參考文獻 |
[1] 衛生福利部統計處. 103年死因統計結果分析. 2015; Available from: http://www.mohw.gov.tw/cht/DOS/DisplayStatisticFile.aspx?d=49775&s=1.
[2] Wen, C.P., et al., All-cause mortality attributable to chronic kidney disease: a prospective cohort study based on 462 293 adults in Taiwan. The Lancet. 371(9631): p. 2173-2182.
[3] Levey, A.S. and J. Coresh, Chronic kidney disease. The Lancet. 379(9811): p. 165-180.
[4] 蔡建誠, 病理學. 2006: 華杏出版股份有限公司.
[5] Mohabbati-Kalejahi, E., et al., A review on creatinine measurement techniques. Talanta, 2012. 97: p. 1-8.
[6] Jaffe, M. Ueber den Niederschlag, welchen Pikrinsäure im normalen Harn erzeugt, und über eine neue Reaction des Kreatinins. p. 391-400. 1886; Available from: http://vlp.mpiwg-berlin.mpg.de/references?id=lit16635&page=p0391.
[7] Joris R. Delanghe, M.M.S., Creatinine determination according to Jaffe—what does it stand for? NDT Plus, 2011. 4(2): p. 83-86.
[8] Sharma, A.C., et al., A General Photonic Crystal Sensing Motif: Creatinine in Bodily Fluids. Journal of the American Chemical Society, 2004. 126(9): p. 2971-2977.
[9] Narayanan, S. and H.D. Appleton, Creatinine: a review. Clinical Chemistry, 1980. 26(8): p. 1119-26.
[10] 洪堯民, 蛋白尿:腎臟病的表徵之一. 高雄榮總醫訊, 2000-12. 3(12).
[11] 黃清意, 賴世偉, and 林正介, 蛋白尿 與微量. 基層醫學. 26(6): p. 163-167.
[12] Fernández-Sánchez, C., C.J. McNeil, and K. Rawson, Electrochemical impedance spectroscopy studies of polymer degradation: application to biosensor development. TrAC Trends in Analytical Chemistry, 2005. 24(1): p. 37-48.
[13] Harrington, D.A. and P. van den Driessche, Mechanism and equivalent circuits in electrochemical impedance spectroscopy. Electrochimica Acta, 2011. 56(23): p. 8005-8013.
[14] Instruments, G., Basics of Electrochemical Impedance Spectroscopy. Gamry Instruments Application Note.
[15] 吳浩青 and 李永舫, 電化學動力學. 2001-02-01: 科技圖書.
[16] Xu, L., et al., Dendrimer-encapsulated Pt nanoparticles/polyaniline nanofibers for glucose detection. Journal of Applied Polymer Science, 2008. 109(3): p. 1802-1807.
[17] Andrienko, D., cyclic voltammetry. 2008.
[18] Ly, S.Y., Detection of dopamine in the pharmacy with a carbon nanotube paste electrode using voltammetry. Bioelectrochemistry, 2006. 68(2): p. 227-31.
[19] Pemberton, R.M. and J.P. Hart, Electrochemical behaviour of triclosan at a screen-printed carbon electrode and its voltammetric determination in toothpaste and mouthrinse products. Analytica Chimica Acta, 1999. 390: p. 107-115.
[20] Brusciotti, F. and P. Duby, Cyclic voltammetry study of arsenic in acidic solutions. Electrochimica Acta, 2007. 52(24): p. 6644-6649.
[21] Nguyen, P.K. and S.K. Lunsford, Electrochemical response of carbon paste electrode modified with mixture of titanium dioxide/zirconium dioxide in the detection of heavy metals: lead and cadmium. Talanta, 2012. 101: p. 110-21.
[22] Forsberg G, et al., Determination of arsenic by anodic stripping voltammetry and differential pulse anodic stripping voltammetry. Analytical Chemistry, 1975. 47: p. 1586–1592.
[23] 洪偉修. 世界上最薄的材料-- 石墨烯. 2009; Available from: http://www.knsi.com.tw/KangSiNet/_Html/Teacher/KnsiPeaper/chem/0006_980047%28%E5%8C%96%E5%AD%B8%29.pdf.
[24] Nobelprize.org. The Nobel Prize in Physics 2010. 2014; Available from: http://www.nobelprize.org/nobel_prizes/physics/laureates/2010.
[25] Lee, C., et al., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 2008. 321(5887): p. 385-388.
[26] Nair, R.R., et al., Fine Structure Constant Defines Visual Transparency of Graphene. Science, 2008. 320(5881): p. 1308-1308.
[27] ScienceDaily. Electrons Can Travel Over 100 Times Faster In Graphene Than In Silicon, Physicists Show. 2008; Available from: www.sciencedaily.com/releases/2008/03/080324094514.htm.
[28] Meyer, J.C., et al., Imaging and dynamics of light atoms and molecules on graphene. Nature, 2008. 454(7202): p. 319-322.
[29] Kazakova, N.s.D.O. European collaboration breakthrough in developing graphene. 2010; Available from: http://www.npl.co.uk/news/european-collaboration-breakthrough-in-developing-graphene.
[30] Wang, H.M., et al., Fabrication of graphene nanogap with crystallographically matching edges and its electron emission properties. Applied Physics Letters, 2010. 96(2): p. 023106.
[31] Chun-Yueh Huang, Y.-C.H., and Hung-Yin Lin, Design of a Portable Multi-Channel Potentiostat for Biomolecule Sensors. International Journal of Science and Engineering, 2011. 1(1): p. 1-10.
[32] Cruz, A.F., et al., A low-cost miniaturized potentiostat for point-of-care diagnosis. Biosens Bioelectron, 2014. 62: p. 249-54.
[33] Rowe, A.A., et al., CheapStat: an open-source, "do-it-yourself" potentiostat for analytical and educational applications. PLoS One, 2011. 6(9): p. e23783.
[34] 黃俊岳, 蔡., 詹姆士湯姆森, 李玫樺, 劉濱達, 林宏殷 應用分子拓印生醫智慧材料於電化學生物感測器之尿液分析. 成大研發快訊文摘, 2013. 23(9).
[35] Pandiaraj, M., et al., A cost-effective volume miniaturized and microcontroller based cytochrome c assay. Sensors and Actuators A: Physical, 2014. 220: p. 290-297.
[36] Huang, C.Y., et al., Integrated potentiostat for electrochemical sensing of urinary 3-hydroxyanthranilic acid with molecularly imprinted poly(ethylene-co-vinyl alcohol). Biosens Bioelectron, 2015. 67: p. 208-13.
[37] Huang, C.Y., et al., A portable potentiostat for the bilirubin-specific sensor prepared from molecular imprinting. Biosens Bioelectron, 2007. 22(8): p. 1694-9.
[38] Iijima, S., Helical microtubules of graphitic carbon. Nature, 1991. 354(6348): p. 56-58.
[39] Wang, J., et al., Comparative studies on electrochemical activity of graphene nanosheets and carbon nanotubes. Electrochemistry Communications, 2009. 11(10): p. 1892-1895.
[40] Hummers, W.S. and R.E. Offeman, Preparation of Graphitic Oxide. Journal of the American Chemical Society, 1958. 80(6): p. 1339-1339.
[41] Higginbotham, A.L., et al., Lower-Defect Graphene Oxide Nanoribbons from Multiwalled Carbon Nanotubes. ACS Nano, 2010. 4(4): p. 2059-2069.
[42] Martín, A., et al., Graphene nanoribbon-based electrochemical sensors on screen-printed platforms. Electrochimica Acta, 2015. 172: p. 2-6.
[43] Kim, Y.-R., et al., Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosensors and Bioelectronics, 2010. 25(10): p. 2366-2369.
[44] Fu, C., et al., Electrochemical co-reduction synthesis of graphene/Au nanocomposites in ionic liquid and their electrochemical activity. Chemical Physics Letters, 2010. 499(4–6): p. 250-253.
[45] Wu, J.-F., M.-Q. Xu, and G.-C. Zhao, Graphene-based modified electrode for the direct electron transfer of Cytochrome c and biosensing. Electrochemistry Communications, 2010. 12(1): p. 175-177.
[46] Liu, Q., et al., Electrochemical detection of dopamine in the presence of ascorbic acid using PVP/graphene modified electrodes. Talanta, 2012. 97: p. 557-562.
[47] M. Meyerhoff and G.A. Rechnitz, An activated enzyme electrode for creatinine. Analytica Chimica Acta, 1976. 85(2): p. 277-285.
[48] Alexander Benkert, et al., Development of a Creatinine ELISA and an Amperometric Antibody-Based Creatinine Sensor with a Detection Limit in the Nanomolar Range. Anal. Chem., 2000. 72: p. 916-921.
[49] Yoda, T.T.a.K., Multi-Enzyme Membrane Electrodes for Determination of Creatinine and Creatine in Serum. CLIN.CHEM., 1983. 29(1): p. 51-55.
[50] Farabee, M.J., LYMPHATIC SYSTEM AND IMMUNITY. On-Line Biology Book.
[51] Yeh-Hsing Lao, L.-C.C., Yi-Chung Chang, Chun-Wei Chi, Konan Peck Applications of Microarray in Aptamer Study. 國家實驗研究院儀器科技研究中心 科儀新知, 2009. 172: p. 95-102.
[52] Wang, L., et al., Enzyme-free signal amplification for electrochemical detection of Mycobacterium lipoarabinomannan antibody on a disposable chip. Biosens Bioelectron, 2012. 38(1): p. 421-4.
[53] Hedstrom, M., I.Y. Galaev, and B. Mattiasson, Continuous measurements of a binding reaction using a capacitive biosensor. Biosens Bioelectron, 2005. 21(1): p. 41-8.
[54] Yu, Y., et al., A novel electrochemical immunosensor for Golgi Protein 73 assay. Electrochemistry Communications, 2014. 42: p. 6-8.
[55] Lee, C.Y., et al., Sensitive label-free electrochemical analysis of human IgE using an aptasensor with cDNA amplification. Biosens Bioelectron, 2013. 39(1): p. 133-8.
[56] Vashist, S.K., E.M. Schneider, and J.H. Luong, Rapid sandwich ELISA-based in vitro diagnostic procedure for the highly-sensitive detection of human fetuin A. Biosens Bioelectron, 2015. 67: p. 73-8.
[57] Rikhtegaran Tehrani, Z., et al., Development of an integrase-based ELISA for specific diagnosis of individuals infected with HIV. J Virol Methods, 2015. 215-216C: p. 61-66.
[58] Tsai, J.-Z., et al., Screen-printed carbon electrode-based electrochemical immunosensor for rapid detection of microalbuminuria. Biosensors and Bioelectronics, 2016. 77: p. 1175-1182.
[59] 賴信宇, 開發可攜式阻抗量測儀及其應用. 2015: 國立中央大學電機工程學系碩士論文.
[60] AVR, ATXmega32A4 datasheet, A. Corporation, Editor. 2012, Atmel. p. 4.
[61] Instruments, T., TLC2264ID datasheet, T. Instruments, Editor. 1997, Texas Instruments.
[62] Siliconix, V., DG611A datasheet, V. Siliconix, Editor. 2002, Vishay Siliconix.
[63] FT232RL datasheet, F.T.D. International, Editor. 2010, Future Technology Devices International, FTDI.
[64] ASSEMBLY, E., EA DOGM163E-A E. ASSEMBLY, Editor. 2012, ELECTRONIC ASSEMBLY.
[65] Electric, A., 4-direction with Center-push Function, A. Electric, Editor. 2003, ALPS Electric.
[66] Adesto, SPI Serial Flash Memory with Dual-I/O and Quad-I/O Support, Adesto, Editor. 2016, Adesto.
[67] Gileadi, E., 電極動力學. 1996, 徐氏基金會: 鐘廖權.
[68] Griffiths, K., et al., Laser-scribed graphene presents an opportunity to print a new generation of disposable electrochemical sensors. Nanoscale, 2014. 6(22): p. 13613-13622.
[69] Aristov, N. and A. Habekost, Cyclic Voltammetry - A Versatile Electrochemical Method Investigating Electron Transfer Processes. World Journal of Chemical Education, 2015. 3(5): p. 115-119.
[70] Yadav, S., A. Kumar, and C.S. Pundir, Amperometric creatinine biosensor based on covalently coimmobilized enzymes onto carboxylated multiwalled carbon nanotubes/polyaniline composite film. Anal Biochem, 2011. 419(2): p. 277-83.
[71] Bernd Tombach, J.S., Fritz Matzkies, Roland M. Schaefer, Gabriele C. Chemnitius, Amperometric creatinine biosensor for hemodialysis patients. Clinica Chimica Acta 312. 2001: p. 129-134.
[72] Reddy, K.K. and K.V. Gobi, Artificial molecular recognition material based biosensor for creatinine by electrochemical impedance analysis. Sensors and Actuators B: Chemical, 2013. 183: p. 356-363.
[73] Barbara H. Esteridge, A.P.R., Norma J. Walters, bara H. Esteridge, A.P.R., Norma J. Walters, Basic Medical Laboratory Techniques. Cengage Learning, 2000.
[74] Tombach, B., et al., Amperometric creatinine biosensor for hemodialysis patients. Clinica Chimica Acta, 2001. 312: p. 129-134.
[75] Edward T. Bope, R.D.K., Conn′s Current Therapy 2012. Elsevier Health Sciences, 2012.
[76] Harris, J.R., Ascorbic Acid: Biochemistry and Biochemical Cell Biology. Springer, 1996. 25.
[77] Putnam, D.F., Composition and Concentrative Properties of Human Urine. MCDONNELL DOUGLAS ASTRONAUTICS COMPANY, 1971.
[78] Omidfar, K., et al., Development of urinary albumin immunosensor based on colloidal AuNP and PVA. Biosens Bioelectron, 2011. 26(10): p. 4177-83.
[79] H, M.H.Y.Y.Y.M.O., Voltammetric behaviors of dopamine and ascorbic acid at a glassy carbon electrode anodized in 1,ω-alkenediol. Analytical sciences, 1995. 11: p. 947-952.
[80] Ramanavicius, A., Amperometric biosensor for the determination of creatine. Analytical and Bioanalytical Chemistry, 2007. 387(5): p. 1899-1906.
[81] Zinchenko, O.A., et al., Application of creatinine-sensitive biosensor for hemodialysis control. Biosens Bioelectron, 2012. 35(1): p. 466-9.
[82] 王璽傑, 平面式抗壞血酸微電極感測器之製備. 國立雲林科技大 學光電工程研究所碩士論文 2008.
[83] 林良憲, 利用奈米碳管與電化學預處理修飾網版印刷碳電極選擇性偵測尿酸之研究. 國立中山大學化研究所碩士論文 2010.
[84] 吳孟潔, 乙醯氨酚之電氧化研究. 國立屏東科技大學環境工程與科學系碩士位論文, 2011.
[85] Eggins, B., Biosensors an introduction. John Wiley & son, 1996.
[86] Cheng-Yu Lee, K.-Y.W., Hsiu-Li Su, Huan-Yi Hung, You-Zung Hsieh, Sensitive label-free electrochemical analysis of human IgE using an aptasensor with cDNA amplification. Biosensors and Bioelectronics. 39(1): p. 133-138.
[87] Chao Xu, D.H., Liping Zeng, Shenglian Luo, A study of adsorption behavior of human serum albumin and ovalbumin on hydroxyapatite/chitosan composite. Colloids and Surfaces B: Biointerfaces, 2009. 73: p. 360-364. |