature profiling in the
presence of clouds with a pure rotational rational Raman lidar by using
of an interference-filter-based polychromator, Appl. Optics 39, 1372–1379,
2000.
[11] Born, M. and E. Wolf, Principles of Optics, 6th Edtion, Oxford, 1980.
[12] Burkholder, J.D. and R.K. Talukdar, Temperature dependence of the ozone
absorption spectrum over wavelength range 410 to 760 nm, Geophys. Res.
Lett. 21, 581–584, 1994.
[13] Burris, J., W. Heaps, B. Gary, W. Hoegy, L. Lait, T. McGee, M. Gross, U.N.
Singh, Lidar temperature measurements during the tropical ozone transport
experiment (TOTE)/Vortex Ozone Transport Experiment (VOTE) mission.
J. of Geophys. Res. 103, 3505–3510, 1998
[14] Chanin, M.L., A. Hauchecorne, Lidar observation of gravity and tidal waves
in the stratosphere and mesosphere, J. of Geophys. Res. 86, 9715–9721, 1981.
[15] Chen. W.N, C.W. Chiang, J.B. Nee, The Lidar ratio and depolarization
ratio for cirrus clouds, Appl. Optics 41, 6470–6476, 2002a.
[16] Chen, W.N., C.C. Tsao, J.B. Nee, Tropospheric and lower Stratospheric
Temperature Measurement by Rayleigh Lidar over Chung-Li (25±N, 121±E),
J. of Atmos. and Solar–Terr. Phys. submitted, 2002b.
[17] Crutzen, P. J., The possible importance of CSO for the sulfate layer of the
stratospheric aerosols, Geophys. Res. Lett. 3, 73–76, 1976.
[18] Delisi, D. P. and T. J. Dunkerton, Seasonal variation of the semiannual
oscillation, J. Atmos. Sci. 45, 2772-2787, 1988.
[19] Deshler, T., B. Johnson, and W.R. Rozier, Balloonborne measurements of
Pinatubo aerosol during 1991 and 1992 at 41N: vertical profiles, size distribution, and volatility, Geophys. Res. Lett. 20, 143–1438, 1993.
[20] Donovan, D.P., Whiteway, J.A., Carswell, A.I., Correction for nonlinear
photo-counting e®ects in lidar system, Appl. Optics 32, 6742–6753, 1993.
[21] Donovan, D.P. and A.C.A.P. van Lammeren, First ice cloud e®ective particle
size parameterization based on combined lidar and radar data, J. of Geophys.
Res. 29, 10.1029/2001GL013731, 2002.
[22] Danielsen, E. F, In situ evodence of rapid, vertical, irreversible transport of lower tropospheric air into the lower tropical stratosphere by convective cloud turrets and by large-scale upwelling in tropical cyclone, J. of Geophys. Res. 98, 8665–8682, 1993.
[23] Eloranta, E.W., Practical model for the calcuation of multiply scattered
lidar returns, Appl. Opt. 37, 2464–2472, 1998.
[24] Fernald F.G., Analusis of atmospheric lidar observations – Some comments,
Appl. Optics 23, 652–653, 1984.
[25] Fiocco, G., and L.D. Smullin, Detection of scattering layers in the upper
atmosphere (60–140 km) by optical radar, Nature 199, 1275-01275, 1963.
[26] Folkin, I., M. Loewenstein, J. Podolake, S.J. Oltmans, M. Pro±tt, A barrier
to vertical mixing at 14 km in the tropics: Evidence from ozonesonde and
aircraft measurements, J. of Geophys. Res. 104, 22095–22102, 1999.
[27] Fu, Q. and K.N. Liou, Parameterization of the Radiative properties of cirrus clouds, J. of the Atmos. Sci.50, 2008-2025, 1993.
[28] Gettelman, A., W.J. Randel, F. Wu, and S.T. Massie, Transport of water
vapor in the tropical tropopause layer, Geophys. Res. Lett. 29, 2002.
[29] Gierens, K., H. Smit, P.H. Wang, U. Schumann, M. Helten, Icesupersaturated
regions and subvisible cirrus in the northern midlatitude
upper troposphere, J. Geophys. Res. 105, 22743–22753, 2000.
[30] Gille, S.T., A. Hauchecorne, M.L. Chanin, Semidiurnal and diurnal tidal
e®ects in the middle atmosphere as seen by Rayleigh lidar, J. of Geophys.
Res. 96, 7579–7587, 1991.
[31] Gobbi, G.P., Parameterization of stratospheric aerosol physical properties of the basic of Nd:YAG lidar observations, Appl. Optics 37, 4712–4720, 1998.
[32] Gross, M.R., T.J. McGee, R.A. Ferrare, U.N. Singh, P. Kimvilakani, Temperature measurements made with a combined Rayleigh-Mie and Raman
lidar, Appl. Optics 36, 5987–5995, 1997.
[33] Gu, Y.Y., C.S. Gardner, P.A. Castleberg, G.C. Papen, M.C. Kelley, Validation of the Lidar In-Space Technology Experiment: stratosphere temperature
and aerosol measurements, Appl. Optics 36, 5148–5157, 1997.
[34] Guasta, M.D., M. Morandi, L. Stefanutti, B. Stein, J. Kolenda, P. Rairoux,
J. P. Wolf, R. Matthey, and E. Kyro, Multiwavlength lidar observation of
thin cirrus at the base of the Pinatubo stratospheric layer during the EASOE
campaign, Geophys. Res. Lett. 21, 1339–1342, 1994.
[35] Hansen, J., M. Sato, A. Lacis, and R. Ruedy, The missing climate forcing,
Philos. Trans. R. Soc. London B 352, 231–240, 1997.
[36] Hauchecorne, A., M.L. Chanin, Density and temperature profiles obtained
by lidar between 35 and 70 km. Geophys. Res. Lett. 8, 565–569, 1980.
[37] Highwood, E.J., Hoskins, B.J., The tropical tropopause, Q. J. Royal Meteor.
Soc. 124, 1579–1604, 1998.
[38] Hervig, M.E., T. Deshler, J.M. Russell III, Aerosol size distributions obtained from HALOE spectral extinction measurements, J. of Geophys. Res.
103, 1573–1583, 1998.
[39] Hervig, M. and M. McHugh, Cirrus detection using HALOE measurements,
Geophys. Res. Lett. 26, 719–722, 1999.
[40] Hervig, M. and T. Deshler, Evaluation of aerosol measurements from SAGE
II, HALOE, and balloonborne optical particle counters, J. of Geophys. Res.
107, 10.1029/2001JD000703, 2002.
[41] Heymsfield, A.J., Cirrus uncinus generating cells and the evolution of cirroform clouds, J. of the Atmos. Sci.32, 799-805, 1975.
[42] Heymsfield, A.J. and C.M.R. Platt, A parameterization of the particle size
spectrum of ice clouds in terms of the ambient temperature and Ice Water
Content, J. Atmos. Sci 41, 846–855, 1984.
[43] Hobbs, P.V., Ice Physics, Oxford Express, 1974.
[44] Holton, J., P. Haynes, M. McIntyre, A. Douglass, R. Rood, L. Pfister,
Stratosphere-tropopause exchange, Rev. of Geophys. 33, 403–439, 1995.
[45] Jensen, E.J., O.B. Toon, H.B. Selkirk, J.D. Spinhirne, and M.R. Schoeberl,
On the formation and persistence of subvisible cloud cirrus clouds near the
tropical tropopause, J. of Geophys. Res. 101, 21361–21375, 1996.
[46] Knolenberg, R. G, K. Kelly, J.C. Wilson, Measurements of high number
denisties of ice crystals in the tops of tropical cumulonimbus, J. of Geophys.
Res. , 98, 8639–8664, 1993.
[47] Klett, J.D., Stable analytical inversion solution for processing lidar returns, Appl. Optics 20, 211–220, 1981.
[48] Leblanc, T., I.S. McDermid, A. Hauchecorne, P. Keckhut, Evaluation of
optimization of lidar temperature analysis algorithms using simulated data,
J. of Geophys. Res. 103, 6177–6187, 1998.
[49] Ligda, M.G.H., Proc. Conf. Laser Technol., 1st, San Diego, Calif, 63–72,
1963.
[50] Liou, K.N., Influence of cirrus clouds on weather and climate processes: A
global perspective, Mon. Wea. Rev. 114, 1167–1199, 1986.
[51] Maiman, T.H., Stimualted optical radiation in Ruby, Nature 187, 493-494,
1960.
[52] McClung, F.J. and R.W. Hellwarth, Giant optical Pulsations from Ruby,
Appl. Phys. 33, 828-829, 1962.
[53] Mcfarquhar, G.M. and A.J. Heymsfield, Parameterization of tropical cirrus
ice crystal size distributions and implications for radiative tranfser: results
from CEPEX, J. of the Atmos. Sci.54, 2187–2200, 1997.
[54] Measures R.M., Laser Remote Sensing – Fundamentals and Applications,
John Wiley and Sons, 1984.
[55] Meriwether, J.W., C.S. Gardner, A review of the mesosphere inversion layer
phenomenon, J. of Geophys. Res. 105, 12405–12416, 2000.
[56] Michelangeli, D.V., M. Allen, and Y.L. Yung, El Chichon volcanic aerosol:
impact of radiative, thermal, and chemical perturbations, J. of Geophys.
Res. 94, 18429–18443, 1989.
[57] Mishchenko, M.I. and K. Sassen, Depolarization of lidar returns by small
ice crystals – An application to contrails, Geophys. Res. Lett. 25, 309–312,
1998.
[58] Moosm¨uller, H. and T.D. Wilkerson, Combined Raman–elastic backscatter
lidar method for the measurement of backscatter ratios, Appl. Optics 36,
5144-5147, 1997.
[59] Nedeljkovic, D., A. Hauchecorne, M. L. Chanin, Rotational raman lidar
to measure the atmospheric-temperature from the ground to 30 km, IEEE
Transactions on Geoscience and Remote Sensing 31, 90–101, 1993.
[60] Nee, J.B., G.B. Wang, P.C. Lee, S.B. Lin, Lidar studies of particles and temperatures of the atmosphere -First results from National Central University
Lidar, Radio Science 30, 1167–1175, 1995.
[61] Nee, J.B., C.N. Len, W.N. Chen, C.I. Lin, Lidar detection of cirrus cloud in Chung-Li (25 N, 121 E), J. of the Atmos. Sci.55, 2249–2257, 1998.
[62] Nee, J.B., S. Thulasiramana, W.N. Chen, M.V. Ratnam, D.N. Rao, Middle
atmospheric temperature structure over two tropical locations, Chung Li
(25±N, 121±E) and Gadanki (13.5±N; 79.2±E), J. of Atmos. and Solar–Terr.
Phys. 64, 1311-1319, 2002.
[63] Nicolas, F., L.R. Bissonnette, and P.H. Flamant, Lidar e®ective multiplescattering coefficents in cirrus clouds, Appl. Optics 36, 3458–3468, 1997.
[64] Noel, V., H. Chepfer, G. Ledanois, A. Delaval, and P.H. Flamant, Classifi-
cation of particle e®ective shape ratios in cirrus clouds based on the lidar
depolarization ratio, Appl. Optics 41, 4245–4257, 2002.
[65] Pal, S.R. and A.I. Carswell, Polarization properties of lidar backscattering from cloud, Appl. Optics 12, 1530–1535, 1973.
[66] Palmer, K. and D. Williams, Optical constants of sulfuric acid; Application
to the cloud of Venus?, Appl. Optics 14, 208–219, 1975.
[67] Pinnick, R.G., J.M. Rosen, and D.J. Hofmann, Stratospheric aerosol measurements. III. Optical model calculations, J. of the Atmos. Sci.33, 304–313, 1976.
[68] Pinnick, R.G., S.G. Jennings, P. Ch´ylek, Relationship between extinction,
absorption, backscattering, mass content of sulfuric acid aerosols, J. of Geophys. Res. 85, 4059–4066, 1980.
[69] Platt, C.M.R., Lidar and radiometric observations of cirrus clouds, J. of the Atmos. Sci.30, 1191–1204, 1973.
[70] Platt, C.M.R, Lidar observation of a mixed-phase altostratus cloud, J. Appl. Meteor, 16, 339–345, 1977.
[71] Platt, C.M.R., The e®ect of cirrus of varying optical depth on the extraterrestrial net radiative, Quart. J. Roy. Meteor. Soc. 107, 671–678, 1981.
[72] Platt, C.M.R., J.C. Scott, and A.C. Dilley, Remote sounding of high Clouds.
Part VI: Optical properties of midlatitude and tropical cirrus, J. of the
Atmos. Sci.44, 729–747, 1987.
[73] Platt, C.M.R., S.A. Young, P.J. Manson, G.R. Patterson, S.C. Marson, R.T.
Austin, and J.H. Churnside, The optical properties of equatorial cirrus from
observations in the ARM Pilot Radiation Observation Experiment, J. of the
Atmos. Sci.55, 1977–1996, 1998.
[74] Platt, C.M.R., D.M. Winker, M.A. Vaughan, and S.D. Miller, Backscatterto-
extinction ratio in the top layers of tropical mesoscale convective systems
and in isolated cirrus from LITE observations, J. Appl. Meteor. 38, 1330–
1345, 1999.
[75] Prenni, A.J., M.E. Wise, S.D. Brooks, and M.A. Tolbert, Ice nucleation
in sulfuric acid and ammonium sulfate particles, J. of Geophys. Res. 106,
3037–3044, 2001.
[76] Pueschel, R.F., Stratospheric aerosols: formation, properties, e®ects., J.
Aerosol Sci. 27, 383–302, 1996.
[77] Rajeev, K., K. Parameswaran, Iterative method for the inversion of multiwavelength lidar signals to determine aerosol-size distribution, Appl. Optics 37, 4690–4700, 1998.
[78] Reid, G.C. and K.S. Gage, On the annual variation in height of the
tropopause, J. Atmos. Sci. 38, 1928–1938, 1981.
[79] Reid, G.C. and K.S. Gage, Interannual variations in the height of the tropical tropopause, J. of Geophys. Res. 90, 5629–5635, 1985.
[80] Reid, G.C., Seasonal and interannual temperature-variations in the tropical
stratosphere, J. of Geophys. Res. 99, 18923–18932, 1994.
[81] Richner, H. and P. Viatte, The hydrostatic equation in the evaluation algorithm
for radiosonde data, J. Atmos. and Oceanic Tech. 12, 649–656, 1995.
[82] Rosen, J.M., N.T. Kjome, Balloon-borne measurements of the aerosol
extinction-to-backscatter ratio, J. of Geophys. Res. 102, 11165–11170, 1997.
[83] Sassen, K, M. Gri±n, and G.C. Dood, Optical scattering and microphysical
properties of subvisible cirrus clouds, and climatic implications, J. Appl.
Meteor. 28, 91–98, 1989.
[84] Sassen, K., The polarization lidar technique for cloud research: A review and current assessment, Bull. of The Amer. Meteor. Soc. 72, 1848-1866, 1991.
[85] Sassen, K. and B.S. Cho, Subvisual thin cirrus lidar database for satellite
verification and climatological research, J. Appl. Meteor 31, 1275-1285, 1992.
[86] Sassen, K., R.P. Benson, and J.D. Spinhirne, Tropical cirrus properties derived
from TOGA/COARE airborne polarization lidar, Geophys. Res. Lett.
27, 673–676, 2000.
[87] Schotland, R.M., K. Sassen, and R.J. Stone, Observations by lidar and linear
depolarization ratios by hydrometeors, J. Appl. Meteor 10, 1011–1017, 1971.
[88] Schawlow, A.L. and C.H. Townes, Infrared and optical Masers, Phys. Rev.
112, 1940–1949, 1958.
[89] Sherwood, S.C., On moistening of the tropical troposphere by cirrus clouds,
J. of Geophys. Res. 104, 11949–11960, 1999.
[90] Singh, U.N., P. Keckhut, T.J. McGee, M.R. Gross, A. Hauchecorne, E.F.
Fishbein, J.W. Waters, J. Gille, A.E. Roche, J.M. Russell III, Stratospheric
temperature measurements by two collocated NDSC lidars during UARS
validation campaign, Geophys. Res. Lett. 22, 1201–1204, 1995.
[91] Steinbrecht, W., H. Claude, U. Kohler, K.P. Hoinka, Correlation between
tropopause height and total ozone: Implication for long-term changes, J. of
Geophys. Res. 103, 19183–19192, 1998.
[92] SPARC, Assessment of Water Vapor in the Upper Troposphere and Lower
Stratosphere, WMO/TD-1043, Stratospheric Processes and Their Role In
Climate, World Meteorological Organization, Paris, 2000.
[93] Tabazadeh, A., E.J. Jensen, O.B. Toon, A model decription for cirrus nucleation
from homogeneous freezing of sulfate aerosols, J. of Geophys. Res.
102, 23845–23850, 1997.
[94] Takano, Y., K.N. Liou, Radiative transfer in cirrus clouds. Part III: Light
scattering by irregular ice crystals, J. Atmos. Sci. 53, 7, 818-837, 1995.
[95] Thulasiraman, S., J.B. Nee, J.B., W.N. Chen, J.H. Chen, Temporal characteristics
of tropopause and lower stratosphere over Taiwan during 1990–1995,
J. of Atmos. and Solar–Terr. Phys. 61, 1299–1306, 1999.
[96] Turco, R.P., R.C. Whitten, and O.B. Toon, Stratospheric aerosol: observation
and theory, Rev. Geophys. 20, 233–279, 1982.
[97] Wang, P.H., P. Minnis, M.P. McCormick, G.S. Kent, and K.M. Skeens, A
6-year climatology of cloud occurrence frequency from Stratospheric Aerosol
and Gas Experiment II observations (1985-1990), J. of Geophys. Res. 101,
29407-29429, 1996.
[98] Wang, Z. and K. Sassen, Cirrus Cloud Microphysical Property Retrieval
Using Lidar and Radar Measurements, Part I: Algorithm Description and
Comparison with In Situ Data, J. Appl. Meteor 41, 218–229, 2001.
[99] Wang, Z. and K. Sassen, Cirrus Cloud Microphysical Property Retrieval
Using Lidar and Radar Measurements, Part II: Midlatitude Cirrus Microphysical
and Radiative Properties, Appl. Optics 59, 2291–2302, 2002.
[100] Weber, A., S.P.S. Porto, L.E. Cheesman, and J.J. Barrett, High-resolution
Raman spectroscopy of gases with cw-laser excitation, J. Opt. Soc. Am. 57,
19–28, 1967.
[101] Wilson, R., M.L. Chanin, and A. Hauchecorne, Gravity waves in the middle
atmosphere by Rayleigh lidar. 1. Case studies, J. of Geophys. Res. 96, 5153–
5167, 1991.
[102] Whitten, R.C., The stratospheric aerosol layer, Springer-Verlag, 1992.
[103] World Meteorological Organization, Scientific Assessment of Ozone Depletion, WMO Report 37, 1995.
[104] Yulaeva, E., J.R. Holton, and J.M. Wallace, On the cause of the annual
cycle in tropical lower-stratospheric temperature, J. of the Atmos. Sci.51,
169–174, 1994.
[105] Zuev, V.V., V.D. Burlokav, A.V. El’nikov, Ten Year (1986-1995) of Lidar
Observations of Temporal and Vertical Structure of Stratospheric Aerosols
Over Siberia, J. Aerosol Sci. 29, 1179–1187, 1998. |