參考文獻 |
[1] EPIA, “Global market outlook for solar power 2015-2019”, Jan. 2016.
[2] S. Kouro, J. I. Leon, D. Vinnikov, and L. G. Franquelo, “Grid-connected photovoltaic systems: an overview of recent research and emerging PV converter technology,” IEEE Ind. Electron. Magazine, pp. 47-67, Mar. 2015.
[3] T. L. Kottas, Y. S. Boutalis, and A. D. Karlis, “New maximum power point tracker for PV arrays using fuzzy controller in close cooperation with fuzzy cognitive networks,” IEEE Trans. Energy Convers., vol. 21, no. 3, pp.793-803, Sep. 2006.
[4] M. Altin, O. Goksu, R. Teodorescu, P. Rodriguez, B. B. Jensen and L. Helle, “Overview of recent grid codes for wind power integration,” 2010 Inter. Conf. on Optimization and Electronic Equipment, pp. 1152-1160, 2010.
[5] Y. Yang, F. Blaabjerg, and H. Wang, “low voltage ride-through of single-phase transformerless photovoltaic inverters,” IEEE Energy Conversion Congress and Exposition (ECCE), pp. 4762-4769, 2013.
[6] M. Tsili, and S. Papathanassiou, “A review of grid code technical requirements for wind farms,” IET Renew. Power Gener., vol. 3, Iss. 3, pp. 308-332, 2009.
[7] P. Rodriguez, A. V. Timbus, R. Teodorescu, M. Liserre, and F. Blaabjerg, “Flexible active power control of distributed power generation systems during grid faults,” IEEE Trans. Indus. Electron., vol. 54, no. 5, pp. 2583-2592, Oct. 2007.
[8] P. Rodríguez, A. Timbus, R. Teodorescu, M. Liserre, and F. Blaabjerg, “Reactive power control for improving wind turbine system behavior under grid faults,” IEEE Trans. Power Electron., vol. 24, no. 7, pp. 1798-1801, July 2009.
[9] S. Alepuz, S. Busquets-Monge, J. Bordonau, J. A. Martinez-Velasco, C. A. Silva, J. Pontt, and J. Rodriguez, “Control strategies based on symmetrical components for grid-connected converters under voltage dips,” IEEE Trans. Indus. Electron., vol. 56, no. 6, pp. 2162-2173, June 2009.
[10] M. Castilla, J. Miret, J. L. Sosa, J. Matas, and L. García de Vicuña, “Grid-fault control scheme for three-phase photovoltaic inverters with adjustable power quality characteristics,” IEEE Trans. Power Electron., vol. 25, no. 12, pp. 2930-2940, Dec. 2010.
[11] M. Reyes, P. Rodriguez, S. Vazquez, A. Luna, R. Teodorescu, and J. M. Carrasco, “Enhanced decoupled double synchronous reference frame current controller for unbalanced grid-voltage conditions,” IEEE Trans. Power Electron., vol. 27, no. 9, pp. 3934-3943, Sep. 2012.
[12] J. Miret, M. Castilla, A. Camacho, L. García de Vicuña, and J. Matas, “Control scheme for photovoltaic three-phase inverters to minimize peak currents during unbalanced grid-voltage sags,” IEEE Trans. Power Electron., vol. 27, no. 10, pp. 4262-4271, Oct. 2012.
[13] A. Camacho, M. Castilla, J. Miret, J. C. Vasquez, and E. Alarcon-Gallo, “Flexible voltage support control of three-phase distributed generation inverters under grid fault,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1429-1441, Apr. 2013.
[14] J. Miret, A. Camacho, M. Castilla, L. García de Vicuña, and J. Matas, “Control scheme with voltage support capability for distributed generation inverters under voltage sags,” IEEE Trans. Power Electron., vol. 28, no. 11, pp. 5252-5262, Nov. 2013.
[15] X. Guo, X. Zhang, B. Wang, W. Wu, and J. M. Guerrero, “Asymmetrical grid fault ride through strategy of three-phase grid-connected inverter considering network impedance impact in low-voltage grid,” IEEE Trans. Power Electron., vol. 29, no. 3, pp. 1064-1068, Mar. 2014.
[16] S. F. Chou, C. T. Lee, H. C. Ko, and P. T. Cheng, “A low-voltage ride-through method with transformer flux compensation capability of renewable power grid-side converters,” IEEE Trans. Power Electron., vol. 29, no. 4, pp. 1710-1719, Apr. 2014.
[17] A. Camacho, M. Castilla, J. Miret, A. Borrel, and L. G. de Vicuna, “Active and reactive power strategies with peak current limitation for distributed generation inverters during unbalanced grid faults,” IEEE Trans. Ind. Electron., vol. 62, no. 3, pp. 1515-1525, Mar. 2015.
[18] X. Guo, W. Liu, X. Zhang, X. Sun, Z. Lu and J. M. Guerrero, “Flexible control strategy for grid-connected inverter under unbalanced grid faults without PLL,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 1773-1778, Apr. 2015.
[19] D. Shin, K. J. Lee, J. P. Lee, D. W. Yoo, and H. J. Kim, “Implementation of fault ride-through techniques of grid-connected inverter for distributed energy resources with adaptive low-pass notch PLL,” IEEE Trans. Power Electron., vol. 30, no. 5, pp. 2859-2871, May 2015.
[20] G. Ding, F. Gao, H. Tian, C. Ma, M. Chen, G. He, and Y. Liu, “Adaptive DC-link voltage control of two-stage photovoltaic inverter during low voltage ride-through operation,” IEEE Trans. Power Electron., vol. 31, no. 6 pp. 4182-4194, June 2015.
[21] C. H. Lee and C. C. Teng, “Identification and control of dynamic systems using recurrent fuzzy neural networks,” IEEE Trans. Fuzzy Sys., vol. 8, no. 4, pp. 349-366, Aug. 2000.
[22] H. Li, K. L. Shi, and P. G. McLaren, “Neural-network-based sensorless maximum wind energy capture with compensated power coefficient,” IEEE Trans. Ind. Appl., vol. 41, no. 6, pp. 1548-1556, Nov. 2005.
[23] C. T. Lin, C. M. Yeh, S. F. Liang, J. F. Chung, and N. Kumar, “Support-vector-based fuzzy neural network for pattern classification,” IEEE Trans. Fuzzy Sys., vol. 14, no. 1, pp. 31-41, Feb. 2006.
[24] W. M. Lin and C. M. Hong, “Neural-network-based MPPT control of a stand-alone hybrid power generation system,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3571-3581, Dec. 2011.
[25] N. Sozhamadevi, R. S. L. Delcause, and Dr. S. Sathiyamoorthy, “Design and implementation of probabilistic fuzzy logic control system,” in Proc. IEEE Conf. Emerging Trends in Science, Engineering and Technology, pp. 523-531, 2012.
[26] Z. Liu and H. X. Li, “A probabilistic fuzzy logic system for modeling and control,” IEEE Trans. Fuzzy Sys., vol. 13, no. 6, pp. 848-859, Dec. 2005.
[27] H. X. Li and Z. Liu, “A probabilistic neural-fuzzy learning system for stochastic modeling,” IEEE Trans. Fuzzy Sys., vol. 16, no. 4, pp. 898-908, Aug. 2008.
[28] F. J. Lin, M. S. Huang, P. Y. Yeh, H. C. Tsai, and C. H. Kuan, “DSP-based probabilistic fuzzy neural network control for Li-ion battery charger,” IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3782-3794, Aug. 2012.
[29] Z. L. Gaing, “Wavelet-based neural network for power disturbance recognition and classification,” IEEE Trans. Power Del., vol. 19, no. 4, pp. 1560-1568, Oct. 2004.
[30] N. M. Pindoriya, S. N. Singh, and S. K. Singh, “An adaptive wavelet neural network-based energy price forecasting in electricity markets,” IEEE Trans. Power Sys., vol. 23, no. 3, pp. 1423-1432, Aug. 2008.
[31] C. H. Lu, “Wavelet fuzzy neural networks for identification and predictive control of dynamic systems,” IEEE Trans. Ind. Electron., vol. 58, no. 7, pp. 3046-3058, July 2011.
[32] M. Davanipoor, M. Zekri, and F. Sheikholeslam, “Fuzzy wavelet neural network with an accelerated hybrid learning algorithm," IEEE Trans. Fuzzy Sys., vol. 20, no. 3, pp. 463-470, June 2012.
[33] Y. Y. Lin, J. Y. Chang, and C. T. Lin, “A TSK-type-based self-evolving compensatory interval type-2 fuzzy neural network (TSCIT2FNN) and its applications,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 447-459, Jan. 2014.
[34] C. M. Lin and H. Y. Li, "TSK fuzzy CMAC-based robust adaptive backstepping control for uncertain nonlinear systems," IEEE Trans. Fuzzy Sys., vol. 20, no. 6, pp. 1147-1154, Dec. 2012.
[35] F. J. Lin, Y. C. Hung, and M. T. Tsai, “Fault-tolerant control for six-phase PMSM drive system via intelligent complementary sliding-mode control using TSKFNN-AMF,” IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5747-5762, Dec. 2013.
[36] S. H. Ko, S. R. Lee, H. Dehboni, and C. V. Nyar, “Application of voltage- and current-controlled voltage source inverters for distributed generation systems,” IEEE Trans. Energy Convers., vol. 21, no. 3, pp.782-792, Sep. 2006.
[37] Y. H. Yang and F. Blaabjerg, “A modified P&O MPPT algorithm for single phase PV systems based on deadbeat control,” in Proc. 6th IET Inter. Conf. Power Electronics, Machines and Drives, Mar. 2012.
[38] Grid Code-High and Extra High Voltage. Bayreuth, Germany: E. ON GmbH, 2006.
[39] F. Z. Peng and J. S. Lai, “Generalized instantaneous reactive power theory for three-phase power systems,” IEEE Trans. Instrum. Meas., vol. 45, no. 1, pp. 293-297, Feb. 1996.
[40] R. Teodorescu, M. Liserre, and P. Rodriguez, Grid converters for photovoltaic and wind power systems. John Wiley & Sons. Ltd. 2011, pp. 219-221.
[41] H. Akagi, Y. Kanazawa, and A. Nabae, “Instantaneous reactive power compensators comprising switching devices without energy storage components,” IEEE Trans. Ind. Appl., vol. IA-20, no. 3, pp. 625-630, May/June 1984.
[42] P. Thakur and A. K. Singh, “Unbalance voltage sag fault-type characterization algorithm for recorded waveform,” IEEE Trans. Power Del., vol. 28, no. 2, pp. 1007-1014, Apr. 2013.
[43] V. Ignatova, P. Granjon, and S. Bacha, “Space vector method for voltage dips and swells analysis,” IEEE Trans. Power Del., vol. 24, no. 4, pp. 2054-2061, Oct. 2009.
[44] F. A. Magueed, A. Sannino, and J. Svensson, “Transient performance of voltage source converter under unbalanced voltage dips,” 2004 35th Annual IEEE Power Electron. Specialists Conf. PP. 1163-1168, 2004.
[45] D. F. Specht, “Probabilistic neural network,” Neural Netw., vol. 3, no. 1, pp. 109-118, 1990.
[46] F. J. Lin, Y. C. Hung, J. C. Hwang, and M. T. Tsai, “Fault-tolerant control of a six-phase motor drive system using a Takagi–Sugeno–Kang type fuzzy neural network with asymmetric membership function,” IEEE Trans. Power Electron., vol. 28, no. 7, pp. 3557-3571, July 2013.
[47] F. J. Lin and R. J. Wai, “Sliding-mode controlled slider-crank mechanism with fuzzy neural network,” IEEE Trans. Ind. Electron., vol. 48, no. 1, pp. 60-70, 2001.
[48] Y. S. Abu-Mostafa, “Information theory, complexity, and neural networks,” IEEE Commu. Magazine, vol. 27, pp. 25-28, Nov. 1989.
[49] J. X. Peng, K. Li, and D. S. Huang, “A hybrid forward algorithm for RBF neural network construction,” IEEE Trans. Neural Netw., vol. 17, no. 6, pp. 1439-1451, Nov. 2006.
[50] K. V. Ling, W. K. Ho, Y. Feng, and B. F. Wu, “Integral-square error performance of multiplexed model predictive control,” IEEE Trans. Ind. Informat., vol. 7, no. 2, pp. 196-203, May 2011. |