博碩士論文 103524007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:3.133.130.70
姓名 張筠媛(Yun-Yuan JHANG)  查詢紙本館藏   畢業系所 網路學習科技研究所
論文名稱 探討在真實情境中幾何量測學習對幾何學習成效、幾何估算能力、空間能力與van Hiele幾何思考的影響
(Investigation of the effects of measuring authentic contexts to geometry learning achievement, geometry estimation ability, spatial ability and van Hiele levels)
相關論文
★ 同步表演機器人之建構與成效評估★ 探討國小學童使用電子書多媒體註記系統結合註記分享機制對其學習行為與時間之影響
★ 先備知識對註記式多媒體電子書的影響研究:從個別環境到分享環境★ Facilitating EFL speaking and writing with peer-tutoring and storytelling strategies in authentic learning context
★ An investigation into CKEL-supported EFL learning with TPR to reveal the importance of pronunciation and interactive sentence making★ Investigation of Facilitating Physics Learning using Ubiquitous-Physics APP with Learning Map and Discussion Board in Authentic Contexts
★ 智慧互動SmartVpen在真實情境對於英文學習之影響★ 利用合作虛擬化的網絡設計輔助計算機網路學習
★ 探討擴展合作式多媒體認知理論和其對EFL聽力與口語能力之影響 - 結合動覺辨識和學習者設計內容之猜謎遊戲★ 在真實情境中利用智慧機制提升國小學生之外語口說及對話能力之評估
★ 探討在真實情境下教師回饋對學習認知與學習持續性之影響★ 註釋、對話代理和協作概念圖支持大學生議論文寫作和後設認知的培養
★ Developing and Validating the Questionnaire and Its Model for Sustainable and Scalable Authentic Contextual Learning Supported by Mobile Apps★ 探討個人化、情境化及社會化的智慧機制 輔助真實情境國小幾何學習與其對學習成效之影響
★ Investigation of smart mechanisms for authentic contextual learning with sensor and recognition technologies★ 探討智慧回饋如何影響學習時眼動和觸控 操作的表現-以 Covid-19 快篩模擬為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 幾何估算能力對於幾何學習是一個重要的影響因素,但過去的研究很少探討其對幾何學習與空間能力的影響。除此之外,很少研究讓學習者將幾何概念應用在解決真實情境的幾何問題,並缺乏探討其對學習成效、空間能力與幾何估算能力的影響。因此,本研究針對國小學童的幾何數學開發了一套Ubiquitous Geometry(UG)學習系統,探討學習者在真實情境中使用UG來量測真實物體,進行幾何量測學習解題,並探討其對幾何估算能力、幾何學習成效、空間能力與Van Hiele幾何思考層次之影響,更進一步探討學習者的幾何量測學習行為與幾何估算能力、幾何學習成效、空間能力與Van Hiele幾何思考層次之相關。
研究對象為國小五年級學生共82位,分成實驗組(使用UG)、傳統量測組(使用量尺)與傳統教學組三組,為期約一個月的實驗時間。實驗結果顯示,在幾何估算能力中的Level2-估算自身到物體的「間距」與Level3-「遠距離」觀看物體的長與寬,實驗組皆顯著優於傳統量測組與傳統教學組。後測的幾何學習成效,實驗組皆顯著優於傳統量測組與傳統教學組。在空間能力中的類比推理,實驗組顯著優於傳統量測組與傳統教學組,而在空間能力的心像旋轉中,實驗組顯著優於傳統量測組。在Van Hiele幾何思考層次,實驗組顯著優於傳統量測組與傳統教學組。
在幾何量測學習行為的影響,結果發現在複合式形狀量測次數與幾何估算能力中Level2-估算自身到物體的「間距」及Level3-「遠距離」觀看物體的長與寬、後測幾何學習成效、空間能力皆呈現顯著正相關。此外,在複合式形狀解題策略中,發現實驗組比傳統量測組與傳統教學組的答對的人數多,而且實驗組會運用較簡單的解題策略計算出複合式面積。最後,多數實驗組的學習者皆認為透過實際量測並結合真實情境的幾何學習是非常有幫助的。
摘要(英) The geometry estimation ability is an extremely important fact for the geometry learning. However, there is few research that gave students opportunities to apply their geometry concept to solve geometry problems in authentic contexts. And the influence of the geometry concept on the learning achievement of geometry, spatial ability and geometry estimated ability is also ignored. Therefore, we developed an Ubiquitous geometry (UG) system for elementary school students to investigate whether their geometry estimation ability, geometry learning achievement, spatial ability and Van Hiele levels will be affected when they learned using UG. And we also further investigated the correlation between students’ geometry estimation ability, geometry learning achievement, spatial ability and van Hiele levels.
82 fifth grade elementary school students participated in this study for around one month, who were divided into three groups , experiment group (using UG), traditional measurement group (using ruler) and traditional teaching group. The result revealed that experiment group performed significantly better than traditional measurement group and traditional teaching group on Level2- 「distance estimation between students and objects」 and Level3-「long distance estimation the length and width of objects」of the geometry estimation ability. The experiment group also out performed significantly the traditional measurement group and the traditional teaching group in geometry learning achievement of post-test. As for spatial ability, in analogical reasoning, the experimental group performed better than the traditional measurement group and the traditional teaching group, and it also reached a significant level; while in mental rotation, the experimental group only performed significantly better than the traditional measurement group. In Van Hiele levels, the experimental group performed significantly better than the traditional measurement group and the traditional teaching group.
Regarding the influence of geometry measurement learning behavior using UG on learning achievement, it was demonstrated that there was a significant correlation between the amount of area measurement of compound shapes, and Level2-「distance estimation between students and objects」or Level3-「long distance estimation of the length and width of objects」of the geometry estimation ability. And the amount of area measurement of compound shapes also had a positive correlation with geometry learning achievement from post-test, spatial ability.
Besides, we found that the number of the experimental students who got correct answers is higher than those of the traditional measurement group and the traditional teaching group in solving compound area problems. And the experimental students usually employed easier strategies to solve compound area problems. Finally, most students of the experimental group thought that it is helpful geometry learning through the practical measurement in authentic contexts .
關鍵字(中) ★ 幾何學習成效
★ 幾何估算能力
★ 空間能力
★ van Hiele幾何思考層次
★ 單一形狀
★ 複合式形狀
關鍵字(英) ★ Ubiquitous Geometry
★ geometry learning achievement
★ geometry estimation ability
★ spatial ability
★ van Hiele levels
★ single & compound shape problem
論文目次 目錄
中文摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 vii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的與待答問題 3
1.3名詞釋義 4
1.4 研究限制 5
第二章 文獻探討 6
2.1幾何能力的重要性 6
2.2空間能力對幾何能力的關聯與影響 8
2.3估算能力對幾何學習的重要性 9
第三章 系統設計與實作 11
3.1 系統設計概念 11
3.1.1 基本幾何概念 12
3.1.2 單一形狀量測 13
3.1.3 複合式形狀量測 17
第四章 研究方法 20
4.1 研究架構 20
4.2 研究對象 21
4.3 實驗設計 22
4.4 研究工具 26
4.5 資料蒐集與資料分析 31
第五章 結果分析與討論 33
5.1 學習成效分析 33
5.1.1 幾何估算能力分析 33
5.1.2 Van Hiele幾何思考層次分析 35
5.1.3 幾何學習成效分析 36
5.1.4 空間能力分析 38
5.2 幾何估算能力、幾何學習成效、空間能力與Van Hiele幾何思考層次之間的關係 40
5.3學習成效與學習行為之間的關係 41
5.3.1學習成效與實際量測行為之相關分析 41
5.3.2幾何估算能力向度與實際量測行為之相關分析 42
5.3.3幾何學習成效向度與實際量測行為之相關分析 43
5.3.4空間能力向度與實際量測行為之相關分析 43
5.4幾何解題策略 44
5.5 問卷分析 46
5.5.1科技接受模式(TAM)問卷分析 46
5.5.2凱勒學習動機(ARCS)問卷分析 48
第六章 結論與建議 51
6.1 結論 51
6.1.1 探討實驗組在幾何估算能力、幾何學習成效、空間能力與Van Hiele幾何思考層次上是否顯著優於傳統量測組和傳統教學組? 51
6.1.2 探討學習者在「單一形狀量測次數」、「複合式物體量測次數」與幾何估算能力、幾何學習成效、空間能力與Van Hiele幾何思考層次之相關性為何 52
6.1.3 探討學習者的幾何估算能力、幾何學習成效、空間能力與Van Hiele幾何思考層次之相關性為何? 53
6.1.4 實驗組、傳統量測組與傳統教學組在複合式的解題上是否有差異與其解題策略為何? 53
6.1.5 學習者對於使用UG學習系統的看法與其動機為何? 53
6.2未來工作與建議 54
第七章 參考文獻 55
附錄一 前測試卷-幾何學習成效 64
附錄二 後測試卷-幾何學習成效 68
附錄三 前測試卷-幾何估算能力 72
附錄四 後測試卷-幾何估算能力 73
附錄五 科技接受模型問卷 74
附錄六 凱勒學習動機問卷 75
附錄七 控制組幾何概念學習單 76
附錄八 控制組單一物體量測學習單 77
附錄九 控制組複合式物體量測學習單 78


圖目錄
圖1 推測數值的位置 10
圖2 給予正確的回饋 10
圖3系統設計架構圖 11
圖4三角形幾何概念 12
圖5單一形狀量測的步驟 13
圖6選擇物體所在位置 14
圖7拍照物體 14
圖8裁切照片 14
圖9物體的距離越近 15
圖10物體的距離越遠 15
圖11物體的高度越短 15
圖12物體的高度越長 15
圖13測量物體的寬度 16
圖14計算物體面積 16
圖15複合式形狀量測的步驟 17
圖16拍攝複合式物體 18
圖17裁切複合式物體 18
圖18觀看複合式物體 18
圖19拼出複合式物體 18
圖20選擇物件的所在位置 18
圖21計算複合式物體面積 19
圖22研究架構圖 20
圖23參與者人數統計表 21
圖24學習活動期程表 22
圖25實驗組的平板學習教材 23
圖26傳統量測的數位學習教材 24
圖27實驗組計算面積與練習紀錄 24
圖28組合複合式形狀 25
圖29計算複合式形狀的總面積 25
圖30複合式形狀練習紀錄 25


表目錄
表1單一形狀量測的操作流程介紹 14
表2複合式形狀量測的操作流程介紹 18
表3幾何估算能力向度說明 26
表4幾何估算能力評分方式 27
表5幾何學習成效評分方式 27
表6空間能力評分方式 28
表7 Van Hiele幾何思考層次說明 28
表8 Van Hiele幾何思考層次評分方式 29
表9 TAM評分方式 29
表10 TAM問卷信度檢驗表 29
表11 ARCS評分方式 30
表12 ARCS問卷信度檢驗表 30
表13資料蒐集 31
表15幾何估算能力(後測)及幾何估算能力向度之各組描述性統計及單因子變異數分析 35
表20 Van Hiele能力(後測) 36
表16幾何學習成效(前測)之各組描述性統計及變異數分析 37
表17幾何學習成效(後測)與幾何學習成效向度之各組描述性統計及單因子變異數分析 38
表18空間能力及空間能力向度之各組描述性統計及單因子變異數分析 39
表21幾何估算能力、幾何學習成效、空間能力與Van Hiele幾何思考層次之Pearson相關分析 41
表23幾何估算能力向度與學習行為之Pearson相關分析 42
表24幾何學習成效向度與學習行為之Pearson相關分析 43
表25空間能力向度與學習行為之相關分析 44
表26學習者解題複合式面積的策略方式 44
表27 TAM-系統易用性統計資料表 47
表28 TAM-系統有用性統計資料表 47
表29 TAM-估算有用性統計資料表 47
表30 TAM-使用意圖統計資料表 48
表31 ARCS-注意統計資料表 48
表32 ARCS-相關統計資料表 49
表33 ARCS-信心統計資料表 49
表34 ARCS-滿足統計資料表 49
參考文獻 中文部分
林浚傑. (2007). 國小學童之平面視覺空間能力研究: 國立新竹教育大學應用數學系碩士班碩士論文, 未出版, 新竹市.
英文部分
Baki, A., Kosa, T., & Guven, B. (2011). A comparative study of the effects of using dynamic geometry software and physical manipulatives on the spatial visualisation skills of pre‐service mathematics teachers. British Journal of Educational Technology, 42(2), 291-310.
Battista, M. T. (1990). Spatial visualization and gender differences in high school geometry. Journal for Research in Mathematics Education, 47-60.
Battista, M. T., Wheatley, G. H., & Talsma, G. (1982). The importance of spatial visualization and cognitive development for geometry learning in preservice elementary teachers. Journal for Research in Mathematics Education, 332-340.
BAYRAK, M. E. (2008). Investigation of effect of visual treatment on elementary school student’s spatial ability and attitude toward spatial ability problems. MIDDLE EAST TECHNICAL UNIVERSITY.
Bishop, A. J. (1980). Spatial abilities and mathematics education—A review. Educational Studies in Mathematics, 11(3), 257-269.
Burger, W. F., & Shaughnessy, J. M. (1986). Characterizing the van Hiele levels of development in geometry. Journal for Research in Mathematics Education, 31-48.
Cañadas, M. C., Molina, M., Gallardo, S., Martínez-Santaolalla, M. J., & Peñas, M. (2010). Let´ s teach geometry. Mathematics Teaching, 218, 32-37.
Casey, M. B., Nuttall, R., Pezaris, E., & Benbow, C. P. (1995). The influence of spatial ability on gender differences in mathematics college entrance test scores across diverse samples. Developmental Psychology, 31(4), 697.
Chiu-Pin, L., Shao, Y.-j., Lung-Hsiang, W., Yin-Jen, L., & Niramitranon, J. (2011). The impact of using synchronous collaborative virtual tangram in children′s geometric. TOJET: The Turkish Online Journal of Educational Technology, 10(2).
Clements, D. H., & Battista, M. T. (1992). Geometry and spatial reasoning.
Crompton, H. (2015). Using Context-Aware Ubiquitous Learning to Support Students’ Understanding of Geometry. Journal of Interactive Media in Education, 2015(1).
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.
De Lisi, R., & Wolford, J. L. (2002). Improving children′s mental rotation accuracy with computer game playing. The Journal of genetic psychology, 163(3), 272-282.
Dimakos, G., & Zaranis, N. (2010). The influence of the Geometer′s Sketchpad on the geometry achievement of Greek school students. The Teaching of Mathematics, 13(2), 113-124.
Do, T. V., & Lee, J.-W. (2009). A multiple-level 3D-LEGO game in augmented reality for improving spatial ability Human-Computer Interaction. Interacting in Various Application Domains (pp. 296-303): Springer.
Eliasson, J., Nouri, J., Ramberg, R., & Cerratto Pargman, T. (2010). Design heuristics for balancing visual focus on devices in formal mobile learning activities. Paper presented at the Proceedings of the 4th World Conference on Mobile Learning, Valletta, Malta.
Erbas, A. K., & Yenmez, A. A. (2011). The effect of inquiry-based explorations in a dynamic geometry environment on sixth grade students’ achievements in polygons. Computers & Education, 57(4), 2462-2475.
Fennema, E. (1974). Mathematics learning and the sexes: A review. Journal for Research in Mathematics Education, 126-139.
Ferreira, J., Pedro, M., & Correia, N. (2015). Geometry in the Real World: Mobile Image Processing for Educational Games. Paper presented at the Proceedings of the 13th International Conference on Advances in Mobile Computing and Multimedia.
Frankosky, M., Wiebe, E., Buffum, P., & Boyer, K. E. (2015). Spatial Ability and Other Predictors of Gameplay Time: Understanding Barriers to Learning in Game-based Virtual Environments. Res. Immersive Environ. Learn. SIG.
Gardner, H. (1993). Multiple intelligences: The theory in practiceBasic Books. New York.
Gecü, Z., & Özdener, N. (2010). The effects of using geometry software supported by digital daily life photographs on geometry learning. Procedia-Social and Behavioral Sciences, 2(2), 2824-2828.
Guay, R. B., & McDaniel, E. D. (1977). The relationship between mathematics achievement and spatial abilities among elementary school children. Journal for Research in Mathematics Education, 211-215.
Gueven, B., & Temel, K. (2008). The effect of dynamic geometry software on student mathematics teachers′ spatial visualization skills. TOJET: The Turkish Online Journal of Educational Technology, 7(4).
Guven, B. (2012). Using dynamic geometry software to improve eight grade students′ understanding of transformation geometry. Australasian Journal of Educational Technology, 28(2).
Healy, L., & Hoyles, C. (2002). Software tools for geometrical problem solving: Potentials and pitfalls. International Journal of Computers for Mathematical Learning, 6(3), 235-256.
Huang, S.-H., Wu, T.-T., Chen, H.-R., Yang, P.-C., & Huang, Y.-M. (2012). Mathematics Assisted Instruction System of M/U-Learning Environment. Paper presented at the Wireless, Mobile and Ubiquitous Technology in Education (WMUTE), 2012 IEEE Seventh International Conference on.
Hung, P.-H., Hwang, G.-J., Lee, Y.-H., & Su, I.-H. (2012). A cognitive component analysis approach for developing game-based spatial learning tools. Computers & Education, 59(2), 762-773.
Jones, G., Taylor, A., & Broadwell, B. (2009). Estimating linear size and scale: Body rulers. International Journal of Science Education, 31(11), 1495-1509.
Karaman, T., & Toğrol, A. Y. (2009). Relationship between gender, spatial visualization, spatial orientation, flexibility of closure abilities and performance related to plane geometry subject among sixth grade students. BOĞAZİÇİ ÜNİVERSİTESİ EĞİTİM DERGİSİ, 26(1).
Keller, J. M. (1987). Development and use of the ARCS model of instructional design. Journal of instructional development, 10(3), 2-10.
Kerr Jr, D. R. (1979). A Case for Geometry: Geometry Is Important, It Is There, Teach It. Arithmetic Teacher, 26(6), 14.
Ketamo, H. (2003). An adaptive geometry game for handheld devices. Educational Technology & Society, 6(1), 83-95.
Koedinger, K. R. (1998). Conjecturing and argumentation in high-school geometry students. Designing learning environments for developing understanding of geometry and space, 319-347.
Kucian, K., Grond, U., Rotzer, S., Henzi, B., Schönmann, C., Plangger, F., . . . von Aster, M. (2011). Mental number line training in children with developmental dyscalculia. NeuroImage, 57(3), 782-795.
Large, A., Beheshti, J., Breuleux, A., & Renaud, A. (1996). Effect of animation in enhancing descriptive and procedural texts in a multimedia learning environment. Journal of the American Society for Information Science, 47(6), 437-448.
Lin, H.-C. K., Chen, M.-C., & Chang, C.-K. (2015). Assessing the effectiveness of learning solid geometry by using an augmented reality-assisted learning system. Interactive Learning Environments, 23(6), 799-810.
Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child development, 1479-1498.
Martin-Dorta, N., Sanchez-Berriel, I., Bravo, M., Hernandez, J., Saorin, J. L., & Contero, M. (2014). Virtual Blocks: a serious game for spatial ability improvement on mobile devices. Multimedia Tools and Applications, 73(3), 1575-1595.
Masendorf, F. (1995). Training learning-disabled children′s spatial ability by computer games. European Education, 27(2), 49-58.
Merchant, Z., Goetz, E. T., Keeney-Kennicutt, W., Kwok, O.-m., Cifuentes, L., & Davis, T. J. (2012). The learner characteristics, features of desktop 3D virtual reality environments, and college chemistry instruction: A structural equation modeling analysis. Computers & Education, 59(2), 551-568.
Mistretta, R. M. (2000). Enhancing geometric reasoning. Adolescence, 35(138), 365.
Moreno, R., & Mayer, R. E. (1999). Cognitive principles of multimedia learning: The role of modality and contiguity. Journal of educational psychology, 91(2), 358.
Okagaki, L., & Frensch, P. A. (1994). Effects of video game playing on measures of spatial performance: Gender effects in late adolescence. Journal of applied developmental psychology, 15(1), 33-58.
Olkun, S. (2003). Comparing computer versus concrete manipulatives in learning 2D geometry. Journal of Computers in Mathematics and Science Teaching, 22(1), 43-46.
Olkun, S., Altun, A., & Smith, G. (2005). Computers and 2D geometric learning of Turkish fourth and fifth graders. British Journal of Educational Technology, 36(2), 317-326.
Panaoura, G., Gagatsis, A., & Lemonides, C. (2007). Spatial abilities in relation to performance in geometry tasks. WORKING GROUP 7. Geometrical Thinking 954, 1062.
Pittalis, M., Mousoulides, N., & Christou, C. (2007). Spatial ability as a predictor of students’ performance in geometry. Paper presented at the Proceedings of the Fifth Congress of the European Society for Research in Mathematics Educations (CERME 5).
Rafi, A., Anuar, K., Samad, A., Hayati, M., & Mahadzir, M. (2005). Improving spatial ability using a Web-based Virtual Environment (WbVE). Automation in construction, 14(6), 707-715.
Roberts, M. L., & Wortzel, L. H. (1979). New life-style determinants of women′s food shopping behavior. The Journal of Marketing, 28-39.
Shih, S.-C., Kuo, B.-C., & Liu, Y.-L. (2012). Adaptively Ubiquitous Learning in Campus Math Path. Educational Technology & Society, 15(2), 298-308.
Smith, I. M. (1964). Spatial ability: University of London Press.
Thom, R. (2002). Measurement? It′s Fun! Didn′t You Guess? Australian Primary Mathematics Classroom, 7(2), 26.
Van Hiele, P. M. (1959). The child’s thought and geometry: Brooklyn, NY: City University of New.
Waller, D. (2000). Individual differences in spatial learning from computer-simulated environments. Journal of Experimental Psychology: Applied, 6(4), 307.
Wallner, G., & Kriglstein, S. (2012). DOG eometry: teaching geometry through play. Paper presented at the Proceedings of the 4th International Conference on Fun and Games.
Wijers, M., Jonker, V., & Drijvers, P. (2010). MobileMath: exploring mathematics outside the classroom. ZDM, 42(7), 789-799.
Yang, J. C., & Chen, S. Y. (2010). Effects of gender differences and spatial abilities within a digital pentominoes game. Computers & Education, 55(3), 1220-1233.
Baki, A., Kosa, T., & Guven, B. (2011). A comparative study of the effects of using dynamic geometry software and physical manipulatives on the spatial visualisation skills of pre‐service mathematics teachers. British Journal of Educational Technology, 42(2), 291-310.
Battista, M. T. (1990). Spatial visualization and gender differences in high school geometry. Journal for Research in Mathematics Education, 47-60.
Battista, M. T., Wheatley, G. H., & Talsma, G. (1982). The importance of spatial visualization and cognitive development for geometry learning in preservice elementary teachers. Journal for Research in Mathematics Education, 332-340.
BAYRAK, M. E. (2008). Investigation of effect of visual treatment on elementary school student’s spatial ability and attitude toward spatial ability problems. MIDDLE EAST TECHNICAL UNIVERSITY.
Bishop, A. J. (1980). Spatial abilities and mathematics education—A review. Educational Studies in Mathematics, 11(3), 257-269.
Burger, W. F., & Shaughnessy, J. M. (1986). Characterizing the van Hiele levels of development in geometry. Journal for Research in Mathematics Education, 31-48.
Cañadas, M. C., Molina, M., Gallardo, S., Martínez-Santaolalla, M. J., & Peñas, M. (2010). Let´ s teach geometry. Mathematics Teaching, 218, 32-37.
Casey, M. B., Nuttall, R., Pezaris, E., & Benbow, C. P. (1995). The influence of spatial ability on gender differences in mathematics college entrance test scores across diverse samples. Developmental Psychology, 31(4), 697.
Chiu-Pin, L., Shao, Y.-j., Lung-Hsiang, W., Yin-Jen, L., & Niramitranon, J. (2011). The impact of using synchronous collaborative virtual tangram in children′s geometric. TOJET: The Turkish Online Journal of Educational Technology, 10(2).
Clements, D. H., & Battista, M. T. (1992). Geometry and spatial reasoning.
Crompton, H. (2015). Using Context-Aware Ubiquitous Learning to Support Students’ Understanding of Geometry. Journal of Interactive Media in Education, 2015(1).
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.
De Lisi, R., & Wolford, J. L. (2002). Improving children′s mental rotation accuracy with computer game playing. The Journal of genetic psychology, 163(3), 272-282.
Dimakos, G., & Zaranis, N. (2010). The influence of the Geometer′s Sketchpad on the geometry achievement of Greek school students. The Teaching of Mathematics, 13(2), 113-124.
Eliasson, J., Nouri, J., Ramberg, R., & Cerratto Pargman, T. (2010). Design heuristics for balancing visual focus on devices in formal mobile learning activities. Paper presented at the Proceedings of the 4th World Conference on Mobile Learning, Valletta, Malta.
Erbas, A. K., & Yenmez, A. A. (2011). The effect of inquiry-based explorations in a dynamic geometry environment on sixth grade students’ achievements in polygons. Computers & Education, 57(4), 2462-2475.
Fennema, E. (1974). Mathematics learning and the sexes: A review. Journal for Research in Mathematics Education, 126-139.
Ferreira, J., Pedro, M., & Correia, N. (2015). Geometry in the Real World: Mobile Image Processing for Educational Games. Paper presented at the Proceedings of the 13th International Conference on Advances in Mobile Computing and Multimedia.
Frankosky, M., Wiebe, E., Buffum, P., & Boyer, K. E. (2015). Spatial Ability and Other Predictors of Gameplay Time: Understanding Barriers to Learning in Game-based Virtual Environments. Res. Immersive Environ. Learn. SIG.
Gardner, H. (1993). Multiple intelligences: The theory in practiceBasic Books. New York.
Gecü, Z., & Özdener, N. (2010). The effects of using geometry software supported by digital daily life photographs on geometry learning. Procedia-Social and Behavioral Sciences, 2(2), 2824-2828.
Guay, R. B., & McDaniel, E. D. (1977). The relationship between mathematics achievement and spatial abilities among elementary school children. Journal for Research in Mathematics Education, 211-215.
Gueven, B., & Temel, K. (2008). The effect of dynamic geometry software on student mathematics teachers′ spatial visualization skills. TOJET: The Turkish Online Journal of Educational Technology, 7(4).
Guven, B. (2012). Using dynamic geometry software to improve eight grade students′ understanding of transformation geometry. Australasian Journal of Educational Technology, 28(2).
Healy, L., & Hoyles, C. (2002). Software tools for geometrical problem solving: Potentials and pitfalls. International Journal of Computers for Mathematical Learning, 6(3), 235-256.
Hogan, T. P., & Brezinski, K. L. (2003). Quantitative estimation: One, two, or three abilities? Mathematical Thinking and Learning, 5(4), 259-280.
Huang, S.-H., Wu, T.-T., Chen, H.-R., Yang, P.-C., & Huang, Y.-M. (2012). Mathematics Assisted Instruction System of M/U-Learning Environment. Paper presented at the Wireless, Mobile and Ubiquitous Technology in Education (WMUTE), 2012 IEEE Seventh International Conference on.
Hung, P.-H., Hwang, G.-J., Lee, Y.-H., & Su, I.-H. (2012). A cognitive component analysis approach for developing game-based spatial learning tools. Computers & Education, 59(2), 762-773.
Jones, G., Taylor, A., & Broadwell, B. (2009). Estimating linear size and scale: Body rulers. International Journal of Science Education, 31(11), 1495-1509.
Jones, M. G., Gardner, G. E., Taylor, A. R., Forrester, J. H., & Andre, T. (2012). Students′ accuracy of measurement estimation: Context, units, and logical thinking. School Science and Mathematics, 112(3), 171-178.
Karaman, T., & Toğrol, A. Y. (2009). Relationship between gender, spatial visualization, spatial orientation, flexibility of closure abilities and performance related to plane geometry subject among sixth grade students. BOĞAZİÇİ ÜNİVERSİTESİ EĞİTİM DERGİSİ, 26(1).
Keller, J. M. (1987). Development and use of the ARCS model of instructional design. Journal of instructional development, 10(3), 2-10.
Kerr Jr, D. R. (1979). A Case for Geometry: Geometry Is Important, It Is There, Teach It. Arithmetic Teacher, 26(6), 14.
Ketamo, H. (2003). An adaptive geometry game for handheld devices. Educational Technology & Society, 6(1), 83-95.
Koedinger, K. R. (1998). Conjecturing and argumentation in high-school geometry students. Designing learning environments for developing understanding of geometry and space, 319-347.
Kucian, K., Grond, U., Rotzer, S., Henzi, B., Schönmann, C., Plangger, F., . . . von Aster, M. (2011). Mental number line training in children with developmental dyscalculia. NeuroImage, 57(3), 782-795.
Large, A., Beheshti, J., Breuleux, A., & Renaud, A. (1996). Effect of animation in enhancing descriptive and procedural texts in a multimedia learning environment. Journal of the American Society for Information Science, 47(6), 437-448.
Levine, D. R. (1982). Strategy use and estimation ability of college students. Journal for Research in Mathematics Education, 350-359.
Lin, H.-C. K., Chen, M.-C., & Chang, C.-K. (2015). Assessing the effectiveness of learning solid geometry by using an augmented reality-assisted learning system. Interactive Learning Environments, 23(6), 799-810.
Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child development, 1479-1498.
Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S., & Frith, C. D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences, 97(8), 4398-4403.
Martin-Dorta, N., Sanchez-Berriel, I., Bravo, M., Hernandez, J., Saorin, J. L., & Contero, M. (2014). Virtual Blocks: a serious game for spatial ability improvement on mobile devices. Multimedia Tools and Applications, 73(3), 1575-1595.
Masendorf, F. (1995). Training learning-disabled children′s spatial ability by computer games. European Education, 27(2), 49-58.
Merchant, Z., Goetz, E. T., Keeney-Kennicutt, W., Kwok, O.-m., Cifuentes, L., & Davis, T. J. (2012). The learner characteristics, features of desktop 3D virtual reality environments, and college chemistry instruction: A structural equation modeling analysis. Computers & Education, 59(2), 551-568.
Mistretta, R. M. (2000). Enhancing geometric reasoning. Adolescence, 35(138), 365.
Montague, M., & van Garderen, D. (2003). A cross-sectional study of mathematics achievement, estimation skills, and academic self-perception in students of varying ability. Journal of Learning Disabilities, 36(5), 437-448.
Moreno, R., & Mayer, R. E. (1999). Cognitive principles of multimedia learning: The role of modality and contiguity. Journal of educational psychology, 91(2), 358.
Okagaki, L., & Frensch, P. A. (1994). Effects of video game playing on measures of spatial performance: Gender effects in late adolescence. Journal of applied developmental psychology, 15(1), 33-58.
Olkun, S. (2003). Comparing computer versus concrete manipulatives in learning 2D geometry. Journal of Computers in Mathematics and Science Teaching, 22(1), 43-46.
Olkun, S., Altun, A., & Smith, G. (2005). Computers and 2D geometric learning of Turkish fourth and fifth graders. British Journal of Educational Technology, 36(2), 317-326.
Panaoura, G., Gagatsis, A., & Lemonides, C. (2007). Spatial abilities in relation to performance in geometry tasks. WORKING GROUP 7. Geometrical Thinking 954, 1062.
Pittalis, M., Mousoulides, N., & Christou, C. (2007). Spatial ability as a predictor of students’ performance in geometry. Paper presented at the Proceedings of the Fifth Congress of the European Society for Research in Mathematics Educations (CERME 5).
Rafi, A., Anuar, K., Samad, A., Hayati, M., & Mahadzir, M. (2005). Improving spatial ability using a Web-based Virtual Environment (WbVE). Automation in construction, 14(6), 707-715.
Roberts, M. L., & Wortzel, L. H. (1979). New life-style determinants of women′s food shopping behavior. The Journal of Marketing, 28-39.
Shih, S.-C., Kuo, B.-C., & Liu, Y.-L. (2012). Adaptively Ubiquitous Learning in Campus Math Path. Educational Technology & Society, 15(2), 298-308.
Siegler, R. S., & Booth, J. L. (2005). Development of numerical estimation. Handbook of mathematical cognition, 197-212.
Smith, I. M. (1964). Spatial ability: University of London Press.
Sowder, J. T. (1992). Estimation and number sense.
Thom, R. (2002). Measurement? It′s Fun! Didn′t You Guess? Australian Primary Mathematics Classroom, 7(2), 26.
Van Hiele, P. M. (1959). The child’s thought and geometry: Brooklyn, NY: City University of New.
Waller, D. (2000). Individual differences in spatial learning from computer-simulated environments. Journal of Experimental Psychology: Applied, 6(4), 307.
Wallner, G., & Kriglstein, S. (2012). DOG eometry: teaching geometry through play. Paper presented at the Proceedings of the 4th International Conference on Fun and Games.
Wijers, M., Jonker, V., & Drijvers, P. (2010). MobileMath: exploring mathematics outside the classroom. ZDM, 42(7), 789-799.
指導教授 黃武元(Wu-Yuan Hwang) 審核日期 2016-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明