博碩士論文 102521020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:18.225.72.161
姓名 楊仁傑(Ren-Chien Yang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 適用於生理訊號檢測之低功耗連續時間三角積分調變器
(A Design of Low Power Continuous Time Delta-Sigma Modulator for Biosignal Applications)
相關論文
★ 應用於2.5G/5GBASE-T乙太網路傳收機之高成本效益迴音消除器★ 應用於IEEE 802.3bp車用乙太網路之硬決定與軟決定里德所羅門解碼器架構與電路設計
★ 適用於 10GBASE-T 及 IEEE 802.3bz 之高速低密度同位元檢查碼解碼器設計與實現★ 基於蛙跳演算法及穩定性準則之高成本效益迴音消除器設計
★ 運用改良型混合蛙跳演算法設計之近端串音干擾消除器★ 運用改良粒子群最佳化演算法之近端串擾消除器電路設計
★ 應用於多兆元網速乙太網路接收機 類比迴音消除器之最小均方演算法電路設計★ 光耦合隔離系統 之接收端晶片電路設計與實現
★ 應用於光耦合隔離系統之發送端雜訊整形 類比轉數位轉換器★ 應用於數位視頻廣播系統之頻率合成器及3.1Ghz寬頻壓控震盪器
★ 地面數位電視廣播基頻接收器之載波同步設計★ 適用於通訊系統之參數化數位訊號處理器核心
★ 以正交分頻多工系統之同步的高效能內插法技術★ 正交分頻多工通訊中之盲目頻域等化器
★ 兆元位元率之平行化可適性決策回饋等化器設計與實作★ 應用於數位視頻廣播系統中之自動增益放大器 及接受端濾波器設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著老年化時代的來臨以及各種文明病的出現,現代人越來越注重自己的身體監控,各種穿戴式血壓血糖心跳感測器應運而生。由於穿戴式的感測器通常需長時間的配戴,因此輕巧及省電為主要考量。一般生理訊號量測系統可分為感測與後端處理,而後端處理可藉由積體電路實現進而縮小整體系統面積。
本論文為設計一個適用於生理訊號量測的類比數位轉換器(Analog to Digital Converter, ADC),使用連續時間三角積分調變器(Continuous Time Delta-Sigma Modulator, CTDSM)實現,架構為三階積分器與一位元量化器。此ADC能處理常見的生理訊號並具有足夠的解析度,完整地將前端低雜訊放大器處理過後的訊號轉換為數位資料。另外CTDSM具有隱性抗交疊濾波器(Anti-Aliasing Filter, AAF)的特性,在系統上可以省去或減緩前級AAF的使用進而省下一些功耗。在相同積分電容下,比起離散時間,連續時間積分器可以使用較小功耗達到規格要求。而一位元量化器擁有最好的線性度並可降低電路的複雜度。
本次晶片實現使用台積電0.18 um CMOS 1P6M製程,晶片大小為0.8483 mm2。在頻寬為10 KHz下,其輸入動態範圍為88 dB、有效解析度位元(ENOB)為12.6 bits、超取樣率為64。在1.8 V電源供應下,整體晶片功耗為140 uW。
摘要(英) With the coming of aging societies and the emergence of civilized illness, modern people increasingly focus on their body monitoring, so that various wearable devices of blood pressure, blood glucose and heart rate sensors have been launched. However, it usually be worn for long periods of time, so the lightweight and higher power efficiency are the key factors in considering. In general, biosignal detection system can be classified as sensor and the back-end processing circuit. The back-end processing circuit may be implemented by the integrated circuit (IC) to minimize the area.
This thesis designs an analog to digital converter (ADC) for biosignal applications and implemented by continuous time delta-sigma modulator (CTDSM). The structure of the modulator is a third-order integrator and single bit quantizer. This ADC could process common biosignals and has enough resolutions to convert the analog signals to digital signals completely. In addition, the CTDSM also has the important property of implicit anti-aliasing filter (AAF), and it can relax the AAF front end and reduce power consumption in full system. Comparing to discrete time, the continuous time integrator can have lower power consumption to achieve the specification if both of them have the same type of integrator capacitor. In the end, the single bit quantizer can provide the best linearity and reduce the complexity of the circuit.
The chip was implemented in 0.18 um CMOS technology and the core size is 0.8483 mm2. This work achieves 86 dB dynamic range and 12.6 bits ENOB in 10 kHz signal bandwidth with an oversampling ratio of 64. The power consumption is 140 uW under 1.8 V supply voltage.
關鍵字(中) ★ 三角積分調變器
★ 類比數位轉換器
★ 抗交疊濾波器
★ 連續時間
★ 雜訊轉移函數
★ 訊號轉移函數
關鍵字(英) ★ Delta-Sigma Modulator (DSM)
★ Analog to Digital Converter (ADC)
★ Anti-aliasing Filter (AAF)
★ Continuous Time (CT)
★ Noise Transfer Function (NTF)
★ Signal Transfer Function (STF)
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 x
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 論文架構 3
第二章 三角積分類比數位轉換器 5
2.1 基本原理 5
2.2 轉移函數 (Transfer Function) 6
2.3 離散-連續時間轉換 7
2.3.1 回授DAC之行為函數 7
2.3.2 脈衝響應不變(Impulse-invariant)等效轉換 8
2.3.3 隱性(Implicit)抗交疊濾波器 11
第三章 系統模擬驗證 13
3.1 基本架構建立 13
3.1.1 量化雜訊 13
3.1.2 轉移函數與穩定度考量 16
3.1.3 積分器 23
3.1.4 離散-連續時間DSM轉換 28
3.2 非理想因素考量 32
3.2.1 雜訊 33
3.2.2 非理想積分器 37
3.2.3 迴路延遲 (Excess-Loop Delay) 40
3.2.4 時脈抖動 (Clock Jitter) 45
3.2.5 製程變異考量 50
第四章 電路設計與模擬 55
4.1 系統電路 55
4.2 兩級全差動放大器(Two Stage Fully Differential Amplifier) 56
4.2.1 電路設計 58
4.2.2 共模回授電路(Common-Mode Feedback, CMFB) 61
4.2.3 運算放大器模擬結果 63
4.3 量化器與一位元數位類比轉換器 69
4.3.1 比較器 69
4.3.2 一位元數位類比轉換器 71
4.4 電壓產生參考電路 72
4.5 系統模擬結果 73
第五章 晶片佈局與量測考量 75
5.1 晶片佈局 75
5.2 量測考量 77
5.2.1 輸入終端電路 78
5.2.2 產生供應電壓 78
5.3 文獻比較 79
第六章 結論與未來展望 81
6.1 結論 81
6.2 未來展望 81
參考文獻 83
參考文獻 [1] J. G. Webster, “Medical Instrumentation Application and Design”, John Wiley & Sons., Canada, 1998.
[2] R. Schireir, G. C. Temes, “Understanding Delta-Sigma Data Converters,” John Wiley & Sons., Canada, Nov. 2004.
[3] M. Ortmanns, F. Gerfers, “Continuous-Time Sigma-Delta A/D Conversion-Fundamentals, Performance Limits and Robust Implementations”, Springer, Netherlands, 2006
[4] T. C. Carusone, D. A. Johns, K. W. Martin, ”Analog Integrated Circuit Design”, John Wiley & Sons, United States of America, 2012
[5] Behzad Razavi, “Design of Analog CMOS Integrated Circuits”, McGraw-Hill, Singapore 2001.
[6] 林弘益, “應用於生醫訊號之低功率數位降頻濾波器”, 國立中央大學電機工程學系碩士論文, 民國101年.
[7] S. Zeller, C. Muenker, R. Weigel, T. Ussmueller, ” A 0.039mm2 Inverter-Based 1.82mW 68.6 dB-SNDR 10 MHz-BW CT-delta sigma-ADC in 65 nm CMOS Using Power-and Area-Efficient Design Techniques”, IEEE Journal of Solid-State Circuits, Vol. 49, No. 7, July 2014.
[8] J. G. Kauffman, C. Chu, J. Becker, M. Ortmanns, “A 67 dB DR 50MHz BW CT Delta Sigma Modulator Achieving 207 fJ/conv”, IEEE Asian Solid-State Circuits Conference, 2013.
[9] J. G. Kauffman, P. Witte, M. Lehmann, J. Becker, “A 72 dB DR, CT ΔΣ Modulator Using Digitally Estimated, Auxiliary DAC Linearization Achieving 88 fJ/conv-step in a 25 MHz BW”, IEEE Journal of Solid-State Circuits, Vol. 49, No. 2, February 2014
[10] M. Anderson, L. Sundström, “Design and Measurement of a CT Delta Sigma ADC With Switched-Capacitor Switched-Resistor Feedback”, IEEE Journal of Solid-State Circuits, Vol. 44, No. 2, February 2009
[11] M. Keller, A. Buhmann, J. Sauerbrey, M. Ortmanns, Y. Manoli,, ”A Comparative Study on Excess-Loop-Delay Compensation Techniques for Continuous-Time Sigma–Delta Modulators”, IEEE Transactions On Circuits And Systems—I: Regular Papers, Vol. 55, No. 11, December 2008
[12] S. Pavan, N. Krishnapura, R. Pandarinathan, P. Sankar, “A Power Optimized Continuous-Time Delta Sigma ADC for Audio Applications”, IEEE Journal of Solid-State Circuits, Vol. 43, No. 2, February 2008.
[13] J. G. Kauffman, T. Br¨uckner, M. Ortmanns,” PVT Robust Design of Wideband CT Delta Sigma Modulators Including Finite GBW Compensation”, IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), 2012
[14] K. Matsukawa, Y. Mitani, M. Takayama, K. Obata, S. Dosho,” A Fifth-Order Continuous-Time Delta-Sigma Modulator With Single-Opamp Resonator”, IEEE Journal of Solid-State Circuits, Vol. 45, No. 4, April 2010
[15] R. Zanbaghi, P. K. Hanumolu, T. S. Fiez, “An 80-dB DR, 7.2-MHz Bandwidth Single Opamp Biquad Based CT Modulator Dissipating 13.7-mW”, IEEE Journal of Solid-State Circuits, Vol. 48, No. 2, February 2013 487
[16] T. Song, Z. Cao, S. Yan, “A 2.7-mW 2-MHz Continuous-Time Delta Sigma Modulator With a Hybrid Active–Passive Loop Filter”, IEEE Journal of Solid-State Circuits, Vol. 43, No. 2, February 2008
[17] C. H. Kuo, D. Y. Shi, K. S. Chang, “A Low-Voltage Fourth-Order Cascade Delta–Sigma Modulator in 0.18-m CMOS”, IEEE Transactions on Circuits And Systems—I: Regular Papers, Vol. 57, No. 9, September 2010
[18] H. L. Chen, P. S. Chen, J. S. Chiang, “A Low-Offset Low-Noise Sigma-Delta Modulator With Pseudorandom Chopper-Stabilization Technique”, IEEE Transactions on Circuits And Systems—I: Regular Papers, Vol. 56, No. 12, December 2009
[19] E. López-Morillo, R. G. Carvajal, F. Muñoz, H. E. Gmili, A. Lopez-Martin, J. Ramírez-Angulo, E. Rodríguez-Villegas, “A 1.2-V 140-nW 10-bit Sigma–Delta Modulator for Electroencephalogram Applications“, IEEE Transactions on Biomedical Circuits and Systems, Vol. 2, No. 3, September 2008.
[20] F. Gerfers, M. Ortmanns, Y. Manoli, “A 1.5-V 12-bit Power-Efficient Continuous-Time Third-Order Sigma Delta Modulator”, IEEE Journal of Solid-State Circuits, Vol. 38, No. 8, August 2003
[21] J. Sauerbrey, T. Tille, D. S. Landsiedel, Member, IEEE, R. Thewes, “A 0.7-V MOSFET-Only Switched-Opamp Sigma Delta Modulator in Standard Digital CMOS Technology”, IEEE Journal of Solid-State Circuits, Vol. 37, No. 12, December 2002
[22] J. Garcia, S. Rodriguez, A. Rusu, “A Low-Power CT Incremental 3rd Order ADC for Biosensor Applications”, IEEE Transactions on Circuits And Systems—I: Regular Papers, Vol. 60, No. 1, January 2013
[23] C. K. Kwon, H. Kim, J. Park, S. W. Kim, “A 0.4-mW, 4.7-ps Resolution Single-Loop Delta Sigma TDC Using a Half-Delay Time Integrator”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 24, No. 3, March 2016
[24] H. Y. Yang, R. Sarpeshkar, “A Time-Based Energy-Efficient Analog-to-Digital Converter”, IEEE Journal of Solid-State Circuits, Vol. 40, No. 8, August 2005
[25] L. Yao, M. S. J. Steyaert, W. Sansen, “A 1-V 140-W 88-dB Audio Sigma-Delta Modulator in 90-nm CMOS”, IEEE Journal of Solid-State Circuits, Vol. 39, No. 11, November 2004
[26] G. C. Ahn, D. Y. Chang, M. E. Brown, “A 0.6-V 82-dB Delta-Sigma Audio ADC Using Switched-RC Integrators”, IEEE Journal of Solid-State Circuits, Vol. 40, No. 12, December 2005
[27] S. Y. Lee, C. J. Cheng, “A Low-Voltage and Low-Power Adaptive Switched-Current Sigma–Delta ADC for Bio-Acquisition Microsystems”, IEEE Transactions on Circuits And Systems—I: Regular Papers, Vol. 53, No. 12, December 2006
[28] K. P. Pun, S. Chatterjee, P. R. Kinget, “A 0.5-V 74-dB SNDR 25-kHz Continuous-Time Delta-Sigma Modulator With a Return-to-Open DAC”, IEEE Journal of Solid-State Circuits, Vol. 42, No. 3, March 2007
[29] J. Roh, S. Byun, Y. Choi, H. Roh, Y. G. Kim, J. K. Kwon, “A 0.9-V 60-W 1-Bit Fourth-Order Delta-Sigma Modulator With 83-dB Dynamic Range”, IEEE Journal of Solid-State Circuits, Vol. 43, No. 2, February 2008
[30] 黃昶暘 ,“應用於生醫訊號具RC 時間常數校正機制之低功率連續時間三角積分類比數位轉換器”, 國立中央大學電機工程學系碩士論文, 民國103年.
指導教授 薛木添(Muh-Tian Shiue) 審核日期 2016-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明