博碩士論文 89322044 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.145.66.104
姓名 黃沛群(Pei-Chun Huang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 地下維生管線地震損害評估以虛擬管線為例
(Seismic Damage Assessment for Buried Pipelines)
相關論文
★ 國際巨災保險制度之研究★ 我國推動地方層級災害防救專責單位之問題探討-以桃園縣為例
★ 公共危險物品保安監督之探討-以新竹縣為例★ 長期照顧機構消防安全設計與防火避難設施之研究
★ 考慮土壤結構互制效應並裝設減振裝置的高層建築氣動力反應之研究★ 結合模糊控制與類神經網路探討非線性結構控制的穩定性
★ 觀光產業天然災害風險評估與管理★ 天然災害風險管理決策方法建立—以地震災害為例
★ 颱洪災害風險評估推測事件資料庫之建置及應用★ 火災現場指揮幕僚運作探討-以桃園市政府消防局為例
★ 科學園區地震緊急應變計畫之研擬★ 地震災害風險評估及地震保險之風險管理
★ 園區建築物耐震能力評估★ 整合性多目標地震風險評估系統之建立
★ 適應性模糊滑動模態控制在結構工程上應用之研究★ 高樓結構裝設調和液柱阻尼器減振效應之風洞實驗研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 新竹科學工業園區的成功,儼然已成為另一項台灣經濟奇蹟,近年來更扮演著台灣經濟成長舉足輕重的角色。園區內各項高科技產業由於其產業性質特殊,若一旦遭受強烈地震侵襲,因地下維生管線損害所造成的損失將較一般普通產業更為嚴重,對於國家經濟也會造成極為慘重之損失。
本研究探討地下維生管線地震損害的評估模式,並以新竹科學工業園區虛擬地下維生管線為例,依資料建立新竹科學園區虛擬地下維生管線地理資訊系統,評估不同屬性地下維生管線地震損壞評估情形,主要預期的成果如下:
1. 維生管線地震損壞評估方式,與國內外資料經驗迴歸公式建立。
2. 新竹科學園區地震危害度分析,包括園區地震危害度曲線及或然率反應譜建立。
3. 園區虛擬維生管線地理資訊系統基本資料庫建立
4. 園區虛擬維生管線景況模擬分析。
期望經由本文提供之分析方法,建立一完整之地下維生管線地震損害評估模式,並提供新竹科學園區管理局分析結果作為防減災參考資料。
摘要(英) Abstract
The success of the Hsin-Chu Science Based Industrial Park has become an economic miracles, it has been playing a decisive role in Taiwan economics in the recent years. Because of the nature specific characteristics of High-Tech industry, buried pipelines seismic damage would be much more serious in the Industrial Park than Low-Tech industries if the Industrial Park encountered a big earthquake. Of course, the economics of the whole country would have severe compact too.
This paper proposed a complete procedure for evaluating seismic damage about buried pipelines. A series of virtual buried pipelines in Science Based Industrial Park were established as examples for seismic damage assessment. The data of buried pipelines were collected and built in GIS format for display and analysis. The different properties influencing seismic behavior of buried pipelines were discussed and incorporated into the analysis model. The following are main purposes of this thesis:
1. Establish the procedure for evaluating seismic damage about buried pipelines and use the collected buried pipelines seismic damage data from internal and abroad to build fragility curve of buried pipelines adapted in Taiwan.
2. Execute seismic hazard analysis for Hsin-Chu Science Based Industrial Park and build hazard map.
3. Establish database of buried pipelines for Hsin-Chu Based Science Industrial Park in GIS format.
4. Execute seismic damage assessment for virtual buried pipelines in Science Industrial Park and draw some conclusions for SIPA.
關鍵字(中) ★ 地震損壞評估
★ 地下維生管線
★ 地震危害度分析
關鍵字(英) ★ Seismic Hazard Analysis
★ Damage Assessment
★ Buried Pipeline
論文目次 目錄
摘要
第一章 緒論
1.1研究動機-----------------------------------------------1
1.2研究目的-----------------------------------------------2
1.3文獻回顧-----------------------------------------------3
1.4研究內容-----------------------------------------------8
第二章 地下維生管線破壞因素
2.1地盤震動----------------------------------------------10
2.1.1最大地表加速度PGA -------------------------------11
2.1.2最大地表速度PGV ---------------------------------13
2.2地盤破壞----------------------------------------------16
2.2.1土壤液化------------------------------------------16
2.2.2邊坡滑動------------------------------------------23
2.2.3斷層穿越------------------------------------------30
2.3小結--------------------------------------------------30
第三章 地下維生管線地震損害評估
3.1地下維生管線損害影響----------------------------------31
3.2影響維生管線地震損害因素------------------------------32
3.2.1管線材質------------------------------------------32
3.2.2管線直徑------------------------------------------34
3.2.3附土深淺------------------------------------------34
3.2.4接頭形式------------------------------------------35
3.2.5土壤狀況------------------------------------------35
3.2.6管齡與腐蝕----------------------------------------35
3.2.7管線用途------------------------------------------36
3.2.8破壞形式------------------------------------------36
3.3地下維生管線地震損壞評估模式--------------------------37
3.3.1地下維生管線PGV易損性曲線-----------------------39
3.3.2地下維生管線PGD易損性曲線-----------------------45
3.3.3維生管線損害機率之推估----------------------------50
3.4小結--------------------------------------------------52
第四章 新竹科學園區虛擬地下維生管線地震損害評估
4.1新竹科學園區地震危害度分析----------------------------53
4.2新竹科學園區地盤震動參數PGV--------------------------57
4.3新竹科學園區地盤破壞參數PGD--------------------------58
4.3.1土壤液化------------------------------------------59
4.3.2邊坡滑動------------------------------------------63
4.3.3斷層穿越------------------------------------------65
4.4新竹科學園區虛擬地下維生管線損害評估------------------66
4.4.1新竹科學園區地下維生管線資料庫--------------------66
4.4.2新竹科學園區虛擬管線網路--------------------------67
4.4.2.1虛擬氣體供應管線------------------------------67
4.4.2.2虛擬中油瓦斯管線------------------------------70
4.4.2.3虛擬供水管線----------------------------------73
4.5小結--------------------------------------------------78
第五章 結論與建議
5.1結論--------------------------------------------------79
5.2建議--------------------------------------------------81
參考文獻 參考文獻
1.許文科,整合性多目標地震風險評估系統,國立中央大學土木工程研究所博士論文,2000。
2.American Lifelines Alliance ,Seismic Fragility Formulations for Water Systems-Part 1-Guideline, 2001.
3.American Lifelines Alliance ,Seismic Fragility Formulations for Water Systems-Part 2-Appendices, 2001.
4.李崇正,周健捷,許文科,地下維生線系統耐震及改善之研究,公共工程委員會委託研究計畫,2001。
5.ASCE ,Gidelines for The Seismic Evaluation and Upgrade of Water Transmission Facilities,1999.
6.Ang, A. S., Tang, W. H., Probability Concepts in Engineering Planing and Design,1975, John Wiley & Sons, Inc., Vol. 1, P.351~354.
7.ATC-25, “Seismic Vulnerability and Impact of Disruption of Lifeline in The Conterminous United States”,1991.
8.Cornell, C. A., “Engineering Seismic Risk Analysis,” Bulletin of Seismological Society of America, Vol. 58, pp. 1583-1606, 1968.
9.Tsai, C. C., Loh, C. H., Yeh, Y. T., Analysis of Earthquake Risk in Taiwan Basedon Seismotectonic Zones, Memoir of the Geological Society of China, No.9, p413-446, 1987.
10.Kanai, K., An Empirical Formula for the Spectrum of Strong Earthquake Motion, Bulletin of Earthquake Research Institute, 1961, Tokyo, Vol. 39, P.85~95.
11.Joyner, W. B., Boore D. M., Peak Horizontal Acceleration and Velocity from Strong-Motion Records Including Records from the 1979 Imperial Va lley, California, Earthquake, Bull. Seism. Soc. Amer., 1981, Vol. 71, P.2011~2038.
12.Campbell, K. W., Near Source Attenuation of Peak Horizontal Acceleration, Bull. Seism. Soc. Amer., 1981, Vol. 71, P.2039~2070.
13.Youd, T. L., and Perkins, D. M., 1978,Mapping of Liquefaction induced ground failure potential, Journal of Geotechnical engineering, ASCE, vol. 104, no.4, p.433-446.
14.Liao, S. S., Veneziano, D., and Whitman, R. V., 1988, Regression models for evaluating liquefaction probability, Journal of Geotechnical Engineering, Vol. 114, no. 4, April.
15.Sadigh, K., Chang, C.Y., Egan, J. A., Makdisi, F., Youngs, R.R, “Attenuation Relationship for Shallow Crustal Earthquakes Based on California Strong Motion Data”, Seismological Research Letters, v.68, No. 1, p. 180,1997.
16.Newmark, N. M.,1965, Effects of earthquakes on dams and embankments, Geotechnique, Vol. 15, no. 2, pp. 139-160.
17.Wilson, R. C. and Keefer, D. K., 1985, Predicting areal limits of earthquake induced landsliding, evaluating earthquake hazards in the Los Angeles region, U.S. Geological Survey professional paper, Ziony, J. I., Editor, p. 317-493.
18.Seed, H.B., and Idriss, I. M., 1982, Ground motions and soil liquefaction during earthquakes, Earthquake Engineering Research Institute, Oakland, California, monograph series p. 13.
19.Wells, D. L., and Coppersmith, K., Harder, L F., and Chung, R. M., 1985, Influence of SPT procedures in soil liquefaction resistance evaluations, Journal of Geotechnical Engineering, ASCE, vol. 111, no. 12, p. 1425-1445.
20.Wang, L., A New Look Into the Performance of Water Pipeline Systems From 1987 Whittier Narrows, California Earthquake, Department of Civil Engineering, Old Dominion University, No. ODU LEE-05, Jan. 1990.
21.中華民國自來水協會,自來水設備工程設施標準解說,1995
22.Kircher et al., Development of Building Damage Functions for Earthquake Loss Estimation, Earthquake Spectra, Vol. 13, N0. 4, P.663-681, 1997.
23.Katayama, T.K., Kubo, K., and Sata, N, 1975, “Earthquake damage to water and gas distribution systems”, Proceedings, U.S. National Conference on Earthquake Engineering, Ann Arbor, MI, p. 396-405.
24.O’Rourke, M. and Ayala, G., 1993, “Pipeline damage due to wave propagation”, ASCE, vol. 119, no. GT9, p. 1491-1498.
25.Toprak, S., 1998, “Earthquake effects on buried lifeline systems”, PH. D., Cornell University.
26.劉桓吉,『台灣地質圖說明書-五萬分之一』,經濟部中央地質調 查所,1989年8月。
27.陳峻維,集集大地震中東勢、石岡、豐原之天然氣管線災損分析,國立台北科技大學土木與防災研究所碩士論文,2001。
28.曾世賢,921集集地震屋水管線災損之GIS震害分析,國立台北科技大學土木與防災研究所碩士論文,2001。
29.陳怡智,九二一地震對台中市天然氣管線之影響,國立台北科技大學土木與防災研究所碩士論文,2001。
30.王柏蘅,集集大地震中埔里鎮之自來水管線災損分析,國立台北科技大學土木與防災研究所碩士論文,2001。
31.洪瑞鍠,921集集大地震霧峰鄉自來水管線震害成因分析,國立台北科技大學土木與防災研究所碩士論文,2001。
指導教授 蔣偉寧(Wei-Ling Chiang) 審核日期 2002-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明