博碩士論文 102521100 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:60 、訪客IP:3.22.81.215
姓名 詹駿清(Chun-Ching Chan)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 毫米波注入鎖定振盪器及鎖頻迴路之研究
(Research on Millimeter-Wave Injection-Locked Oscillators and Frequency-Locked Loop)
相關論文
★ 微波及毫米波切換器及四相位壓控振盪器整合除三 除頻器之研製★ 微波低相位雜訊壓控振盪器之研製
★ 高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統★ 砷化鎵高速電子遷移率之電晶體微波/毫米波放大器設計
★ 微波及毫米波行進波切換器之研製★ 寬頻低功耗金氧半場效電晶體 射頻環狀電阻性混頻器
★ 微波與毫米波相位陣列收發積體電路之研製★ 24 GHz汽車防撞雷達收發積體電路之研製
★ 低功耗低相位雜訊差動及四相位單晶微波積體電路壓控振盪器之研究★ 高功率高效率放大器與振盪器研製
★ 微波與毫米波寬頻主動式降頻器★ 微波及毫米波注入式除頻器與振盪器暨射頻前端應用
★ 寬頻主動式半循環器與平衡器研製★ 雙閘極元件模型與微波及毫米波分佈式寬頻放大器之研製
★ 銻化物異質接面場效電晶體之研製及其微波切換器應用★ 微波毫米波寬頻振盪器與鎖相迴路之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 現代通訊系統中,低相位雜訊的壓控振盪器是不可或缺的元件,由於高速資料傳輸量的需求,促使我們研究毫米波的通訊系統。本論文主要針對微波注入鎖定技術應用於振盪器及鎖頻迴路,以達到低功耗、低相位雜訊之研究。第二章闡述一個K頻段高除數、頻寬再生式注入鎖定除六除頻器之分析、設計及量測結果。第三章及第四章分別為鎖頻迴路的分析及具鎖頻迴路自對準之次諧波注入鎖定振盪器之電路設計與量測結果。最後,第五章呈現一個使用變壓器耦合結構的次諧波注入鎖定四相位振盪器。本論文的設計均採用台積電提供的90 nm互補式金氧半場效電晶體製程(TSMC 90 nm GUTM CMOS)。
第二章介紹數種除頻器架構及設計原理,並且提出注入鎖定除六與除五除頻器對鎖定頻寬的理論模型,從理論模型分析得知,鎖定頻寬跟注入器(injector)的元件與注入訊號大小成正比。同時實現一個再生式注入鎖定除六除頻器,量測最大鎖定頻寬為7.1 GHz相當於31.2%比例頻寬,電路直流總功耗為28.8 mW。
第三章鎖頻迴路之分析,介紹其理論模型架構,提出各個方塊原件的理論模型及轉移函數,利用ADS(advance design system)軟體進行完整模擬分析,能夠有效率的分析系統的開迴路及閉迴路響應。第四章根據第三章提出的分析方法,設計實現一個具鎖頻迴路自對準之K頻段次諧波注入鎖定振盪器,並利用提出的理論模型分析比較各種結構頻率合成器之相位雜訊及抖動量。量測的鎖頻範圍為24到26.1 GHz,各個控制電壓的鎖定範圍約為100 MHz,輸出功率大於-17 dBm。當輸出鎖定頻率為25.3 GHz時,距載波偏移1 MHz的相位雜訊為-114.3 dBc/Hz,抖動量積分範圍由1 kHz到40 MHz為56.6 fs。電路直流總功耗為50.4 mW,和過去文獻比較擁有最佳的FOM指數。
第五章提出一個具有低直流功耗與寬注入鎖定範圍之V頻段四相位振盪器,藉由使用變壓器耦合的架構。此次提出的注入鎖定三倍頻器具有下列之優點:1) 與過去傳統的注入鎖定次諧波注入鎖定振盪器相比,由於沒有源級退化(source degeneration),交叉耦合對(cross-coupled pair)所產生的負電阻不會減少,所以可以操作在低直流供應電壓與低功耗。2) 藉由適當選擇注入器的偏壓獲得最大化鎖定範圍。3) 利用阻抗轉換降低注入器的寄生電容。與4) 藉由選擇較大的元件尺寸,讓注入器產生更大的三階諧波功率。根據變壓器耦合架構,提出一個鎖定範圍的理論模型,並與實驗結果相互驗證。量測自由(free-running)振盪頻率從56.6到59 GHz,可調頻率範圍為2.4 GHz。在控制電壓為0.6 V、注入功率為4 dBm三分之一輸出頻率時,鎖定範圍為1.2 GHz。當輸出頻率鎖定在56.6 GHz時,在距載波偏移1 MHz的相位雜訊為-126.8 dBc/Hz,抖動量積分範圍由1 kHz到40 MHz為18 fs。最小四相位誤差及振幅誤差分別為0.32°及0.26 dB,電路直流總功耗為19.8 mW。FOM及FOMT分別為-209及-222。
摘要(英) In modern communication systems, a voltage-controlled oscillator (VCO) is an essential building block. Since the demand for high speed data transmission rate is increasing, we were driven to investigate millimeter-wave communication systems. This thesis focuses on the millimeter-wave oscillator and frequency-locked loop (FLL) using an injection-locked technique to achieve low dc power consumption and low phase noise. Analysis, design and measured results for K-band high-division, broadband regenerative injection-locked frequency divider (ILFD) in Chapter 2. Analysis and design of the FLL and the sub-harmonic injection-locked K-band VCO with FLL self-alignment are presented in Chapter 3 and 4, respectively. Finally, a V-band sub-harmonic injection-locked quadrature VCO (SILQVCO) using a transformer coupled (TC) topology are proposed in Chapter 5. All of the designs in this thesis are fabricated using TSMC 90 nm GUTM CMOS process.
Several frequency dividers and the injection-locked theory are introduced in Chapter 2. The locking range of divide-by-6 and divide-by-5 ILFDs is investigated to obtain the design methodology. From the analysis, the locking range of ILFDs is proportional to the device size of the injectors and the amplitude of the injection signal. The proposed K-band divide-by-6 ILFD features a locking range of 7.1 GHz and a 31.2% fractional bandwidth. The dc power consumption is about 28.8 mW.
Analysis of the FLL, including the theoretical models, transfer functions and models using ADS (advance design system) software with system setup of each blocks in FLL are proposed in Chapter 3. We can efficiently analyze the opened-loop and closed-loop responses of the FLL system. Based on the FLL design methodology in Chapter 3, a sub-harmonic injection-locked oscillator with frequency-locked loop self-alignment (SILFLL) are presented in Chapter 4. A theoretical model of the SILFLL is proposed, and the calculated phase noise and jitter are presented for the comparison of various topologies frequency synthesizer. The measured locked range of the SILFLL is from 24 to 26.1 GHz, the locking range for each control voltages is about 100 MHz. The measured output power is higher than -17 dBm over the range. When the injection-locked output frequency is 25.3 GHz, the measured phase noise (1 MHz offset) and RMS jitter (integrated from 1 kHz to 40 MHz) are -114.3 dBc/Hz and 56.6 fs, respectively. The total dc power consumption is about 50.4 mW, and this work has the best FOM as compared with literatures.
In Chapter 5, we proposed a V-band wide locking range SILQVCO with low dc power consumption. By using a transformer coupled (TC) topology, the proposed TC-SILQVCO features the following advantages: 1) the negative resistance of the cross-coupled pair is not degraded due to the proposed SILQVCO without source degeneration, and the TC-SILQVCO can be operated in lower dc supply voltage as compared to the conventional SILQVCOs, 2) the dc bias of the injector can be properly designed for maximizing locking range, 3) the parasitic capacitance provided by the injector can be reduced due to the impedance transformation, and 4) the larger device size of the injector can be properly chosen enhancing the third harmonic. A theoretical model of the proposed TC-SILQVCO is also established and it has been carefully verified with the experimental results. The free-running oscillation frequency of the proposed TC-SILQVCO is from 56.6 to 59 GHz with a tuning range of 2.4 GHz. As the control voltage is 0.6 V and the input power is 4 dBm with one-third output frequency, the measured locking range is 1.2 GHz. When the injection-locked output frequency is 56.6 GHz, the measured phase noise (1 MHz offset) and RMS jitter (integrated from 1 kHz~40 MHz) are -126.8 dBc/Hz and 18 fs, respectively. The minimum quadrature phase error and amplitude error are 0.32° and 0.26 dB, respectively. The dc power consumption is 19.8 mW. The FOM and FOMT are -209 and -222, respectively.
關鍵字(中) ★ 鎖頻迴路
★ 注入鎖定
★ 毫米波
★ 除頻器
★ 振盪器
關鍵字(英) ★ Frequency-locked loop
★ Injection-locked
★ Millimeter-wave
★ Divider
★ Oscillator
論文目次 摘要 I
Abstract III
目錄 VI
圖目錄 X
表目錄 XIX
第1章 緒論 1
1.1 研究動機及背景 1
1.2 現況研究及發展 2
1.3 貢獻 3
1.4 論文架構 3
第2章 K頻段除六注入鎖定除頻器 5
2.1 簡介 5
2.2 除頻器架構概述 5
2.2.1 單真一相位時序(TSPC)除頻器[63] 6
2.2.2 電流模式邏輯(CML)除頻器[64] 7
2.2.3 米勒(Miller)除頻器[65] 9
2.2.4 注入鎖定原理與除頻器 10
2.2.4.1 注入鎖定原理概述[67] 10
2.2.4.2 注入鎖定(ILFD)除頻器 13
2.3 鎖定頻寬分析 14
2.3.1 分析電路模型簡介[22] 14
2.3.2 再生式注入鎖定除六除頻器鎖定頻寬分析 15
2.3.2.1 電路架構與模型 15
2.3.2.2 Q值分析[22] 18
2.3.2.3 注入電流與振盪電流 19
2.3.2.4 輸入阻抗討論[39] 27
2.3.2.5 鎖定頻寬 29
2.3.3 分析結果與討論 31
2.4 K頻段注入鎖定除六除頻器 31
2.4.1 高除數預除器架構簡介[75] 31
2.4.2 電路設計 33
2.4.3 實驗結果與討論 38
2.5 總結 47
第3章 鎖頻迴路分析 49
3.1 簡介 49
3.2 鎖頻迴路架構概述 50
3.2.1 頻率偵測器及電壓電流轉換器 50
3.2.2 迴路低通濾波器 52
3.2.3 電壓控制振盪器 54
3.2.4 頻率除頻器 55
3.3 鎖頻迴路系統模擬 56
3.3.1 波德圖穩定性分析 56
3.3.2 閉迴路暫態響應 60
3.4 總結 62
第4章 具鎖頻迴路自對準之K頻段次諧波注入鎖定壓控振盪器 63
4.1 簡介 63
4.2 具鎖頻迴路自對準之次諧波注入鎖定壓控振盪器(SILFLL) 65
4.3 相位雜訊分析[102] 70
4.4 電路實現 74
4.4.1 脈衝產生器 74
4.4.2 次諧波注入鎖定壓控振盪器 77
4.4.3 電流模式邏輯(CML)除頻器 80
4.4.4 相位偵測器及頻率偵測器[90] 82
4.5 電路實現及實驗結果與討論 87
4.5.1 次諧波注入鎖定壓控振盪器量測 89
4.5.2 鎖相迴路量測及除錯 95
4.5.3 具鎖頻迴路自對準之次諧波注入鎖定壓控振盪器量測 100
4.5.4 溫度變異量測 105
4.6 總結 108
第5章 V頻段變壓器耦合式次諧波注入鎖定四相位壓控振盪器 110
5.1 簡介 110
5.2 頻率倍頻器介紹 111
5.3 電路設計及分析 117
5.3.1 負阻分析[102] 118
5.3.2 LC共振腔的相位偏移量及鎖定範圍分析[102] 119
5.3.3 透過變壓器注入分析[102] 124
5.3.4 注入器電晶體偏壓條件 125
5.3.5 注入器電晶體尺寸 129
5.3.6 變壓器設計 130
5.3.7 四相位訊號耦合電路分析 133
5.4 電路實現及實驗結果與討論 140
5.4.1 振盪器及鎖定範圍量測 142
5.4.2 TC-SILQVCO之相位誤差及振幅誤差量測 156
5.5 總結 166
第6章 結論 168
參考文獻 170
Publication List 185
參考文獻 [1] B. Afshar and A. M. Niknejad, “A robust 24 mW 60 GHz receiver in 90 nm standard CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2008, pp. 182–183.
[2] K. Kang, F. Lin, D.-D. Pham, J. Brinkhoff, C.-H. Heng, Y. X. Guo, and X. Yuan, “A 60-GHz OOK receiver with an on-chip antenna in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 9, pp. 1720–1731, Sep. 2010.
[3] K. Okada et al., “A 60-GHz 16QAM/8PSK/QPSK/BPSK direct-conversion transceiver for IEEE 802.15.3c,” IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 2988–3004, Dec. 2011.
[4] V. Jain, B. Javid, and P. Heydari, “A BiCMOS dual-band millimeterwave frequency synthesizer for automotive radars,” IEEE J. Solid-StateCircuits, vol. 44, no. 8, pp. 2100–2113, Aug. 2009.
[5] A. Arbabian, S. Callender, S. Kang, B. Afshar, J.-C. Chien, and A.Niknejad, “A 90 GHz hybrid switching pulsed-transmitter for medicalimaging,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2667–2681,Dec. 2010.2113, Aug. 2009.
[6] D. Murphy, Q. J. Gu, Y.-C. Wu, H.-Y. Jian, Z. Xu, A. Tang, F. Wang, and M.-C. F. Chang, “A low phase noise, wideband and compact CMOS PLL for use in a heterodyne 802.15.3c transceiver,” IEEE J. Solid-State Circuits, vol. 46, no. 7, pp.1606-1617, Jul. 2011.
[7] A. Arbabian, S. Kang, S. Callender, J.-C. Chien, B. Afshar, and A.Niknejad, “A 94 GHz mm-wave to baseband pulsed-radar for imagingand gesture recognition,” IEEEInt. Symp. on VLSI Design, Automation and Test,Jun. 2012, pp. 56-57.
[8] A. Arbabian, S. Callender, S. Kang, M. Rangwala, and A. Niknejad, “A 94 GHz mm-wave-to-baseband pulsed-radar transceiver with applications in imaging and gesture recognition,” IEEE J. Solid-State Circuits, vol. 48, no. 4, pp. 1055–1071, Apr. 2013.
[9] X. Zhang, X. Zhou, and A.S. Daryoush, “A theoretical and experimental study of the noise behavior of subharmonically injection locked local oscillators,” IEEE Trans. Microw. Theory Tech., vol.40, no.5, pp.895-902, May 1992.
[10] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813-821, Jun. 1999.
[11] Y.-H. Wong, W.-H. Lin, J.-H. Tsai, and T.-W. Huang, “A 50-to-62GHz wide-locking-range CMOS injection-locked frequency divider with transformer feedback,” in Proc. IEEE Radio Freq. Integr. Circuits Symp., pp.435-438, Jun. 2008.
[12] K. Yamamoto and M. Fujishima, “55GHz CMOS frequency divider with 3.2GHz locking range,” in Proc. Solid-State Circuits Conf., pp. 135-138, Sept. 2004.
[13] H. Wu and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 /spl mu/m CMOS frequency divider with shunt-peaking locking-range enhancement,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers , pp.412-413, Feb. 2001.
[14] J.-C. Chien and L.-H. Lu, “40GHz wide-locking-range regenerative frequency divider and low-phase-noise balanced VCO in 0.18μm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp.544-621, Feb. 2007.
[15] K.-H. Tsai, L.-C. Cho, J.-H. Wu, S.-I. Liu, “3.5mW W-band frequency divider with wide locking range in 90nm CMOS technology,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Paper, pp. 466-628, Feb. 2008.
[16] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1170-1174, Jul. 2004.
[17] S.-L. Jang, C.-F. Lee, and W.-H. Yen, “A divide-by-3 injection locked frequency divider with single-ended input,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 2, pp. 142-144, Feb. 2008.
[18] H. Wu and L. Zhang, "A 16-to-18GHz 0.18-µm Epi-CMOS Divide-by-3 Injection-Locked Frequency Divider," in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 2482-2491, Feb. 2006.
[19] S.-L. Jang, Y.-S. Chen, C.-W. Chang, and C.-C. Liu, “A wide-locking Range ÷3 injection-locked frequency divider using linear mixer,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 7, pp. 390-392, Jul. 2010.
[20] X.-P. Yu, A.van Roermund, X.-L. Yan, H. M. Cheema, and R. Mahmoudi, “A 3 mW 54.6 GHz divide-by-3 injection locked frequency divider with resistive harmonic enhancement,” IEEE Microw. Wireless Compon.s Lett., vol. 19, no. 9, pp. 575-577, Sept. 2009.
[21] S.-L. Jang and C.-W. Chang, “A 90 nm CMOS LC-Tank divide-by-3 injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 4, pp. 229-231, Apr. 2010.
[22] Y.-L. Yeh and H.-Y. Chang, “Design and analysis of a W-band divide-by-three injection-locked frequency divider using second harmonic enhancement technique,” IEEE Trans. Microw. Theory. Tech., vol. 60, no. 6, pp.1617-1625, Jun. 2012.
[23] K. Yamamoto and M. Fujishima, “70GHz CMOS harmonic injection-locked divider,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 2472-2481, Feb. 2006.
[24] P. Mayr, C. Weyers, and U. Langmann, “A 90GHz 65nm CMOS injection-locked frequency divider,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp.198-596, Feb. 2007.
[25] S.-L. Jang, C.-C. Liu, and C.-W. Chung, “A tail-injected divide-by-4 SiGe HBT injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 4, pp. 236-238, Apr. 2009.
[26] S.-H. Lee, S.-L. Jang, and Y.-H. Chung, “A low voltage divide-by-4 injection locked frequency divider with quadrature outputs,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 5, pp. 373-375, May 2007.
[27] S-L Jang, Y.-H. Chuang, S.-H. Lee, and J.-J. Chao, “Circuit techniques for CMOS divide-by-four frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 3, pp. 217-219, Mar. 2007.
[28] M.-C. Chuang, J.-J. Kuo, C.-H. Wang, and H. Wang, “A 50 GHz divide-by-4 injection lock frequency divider using matching method,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 5, pp. 344-346, May 2008.
[29] H.-H. Hsieh, H.-S. Chen, and L.-H. Lu, “A V-Band divide-by-4 direct injection-locked frequency divider in 0.18-µm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 2, pp. 393-405, Feb. 2011.
[30] J. R. Hu and B. P. Otis, “A 3 μW, 400 MHz divide-by-5 injection-locked frequency divider with 56% lock range in 90nm CMOS,” in Proc. IEEE Radio Freq. Integr. Circuits Symp., pp.665-668, Jun. 2008.
[31] P.-K. Tsai, T.-H. Huang, and T.-H. Pand, “CMOS 40 GHz divide-by-5 injection-locked frequency divider,” Electronics Lett., vol. 46, no. 14, pp.1003-1004, Jul. 2010.
[32] M.-W. Li, H.-C. Kuo, T.-H. Huang, and H.-R. Chuang, “60 GHz CMOS divide-by-5 injection-locked frequency divider with an open-stub-loaded floating-source injector,” IEEE RFIC Symp., Jun. 2011, pp.1-4.
[33] 李銘偉,24 GHz 與60 GHz CMOS 低功耗壓控振盪器及高次諧波除頻器之毫米波射頻晶片研製,國立成功大學電腦與通信工程研究所碩士論文,民國99年。
[34] 黃致勝,微波及毫米波注入式除頻器與振盪器暨射頻前端應用,國立中央大學電機工程研究所碩士論文,民國100年。
[35] L. Wang, Y. Z. Xiong, S. M. Hu, and T. G. Lim, “A 0.13-μm HBT divide-by-6 injection-locked frequency divider,” 2011 IEEE ASSC Conf., Nov. 2011, pp.97-100.
[36] P.-H. Feng, and S.-H. Liu, “A Current-reused injection-locked frequency multiplication/division circuit in 40-nm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1523-1532, Apr. 2013.
[37] T. Siriburanon, W. Deng, A. Musa, K. Okada, and A. Matsuzawa, “A 13.2% loking-range divide-by-6, 3.1mW, ILFD using even-harmonic-enhanced direct injection technique for millimeter-wave PLLs, ” IEEE European Solid-State Circuits Conf., 2013, pp. 403-406.
[38] 廖彥涵,微波毫米波寬頻振盪器與鎖相迴路之研製,國立中央大學電機工程研究所碩士論文,民國102年。
[39] 林宗憲,注入鎖定除頻器之研究及其鎖相迴路應用,國立中央大學電機工程研究所碩士論文,民國102年。
[40] M.-W. Li, P.-C. Wang, T.-H. Huang, and H.-R. Chuang, “Low-voltage, wide-locking-range, millimeter-wave divide-by-5 injection-locked frequency divider,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 3, pp. 679-685, Mar. 2012.
[41] J. Lee, M. Liu, and H. Wang, “A 75-GHz phase-locked loop in 90-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1414-1426, Jun. 2008.
[42] K.-H. Tsai and S.-I. Liu, “A 43.7mW 96GHz PLL in 65nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 276-277, Feb. 2009.
[43] C. Lee and S.-I. Liu, “A 58-to-60.4GHz frequency synthesizer in 90nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. of Tech. Papers, pp. 196-596, Feb. 2007.
[44] H. Hoshino, R. Tachibana, T. Mitomo, N. Ono, Y. Yoshihara, and R. Fujimoto, “A 60-GHz phase-locked loop with inductor-less prescaler in 90-nm CMOS,” Proc. Eur. Solid State Circuits Conf., pp. 472-475, Sept. 2007.
[45] K. Scheir, G. Vandersteen, Y. Rolain, and P. Wambacq, “A 57-to-66GHz quadrature PLL in 45nm digital CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 494-495, Feb. 2009.
[46] C. Lee, L.-C. Cho, J.-H. Wu, and S.-I. Liu, “A 50.8-53GHz clock generator using a harmonic-locked PD in 0.13-µm CMOS,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 5, pp. 404-408, May 2008.
[47] K.-H. Tsai and S.-I. Liu, “A 62–66.1GHz phase-locked loop in 0.13um CMOS technology,” in IEEE Int. VLSI Design, Automation and Test, pp.113-116, Apr. 2008.
[48] H.-K. Chen, T. Wang, and S.-S. Lu, “A millimeter-wave CMOS triple-band phase-locked loop With A Multimode LC-Based ILFD,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1327-1338, May 2011.
[49] S. Kang, J.-C. Chien, and A. M. Niknejad, “A 100GHz phase-locked loop in 0.13µm SiGe BiCMOS process,” in Proc. IEEE Radio Freq. Integr. Circuits Symp., pp.1-4, Jun. 2011.
[50] S. Shahramian, A. Hart, A. Tomkins, A. C. Carusone, P. Garcia, P. Chevalier, and S. P. Voinigescu, “Design of a dual W- and D-band PLL,” IEEE J. Solid-State Circuits, vol. 46, no. 5, pp. 1011-1022, May 2011.
[51] K.-H. Tsai and S.-I. Liu, “A 104-GHz phase-locked loop using a VCO at second pole frequency,” IEEE Trans. Very Large Scale Integr. Syst., vol. 20, no. 1, pp. 80-88, Jan. 2012.
[52] B.-Y. Lin and S.-I. Liu, “A 132.6-GHz phase-locked loop in 65 nm digital CMOS,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 58, no. 10, pp. 617-621, Oct. 2011.
[53] T.-Y. Chang, C.-S. Wang, and C.-K. Wang, “A low power W-band PLL with 17-mW in 65-nm CMOS technology,” in Proc. IEEE Asian Solid-State Circuits Conf., pp. 81-84, Nov. 2011.
[54] C.-C. Wang, Z. Chen, and P. Heydari, “W-Band silicon-based frequency synthesizers using injection-locked and harmonic triplers,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 5, pp. 1307-1320, May 2012.
[55] L. Ye, Y. Wang, C. Shi, H. Liao, and R. Huang, “A W-band divider-less cascading frequency synthesizer with push-push ×4 frequency multiplier and sampling PLL in 65nm CMOS,” in IEEE MTT-S Int. Microw. Symp. Dig., pp.1-3, Jun. 2012.
[56] A. Tang, D. Murphy, G. Virbila, F. Hsiao, S.-W. Tam, H.-T. Yu, H.-H. Hsieh, C.-P. Jou, Y. Kim, A. Wong, A. Wong, Y.-C. Wu, and M.-C. F. Chang, “D-band frequency synthesis using a U-band PLL and frequency tripler in 65nm CMOS technology,” in IEEE MTT-S Int. Microw. Symp. Dig., pp.1-3, Jun. 2012.
[57] G. Liu, A. Trasser, and H. Schumacher, “A 64–84-GHz PLL with low phase noise in an 80-GHz SiGe HBT technology,” IEEE Trans Microw. Theory Tech., vol. 60, no. 12, pp. 3739-3748, Dec. 2012.
[58] A. Musa, R. Murakami, T. Sato, W. Chaivipas, K. Okada, and A. Matsuzawa, “A low phase noise quadrature injection locked frequency synthesizer for mm-wave applications,” IEEE J. Solid-State Circuits, vol. 46, no. 11, pp.2635-2649, Nov. 2011.
[59] C.-Y. Wu, M.-C. Chen, and Yi-Kai Lo, “A phase-locked loop with injection-locked frequency multiplier in 0.18-µm CMOS for V-Band applications,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 7, pp. 1629-1636, Jul. 2009.
[60] N. D. Dalt, S. Deksen, P. Greco, C. Sandner, H. Schmid, and K. Strohmayer, “A fully integrated 2.4 GHz LC-VCO frequency synthesizerw with 3 ps jitter in 0.18 µm digital standard CMOS copper technology,” in Proc. Eur. Solid-State Device Research Conf., pp. 415-418, Sep. 2002.
[61] T.N. Luo and Y.-J. E. Chen, “A 0.8-mW 55-GHz dual-injection-locked CMOS frequency divider,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 3, pp.620-625, Mar. 2008.
[62] J.-L. Li, S.-W. Qu, and Q. Xue, “A theoretical and experimental study of injection-locked fractional frequency dividers,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 11, pp. 2399-2408, Nov. 2008.
[63] J. Yuan and C. Svensson, “High-speed CMOS circuit technique,” IEEE J. Solid-State Circuits, vol. 24, no. 1, pp. 62-70, Feb. 2004.
[64] U. Singh and M. M. Green, “High-frequency CML clock divider in 0.13-µm CMOS operating up to 38 GHz,” IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1658-1661, Aug. 2005.
[65] J. Lee and B. Razavi, “A 40-GHz frequency divider in 0.18-µm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, no. 4, pp. 594-601, Apr. 2004.
[66] B. Razavi, RF Microelectronics, Prentice-Hall, 1998
[67] 劉深淵、楊清淵,鎖相迴路,滄海書局,民國100年。
[68] A. E. Sieman, Lasers, CA: University Science Books, 1986.
[69] R. R. Ward, The living Clocks, New York: Alfred Knopf, 1971.
[70] B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1415-1424, Sep. 2004.
[71] B. Razavi, Design of analog CMOS integrated circuits, New York: McGraw-Jill, 2001, ch.2.
[72] A. Hajimiri and T. H. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717-724, May 1999.
[73] T.-N. Luo, S.-Y. Bai, and Y.-J. E. Chen, “A 60-GHz 0.13 µm CMOS divide-by-three frequency divider,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 11, pp. 2409-2415, Nov. 2008.
[74] B.-Y. Lin and S.-I. Liu, “Analysis and design of D-band injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 46, no. 6, pp. 1250-1264, Jun. 2011.
[75] A. Musa, K. Okada, and A. Matsuzawa, “Progressive mixing technique to widen the locking range of high division-ratio injection-locked frequency dividers,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 3, pp. 1161-1173, Mar. 2013.
[76] “Sonnet User’s Guide,” 12th ed Sonnet Software Inc. North Suracuse, NY, 2009.
[77] A. Djemouai, M. Sawan, and M. Slamani, "New 200 MHz frequency-locked loop based on new frequency-to-voltage converters approach," in Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS 1999), vol. 2, Orlando, USA, May 1999, pp. 89-92.
[78] D. Borio, L. Camoriano, L. Lo Presti, M. Fantino, "DTFT-Based Frequency Lock Loop for GNSS Applications," IEEE Transaction on Aerospace and Electronic Systems, vol 44, No 2, April 2008.
[79] 高曜煌,射頻鎖相迴路IC設計,第二章,滄海書局,民國94年。
[80] 劉深淵、楊清淵,鎖相迴路,第一章、第二章,滄海書局,民國100年。
[81] 黃書彥,鎖頻迴路及追蹤與保持放大器之研製,國立中央大學電機工程研究所碩士論文,民國104年
[82] H. T. Bui et al., “Design of a high-speed differential frequency-tovoltage converter and its application in a 5 GHz frequency locked loop,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no.4, pp. 766–774, Apr. 2008.
[83] L. Ye, Y. Wang, C. Shi, H. Liao, and R. Huang, “A W-band divider-less cascading frequency synthesizer with push-push ×4 frequency multiplier and sampling PLL in 65nm CMOS,” in IEEE MTT-S Int Microw. Symp. Dig., Jun. 2012, pp. 1-3.
[84] A. Tang, D. Murphy, G. Virbila, F. Hsiao, S.-W. Tam, H.-T. Yu, H.-H. Hsieh, C. P. Jou, Y. Kim, A. Wong, A. Wong, Y.-C. Wu, M.-C. F. Chang, “D-band frequency synthesis using a U-band PLL and frequency tripler in 65nm CMOS technology,” in IEEE MTT-S Int Microw. Symp. Dig., Jun. 2012, pp. 1-3.
[85] G. Liu, A. Trasser, and H. Schumacher, “A 64–84-GHz PLL with low phase noise in an 80-GHz SiGe HBT technology,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 12, pp. 3739-3748, Dec. 2012.
[86] Z. Xu, Q. J. Gu, Y.-C. Wu, H.-Y. Jian and M.-C. F. Chang, “A 70-78 integrated CMOS frequency synthesizer for W-Band satellite communications,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 12, pp. 3206-3218, Dec. 2011.
[87] Shahramian, AdamHart, A. Tomkins, A. C. Carusone, P. Garcia, P. Chevalier, and S. P. Voinigescu, “A low phase noise quadrature injection locked frequency synthesizer for mm-wave applications,” IEEE J. Solid-State Circuits, vol. 46, no. 11, pp. 2635-2649, Nov. 2011.
[88] M. Tabesh, J. Chen, C. Marcu, L. Kong, S. Kang, A. M. Niknejad, and E. Alon, “A 65 nm CMOS 4-element sub-34 mW/element 60 GHz phased-array transceiver,” IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 3018-3032,Dec. 2011.
[89] C.-Y. Wu, M.-C. Chen, and Y.-K. Lo, “A phase-locked loop with injection-locked frequency multiplier in 0.18-μm CMOS for V-band applications,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 7, pp. 1629–1636, July 2009.
[90] R. C. H. v. d. Beek, C. S. Vaucher, D. M. W. Leenaerts, E. A. M. Klumperink, and B. Nauta, “A 2.5-10-GHz clock multiplier unit with 0.22-ps RMS jitter in standard 0.18-m CMOS,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 1862-1872, Nov. 2004.
[91] C. F. Liang and K.J. Hsiao, “An injection-locked ring PLL with self-aligned injection window,” in IEEE Int. Solid-State Circuits Conf., Tech. Dig., pp. 90-92, Feb. 2011.
[92] B. M. Helal, C.-M. Hsu, K. Johnson, and M. H. Perrott, “A low jitter programmable clock multiplier based on a pulse injection-locked oscillator with a highly-digital tuning Loop,” IEEE J. Solid-State Circuits, vol. 44, pp. 1391-1400, May 2009.
[93] I-T. Lee, Y.-J. Chen, S.-I. Liu, C.-P. Jou, F.-L. Hsueh, and H.-H. Hsieh, “A divider-less sub-harmonically injection-locked PLL with self-adjusted injection timing ” IEEE Int. Solid-State Circuits Conf., Tech. Dig., pp. 414-415, Feb. 2013.
[94] Y.-C. Huang and S.-I. Liu, “A 2.4 GHz sub-harmonically injection-locked PLL with self-calibrated injection timing” IEEE Int. Solid-State Circuits Conf., Tech. Dig., pp. 338-341, Feb. 2012.
[95] J. Lee, and H. Wang, "Study of subharmonically injection-locked PLLs," IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1539-1553, May 2009.
[96] H.-Y. Chang, Y.-L. Yeh, Y.-C. Liu, M.-H. Li, and K. Chen, “A low jitter low phase noise 10-GHz sub-harmonically injectionlocked PLL with self-aligned DLL in 65 nm CMOS technology,” IEEE Trans. Microw. Theory & Techn., vol. 62, no. 03, pp. 543-555, Mar. 2014.
[97] B. M. Helal, M. Z. Straayer, G.-Y. Wei, and M. H. Perrott, “A highly digital MDLL-based clock multiplier that leverages a self-scrambling time-to-digital converter to achieve subpicosecond jitter performance,” IEEE J. Solid-State Circuits, vol. 43, pp. 855-863, Apr. 2008.
[98] F.-R. Liao and S.-S. Lu, "A programmable edge-combining DLL with a current-splitting charge pump for spur suppression,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, pp. 946-950, Dec. 2010.
[99] R. C. H. v. d. Beek, C. S. Vaucher, D. M. W. Leenaerts, E. A. M. Klumperink, and B. Nauta, “A 2.5–10-GHz clock multiplier unit with 0.22-ps RMS jitter in standard 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 1862–1872, Nov. 2004.
[100] L.-C. Cho, C. Lee, and S.-I. Liu, “A 1.2-V 37-38-GHz eight-phase clock generator in 0.13-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 42, pp. 1261-1270, Jun. 2007.
[101] S. Kang et al., “A W-band low-noise PLL with a fundamental VCO in SiGe for millimeter-wave applications,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 10, pp. 2390–2404, Oct. 2014.
[102] 葉彥良,應用於微波及毫米波鎖相迴路之金氧半場效電晶體注入鎖定振盪器研究,國立中央大學電機工程研究所博士論文,民國102年。
[103] H.-Y. Chang, Y.-L. Yeh, Y.-C. Liu, M.-H. Li, and K. Chen, “A low jitter low phase noise 10-GHz sub-harmonically injection-locked PLL with self-aligned DLL in 65 nm CMOS technology,” IEEE Trans. Microwave Theory & Tech., vol. 62, no. 03, pp. 543-555, Mar. 2014.
[104] P. Andreani, X. Wang, L. Vandi, and A. Fard, “A study of phase noise in Colpitts and LC-tank CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 40, no. 5, pp. 1107–1118, May 2005.
[105] C.-A. Lin, J.-L. Kuo, K.-Y. Lin, and H. Wang, “A 24 GHz low power VCO with transformer feedback,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2009, pp. 75-78.
[106] Y. Mo, E. Skafidas, R. Evans, and I. Mareels, “A 40 GHz Power Efficient Static CML Frequency Divider in 0.13-μm CMOS Technology for High Speed MilimeterWave Wireless Systems,” IEEE ICCSC 2008, pp. 812-815.
[107] A. Pottbacker, U. Langmann, and H.-U. Schreiber “A Si bipolar phase and frequency detector IC for clock extraction up to 8 Gb/s,” IEEE J. Solid-State Circuits, vol. 27, no. 12, pp. 1747-1751, Dec. 1992.
[108] Y.-H. Peng, and L.-H. Lu, “A Ku-band frequency synthesizer in 0.18-m CMOS technology,” IEEE Microw.Wireless Compon. Lett., vol. 17, no. 4, pp. 256-258, Apr. 2007.
[109] Y.-H. Peng, and L.-H. Lu, “A 16-GHz triple-modulus phase-switching prescaler and its application to a 15-GHz frequency synthesizer in 0.18-m CMOS,” IEEE Trans. Microw. Theory Tech., vol.55, no.1, pp.44-51, Jan. 2007.
[110] S.-J. Li, H.-H. Hsieh, and L.-H. Lu, “A 10 GHz phase-locked loop with a compact low-pass filter in 0.18 m CMOS,” IEEE Microw.Wireless Compon. Lett., vol. 19, no. 10, pp. 659-661, Oct. 2009.
[111] T.-H. Lin, and Y.-J. Lai, “An agile VCO frequency calibration technique for a 10-GHz CMOS PLL,” in IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 340–349, Feb. 2007.
[112] M. Huang, C.-H. Yu, J.-H. Tsai, and T.-W. Huang, “A low-power 24 GHz phase lock loop with gain-boosted charge pump embedded in 0.18 µm COMS technology,” Proceedings IEEE Asia Pacific Microwave Conf., pp 643-645, Dec. 2012.
[113] A. W. L. Ng, G. C. T. Leung, K.-C. Kwok, L. L. K. Leung, and H.C. Luong, “A 1-V 24-GHz 17.5 mW phase-locked loop in a 0.18-μm CMOS process,” IEEE J. Solid-State Circuits, vol. 41, no. 6, pp.1236–1244, Jun. 2006.
[114] A. Li et al., “A 21–48 GHz subharmonic injection-locked fractional-N frequency synthesizer for multiband point-to-point backhaul communications,” IEEE J. Solid-State Circuits, vol. 49, no. 8, pp. 1785–1799, Aug. 2014.
[115] X. Gao, E. A. M. Klumperink, P. F. J. Geraedts, and B. Nauta, “Jitter analysis and a benchmarking figure-of-merit for phase-locked loops,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 2, pp. 117-121, Feb. 2009.
[116] C. H. Lin, Y. C. Liu, “A 60-GHz low DC power self-injection coupling CMOS quadrature voltage-controlled oscillator with high quadrature accuracy”, IEEE International Microwave Symposium 2013.
[117] W. L. Chan, J. R. Long, “A 56-to-65 GHz Injection-Locked Frequency Tripler with Quadrature Outputs in 90-nm CMOS”, IEEE J. of Solid-State Circuits, Vol. 43, no. 12, pp. 2739-2746, December 2008.
[118] A. Musa et al., “A 58-63.6GHz quadrature PLL frequency synthesizer in 65nm CMOS,” A-SSCC Dig. Tech. Papers, pp.189-192, November 2010.
[119] G. Mangraviti, “A 52-66GHz Subharmonically Injection-Locked Quadrature Oscillator with 10 GHz Locking Range in 40nm LP CMOS,” RFIC Symposium, pp. 309–312, June 2012.
[120] D. Shim, C. Mao, S. Sankaran, and K. K. O, “150 GHz complementary anti-parallel diode frequency tripler in 130 nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 1, pp. 43-45, Jan. 2011.
[121] T. Bryllert, A. Malko, J. Vukusic, and J. Stake, “A 175 GHz HBV frequency quintupler with 60 mW output power,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 2, pp. 76-78, Feb. 2012.
[122] C. Mao, C. S. Nallani, S. Sankaran, E. Seok, and K. K. O, “125-GHz diode frequency doubler in 0.13-μm CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1531-1538, May 2009.
[123] Y. Lee, J. R. East, and L. P. B. Katehi, “High efficiency W-band GaAs monolithic frequency multipliers,” IEEE Trans. Microw. Theory Tech., vol. 52, pp. 529-535, Feb. 2004.
[124] G.-L. Tan and G. M. Rebeiz, “High-power millimeter-wave planar doublers,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2000, vol. 3, pp. 1601-1604.
[125] U. R. Pferiffer, C.Mishra, R. M. Rassel, S. Pinkett, and S. K. Reynolds, “Schottky barrier diode circuits in silicon for future millimeter-wave and Terahertz applications,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 2, pp. 364-371, Feb. 2008.
[126] C.-S. Lin, P.-S. Wu, M.-C. Yeh, J.-S. Fu, H.-Y. Chang, K.-Y. Lin, and H. Wang, “Analysis of multiconductor coupled-line Marchand baluns for miniature MMIC design,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 6, pp. 1190-1199, June 2007.
[127] Y.-G. Kim, K. W. Kim, and Y.-K. Cho, “A planar ultra-wideband balanced doubler,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2008, pp. 1243-1246.
[128] R. Bitzer, “Planar broadband MIC balanced frequency doublers,” in IEEE MTT-S Int. Microw. Symp. Dig., July 1991, vol. 1, pp. 273-276.
[129] S. A. Maas and Y. Ryu, “A broadband, planar, monolithic resistive frequency doubler,” in IEEE MTT-S Int. Microw. Symp. Dig., May 1994, vol. 1, pp. 443-446.
[130] Bryllert, A. Malko, J. Vukusic, and J. Stake, “A 25-75 GHz miniature double balanced frequency doubler in 0.18-μm CMOS Technology,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 4, pp. 275-277, Apr. 2008.
[131] T. Kiuru, J. Mallat, A. V. Räisänen, and T. Närhi, “Compact broadband MMIC Schottky frequency tripler for 75–140 GHz”, in Proc. Eur. Micro. Integr. Circuits Conf., Oct. 2011, pp. 108-111.
[132] Y. Wang, W. L. Goh, Y.-Z. Xiong, “A 9% power efficiency 121-to-137GHz phase-controlled push-push frequency quadrupler in 0.13μm SiGe BiCMOS,” in IEEE Int. Solid-State Circuits Conf., Tech. Dig., Feb. 2012, pp. 262-264.
[133] Y. Campos-Roca, C. Schwörer, A. Leuther, and M. Seelmann-Eggebert “G-band metamorphic HEMT-based frequency multiplier,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 7, pp. 2893–2992, Jul. 2006.
[134] A. Boudiaf, D. Bachelet, and C. Rumelhard, “A high-efficiency and low-phase-noise 38 GHz pHEMT MMIC tripler,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 12, pp. 2546–2553, Dec. 2000.
[135] J. C. Chiu, C. P. Chang, M. P. Houng, and Y. H.Wang, “A 12–36 GHz PHEMT MMIC balanced frequency tripler,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 1, pp. 19–21, Jan. 2006.
[136] Y. Campos-Roca, L. Verweyen, M. Fernández-Barciela, E. Sánchez, M. C. Currás-Francos, W. Bronner, A. Hülsmann, and M. Schlechtweg, “An optimized 25.5–76.5 GHz PHEMT-based coplanar frequency tripler,” IEEE Microw. Guided Wave Lett., vol. 10, no. 6, pp. 242–244, Jun. 2000
[137] N.-C. Kuo, Z.-M. Tsai, K. Schmalz, J. C. Scheytt, and H. Wang, “A 52-75 GHz frequency quadrupler in 0.25-µm SiGe BiCMOS process”, in Proc. Eur. Micro. Integr. Circuits Conf., Sept. 2010, pp. 365-368.
[138] E. Öjefors, B. Heinemann and U. R. Pfeiffer, “A 325 GHz Frequency Multiplier Chain in a SiGe HBT Technology,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig. May 2010, pp. 91-94.
[139] E. Öjefors, B. Heinemann, and U. R. Pfeiffer, “Active 220- and 325-GHz frequency multiplier chains in an SiGe HBT technology,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1311-1318, May 2011.
[140] J.-H. Chen, and H. Wang, “A high gain, high power K-band frequency doubler in 0.18 μm CMOS process,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 9, pp. 522-524, Sept. 2010.
[141] K. Y. Lin, J. Y. Huang, and S. C. Shin, “A K-band CMOS distributed doubler with current-reuse technique,” IEEE Mircow. Wireless Compon. Lett., vol. 19, no. 5, pp. 308-310, May 2009.
[142] K. Yamamoto, “A 1.8-V operation 5-GHz-band CMOS frequency doubler using current-reuse circuit design technique,” IEEE J. Solid State Circuits, vol. 40, no. 6, pp. 1288-1295, Jun. 2005.
[143] N.-C. Kuo, J.-C. Kao, Z.-M. Tsai, K.-Y. Lin, and H. Wang, “A 60-GHz frequency tripler with gain and dynamic-range enhancement,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 3, pp. 660-671, Mar. 2011.
[144] U. J. Lewark, A. Tessmann, H. Massler, S. Wagner, A. Leuther, and I. Kallfass, “300 GHz active frequency-tripler MMICs,” in Proc. Eur. Micro. Integr. Circuits Conf., Sept. 2011, pp. 236-339.
[145] F. Giannini and G. Leuzzi, Nonlinear Microwave Circuit Design, John Wiley & Sons, Ltd, England, 2004.
[146] F.-H. Huang, C.-K. Lin, and Y.-J. Chan, “V-band GaAs pHEMT cross-coupled sub-harmonic oscillator,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 8, pp. 473–475, Aug. 2006.
[147] S. Kishimoto, K. Maruhashi, M. Ito, T. Morimoto, Y. Hamada, and K. Ohata, “A 60-GHz-band subharmonically injection locked VCO MMIC operating over wide temperature range,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2005, pp. 1689–1692.
[148] K. Kamogawa, T. Tokumitsu, and I. Toyoda, “A 20-GHz-band subharmonically injection-locked oscillator MMIC with wide locking range,” IEEE Microw. Guided Wave Lett., vol. 7, no. 8, pp. 233–235, Aug. 1997.
[149] K. Kamogawa, T. Tokumitsu, and M. Aikawa, “Injection-locked oscillator chain: A possible solution to millimeter-wave MMIC synthesizers,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 9, pp. 1578–1584, Sept. 1997.
[150] M.-C. Chen and C.-Y. Wu, “Design and analysis of CMOS subharmonic injection-locked frequency triplers,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 8, pp. 1869–1878, Aug. 2008.
[151] W. K. Chan and J. R. Long, “A 56–65 GHz injection-locked frequency tripler with quadrature outputs in 90-nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2739–2746, Dec. 2008.
[152] S.-W. Tam, E. Socher, A. Wong, Y. Wang, L. D. Vu, and M.-C. F. Chang, “Simultaneous sub-harmonic injection-locked mm-wave frequency generators for multi-band communications in CMOS,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig. Jun. 2008, pp. 131–134.
[153] Y.-L. Yeh, C.-S. Huang, and H.-Y. Chang, “A 20.7% locking range W-band fully integrated injection-locked oscillator using 90 nm CMOS technology,” in IEEE MTT-S Int. Microw. Symp. Dig., June 2012, pp. 1-3.
[154] Z. Chen and P. Heydari, “An 85-95.2 GHz transformer-based injection-locked frequency tripler in 65nm CMOS,” in IEEE MTT-S Int. Microw. Symp. Dig., May. 2010, pp. 776–779.
[155] C.-Y. Wu and C.-Y. Yu, “Design and analysis of a millimeter-wave direct injection-locked frequency divider with large frequency locking range,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 8, pp. 1649–1658, Aug. 2007.
[156] S. Verma, H. R. Rategh, and T. H. Lee, “A unified model for injectionlocked frequency dividers,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 1015-1027, Jun. 2003.
[157] C.-K. Hsieh, K.-Y. Kao, J. R. Tseng, and K.-Y. Lin, “A K-band CMOS low power modified Colpitts VCO using transformer feedback,” in IEEE MTT-S Int Microw. Symp. Dig., June 2009, pp. 1293–1296.
[158] H.-Y. Chang, Y.-H. Cho, M.-F. Lei, C.-S. Lin, T.-W. Huang, and H. Wang, “A 45-GHz quadrature voltage controlled oscillator with a reflection-type IQ modulator in 0.13-m CMOS technology,” in IEEE MTT-S Int. Microwave Symp. Dig., June 2006, pp. 739-742.
[159] M. Chua, and K. W. Martin, “1 GHz programmable analog phase shifter for adaptive antennas,” in Proc. IEEE Custom Integrated Circuit Conf., May 1998, pp.11-14.
[160] J. J. Kim, and B. Kim, “A low-phase-noise CMOS LC oscillator with a ring structure,” in IEEE Int. Solid-State Circuit Conf. Tech. Dig., Feb. 2005, pp. 430-431.
[161] C.-A. Lin, J.-L. Kuo, K.-Y. Lin, and H. Wang, “A 24 GHz low power VCO with transformer feedback,” in IEEE RFIC Symp. Dig., Jun. 2009, pp. 75-78.
[162] C.-C. Li, T.-P. Wang, C.-C. Kuo, M.-C. Chuang, and H. Wang, “A 21 GHz complementary transformer coupled CMOS VCO,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 4, pp. 278-280, Apr. 2008.
[163] C.-K. Hsieh, K.-Y. Kao, J. R. Tseng, and K.-Y. Lin, “A K-band CMOS low power modified Colpitts VCO using transformer feedback,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2009, pp. 1293-1296.
[164] Y.-H. Kuo, J.-H. Tsai, and T.-W. Huang, “A 1.7-mW, 16.8% frequency tuning, 24-GHz transformer-based LC-VCO using 0.18-m CMOS technology,” in IEEE RFIC Symp. Dig., Jun. 2009, pp. 79-82.
[165] T.-H. Huang, and Y.-R. Tseng, “A 1 V 2.2 mW 7 GHz CMOS quadrature VCO using current-reuse and cross-coupled transformer-feedback technology,” IEEE Microw. and Wireless Compon. Lett., vol. 18, no. 10, pp. 698-700, Oct. 2008.
[166] D. Baek, T. Song, E. Yoon, and S. Hong, “8-GHz CMOS quadrature VCO using transformer-based LC tank,” IEEE Microwave and Wireless Components Letters, vol. 13, no. 10, pp. 446-448, October 2003.
[167] S. Ko, J.-G. Kim, T. Song, E. Yoon, and S. Hong, “20 GHz integrated CMOS frequency sources with a quadrature VCO using transformers,” in IEEE RFIC Symp. Dig., Jun 2004, pp. 269–272.
[168] M. Hossain and A. Chan Carusone, “20 GHz low power QVCO and de-skew techniques in 0.13-m digital CMOS,” in IEEE Custom Integrated Circuits Conf. pp. 447-450, 2008.
[169] S. Hackl, J. Bock, G. Ritzberger, M. Wurzer, and A. L. Scholtz “A 28-GHz monolithic integrated quadrature oscillator in SiGe Bipolar Technology,” IEEE J. Solid-State Circuits, vol. 38, no. 1, pp. 135-137, January 2003.
[170] W. L. Chan, H. Veenstra, and J. R. Long, “A 32GHz quadrature LC-VCO in 0.25μm SiGe BiCMOS technology,” in 2005 Int. Solid-State Circuit Conf. Dig., San Francisco, USA, pp. 538-539.
[171] C.-H. Lin and H.-Y. Chang, “A low phase noise low DC power quadrature voltage-controlled oscillator using a 0.18-m CMOS process,” in Proc. EuMIC, pp. 28-29, Sept. 2009.
[172] C.-L. Yang and Y.-C. Chiang, “Low phase-noise low-power CMOS VCO constructed in current-reused configuration,” IEEE Microw. and Wireless Compon. Lett., vol. 18, no. 2, pp. 136-138, Feb. 2008.
[173] H.-Y. Chang, and Y.-T. Chiu, “K-band CMOS differential and quadrature voltage-controlled oscillators for low phase-noise and low-power applications,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 1, pp. 46–59, Jan. 2012.
[174] S.-Y. Lee and C.-Y. Chen, “Analysis and digital of a wide-tuning-range VCO with quadrature outputs,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 12, pp. 1209-1213, Dec. 2008.
[175] F. Behbahani, Y. Kishigami, J. Leete, and A. A. Abidi, “CMOS mixers and polyphase filters for large image rejection,” IEEE J. Solid-State Circuits, vol. 36, no. 6, pp. 873-887, Jun. 2001.
[176] M. S. J. Steyaert, J. Janssens, B. De Muer, M. Borremans, and N. Itoh, “A 2-V CMOS cellular transceiver front-end,” IEEE J. Solid-State Circuits, vol. 35, no. 12, pp. 1895-1907, Dec. 2000.
[177] A. Rofougaran, J. Rael, M. Rofougaran, A. Abidi, “A 900 MHz LC-oscillator with quadrature outputs,” in 1996 Int. Solid-State Circuit Conf. Dig., San Francisco, USA, pp. 392-393.
[178] F. Behbahani, Y. Kishigami, J. Leete, and A. A. Abidi, “CMOS mixers and polyphase filters for large image rejection,” IEEE J. Solid-State Circuits, vol. 36, no. 6, pp. 873-887, Jun. 2001.
[179] W. Z. Chen, C. L. Kuo, and C. C. Liu, “10 GHz quadrature-phase voltage controlled oscillator and prescaler,” IEEE 29th European Solid-State Circuits Conf., pp. 361-364, Sept. 2003.
[180] P. Andreani, A. Bonfanti, L. Romano, and C. Samori, “Analysis and design of a 1.8-GHz CMOS LC quadrature VCO,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1737-1747, Dec. 2002.
[181] C.-H. Lin, and H.-Y. Chang, “A low-phase-noise CMOS quadrature voltage-controlled oscillator with self-injeciton-coupled technique,” IEEE Transactions on Circuit and System II, Exp. Briefs. vol. 59, no. 10, pp. 623-627, Oct. 2012.
[182] 林紀賢,注入鎖定非線性單晶微波積體電路之研究,國立中央大學電機工程研究所博士論文,民國101年。
[183] 邱垣達,低功耗低相位雜訊差動及四相位單晶片微波積體電路壓控振盪器之研究,國立中央大學電機工程研究所碩士論文,民國100年。
[184] Fredrik Tillman, Niklas Troedsson and Henrik Sjöland, “A 1.2 volt 1.8GHz CMOS quadrature front-end,” in Symp. VLSI Circuits Dig. Tech. Papers, pp. 362–365, Jun. 2004.
[185] Y. C. Chang, Y. C. Hsu, S. G. Lin, Y. Z. Juang, and H. K. Chiou, “On-wafer single contact quadrature accuracy measurement using receiver mode in four-port vector network analyzer,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 371–374, 2008.
指導教授 張鴻埜(Hong-Yeh Chang) 審核日期 2016-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明