參考文獻 |
中文部份
內政部營建署,2014。國土利用監測計畫:2001-2013年歷年成果彙編。
王思樺、張力方,2009。都市周邊土地使用與地表覆蓋變遷:驅動力與環境變遷議題。都市與計劃,36(4),361-285。
王翠華,2007。基隆河中上游流域聚落變遷型態之分析。國立臺灣大學理學院地理環境資源學系碩士論文。
何祥龍,2014。應用多目標最佳化模式於都市土地發展之研究。國立臺北大學不動產與城鄉環境學系碩士論文。
吳振發,2006。土地利用變遷與景觀生態評估方法之建立。國立臺北大學都市計劃研究所博士論文。
吳振發,2011。臺灣鄉村景觀變遷模擬之CLUE-s 模式最佳參數試驗。地理學報,62,103-125。
吳振發、林裕彬,2006。汐止市土地利用時空間變遷模式。都市與計劃,33(3),231-259。
林士弘,2002。結合宮格自動機與地理資訊系統在台北盆地土地使用變遷模擬之研究。國立臺灣大學土木工程學研究所碩士研究論文。
林峰田,吳秋慧,顧嘉安、曾琬瑜,2011。台北都會區土地使用變遷模型之研究-以淡水及新莊為例。國土資訊系統通訊季刊,77,62-69。
林峰田,林士弘,李萬凱,孫志鴻,林建元、李培芬,2002。宮格自動機於土地利用變遷模擬之結合機制。中華地理資訊學會學術研討會學術論文集。
林祥偉,2003。地理資訊系統與人工智慧整合之研究。國立臺灣大學地理環境資源學研究所博士論文。
林裕彬,朱宏杰、吳振發,2011。土地使用變遷模式回顧與比較。國土資訊系統通訊季刊,77,46-53。
洪于婷、鄒克萬,2006。地方永續發展空間結構變遷之分析。都市與計劃,33(4),321-344。
徐國城,2010。台北都會區空間發展型態變遷趨勢與原因之研究。國立政治大學地政學系博士論文。
徐國城,賴宗裕、詹士樑,2010。台北都會區空間蔓延與緊密發展型態趨勢之研究。都市與計劃,37(3),281-303。
張右峻,1999。利用類神經網路探討土地利用型態與環境變遷之研究。逢甲大學土地管理學系碩士論文。
張曜麟,2005。都市土地使用變遷之研究。國立成功大學都市計畫研究所博士論文。
陳俊榮,2005。都市擴張預測方法之建立:類神經網路工具為例。朝陽科技大學環境工程與管理系碩士論文。
曾露儀,2013。以網格模式探討臺北盆地淡水河系右岸之都市發展進程。國立師範大學地理學系碩士論文。
黃書禮、蔡靜如,2000。台北盆地土地利用變遷趨勢之研究。都市與計劃,27(1),1-22。
溫在弘,2007。GIS 應用於公共工程設施之公平性研討:以台灣高鐵/台鐵運輸網路為例。國土資訊通訊季刊 ,64,83-91。
葉怡成,2003。類神經網路模式應用與實作。儒林書局。
鄒克萬、張曜麟,2000。一個機率性土地發展分析模式。台灣土地研究(原台灣土地科學報),1,51-66。
鄒克萬、張曜麟,2004。都市土地使用變遷空間動態之研究 ,35,35-51。
廖怡雯,2003。運用馬可夫鏈模式於台中市土地利用變遷之研究。私立逢甲大學土地管理學系碩士論文。
中央研究院GIS專題中心的地址轉換座標工具之批次地址定位處理,2016。http://gissrv4.sinica.edu.tw/gis/tools/geocoding.aspx。
水利署地理資訊倉儲中心,2016。http://gic.wra.gov.tw/gic/API/Google/Index.aspx。
永慶房仲網,2016。https://evertrust.yungching.com.tw/。
交通部公路總局,2016。http://www.thb.gov.tw/sites/ch/modules/download/download_list?node=66bd0e89-dcdd-403d-8a6b-58c3ef70ff93&c=1ffd8655-5305-46f6-b076-48c60e8d117d。
行政院農業委員會資料開放平台,2016。http://data.coa.gov.tw/Query/OpenData.aspx。
臺北市政府民政局,2016。http://ca.gov.taipei/ct.asp?xitem=1503254&CtNode=41896&mp=102001。
臺北市政府資料開放平台,2016。http://data.taipei.gov.tw/opendata;jsessionid=D459CA0A12C915DFEFF21F88FDA42AE3。
臺北市統計資料查詢系統,2016。http://210.69.61.217/pxweb2007-tp/dialog/statfile9.asp。
臺北捷運公司,2016。http://www.metro.taipei/ct.asp?xItem=78479152&CtNode=70089&mp=122035。
英文部份
Agarwal, C., Green, G. M., Evans, T. P. and Schweik, C. M., 2002. A Review and Assessment of Land-Ued Change Models:Dynamics of Space, Time, and Human Choice.
Azizi, A., Malakmohamadi, B. and Jafari, H. R., 2016. Land use and land cover spatiotemporal dynamic pattern and predicting changes using integrated CA-Markov model. Global Journal of Environmental Science and Management, 2(3), 223-234.
Bagan, H., Wang, Q. and Watanabe, M., 2005. Land cover classification from MODIS EVI times-series data using SOM neural network. International Journal of Remote Sensing, 26(22), 4999-5012.
Barredo, J. I., Kasanko, M., McCormick, N. and Lavalle, C., 2003. Modelling dynamic spatial processes: simulation of urban future scenarios through cellular automata. Landscape and Urban Planning, 64, 145-160.
Batty, M. and Torrens, P. M., 2001. Modeling Complexity:The Limits to Prediction. Working Paper 36.
Berry, M. W., Flamm, R. O., Hazen, B. and Macintyre, R. L., 1996. The Land-Use Change Analysis System (LUCAS) for Evaluating Landscape Management Decisions. IEEE Computational Science and Engineering, 3(1), 24-35.
Bishnoi, S., Gaikwad, V. and Asegaonkar, S., 2011. Hopfield Neural Network for Change Detection in Multiemporal Image. International Conference on Recent Trends in Information Technology and Computer Science, 6-11.
Bishop, C. M., 1995. Neural Networks for Pattern Recognition Oxford University Press, New York.
Brunsdon, C., Fotheringham, A. S. and Charlton, M. E., 1996. Geographically Weighted Regression:A Method for Exploring Spatial Nonstationarity. Geographical Analysis, 28(4), 281-298.
Castella, J.-C., Kam, S. P., Quang, D. D., Verburg, P. H. and Hoanh, C. T., 2007. Combining top-down and bottom-up modelling approaches of land use/cover change to support public policies: Application to sustainable management of natural resources in northern Vietnam. Land Use Policy, 24, 531-545.
Chaudhuri, G. and Clarke, K. C., 2013. The SLEUTH land use change model: A review. The International Journal of Environmental Resources Research, 1(1), 88-104.
Cohen, B., 2006. Urbanization in developing countries: Current trends, future projections, and key challenges for sustainability. Technology in Society, 28, 63-80.
Dietzel, C. and Clarke, K., 2006. The effect of disaggregating land use categories in cellular automata during model calibration and forecasting. Computers, Environment and Urban Systems, 30, 78-101.
Dreiseitl, S. and Ohno-Machadob, L., 2002. Logistic regression and artificial neural network classification models: a methodology review. Journal of Biomedical Informatics, 35, 352-359.
Forman, R. T. T., 1995. Land mosaics : the ecology of landscapes and regions. Cambridge New York : Cambridge University Press,
Fotheringham, A. S. and Brunsdon, C., 1999. Local Forms of Spatial Analysis. Geographical Analysis, 31(4), 341-358.
Frenkel, A. and Ashkenazi, M., 2008. Measuring Urban Sprawl; How Can We Deal With It? Environment and Planning B, 35, 1-24.
Guan, D., Li, H., Inohae, T., Su, W., Nagaie, T. and Hokao, K., 2011. Modeling urban land use change by the integration of cellular automaton and Markov model. Ecological Modelling, 222, 3761-3772.
Guan, Q., Wang, L. and Clarke, K. C., 2005. An Artificial-Neural-Network-based, Constrained CA Model for Simulating Urban Growth. Cartography and Geographic Information Science, 32(4), 369-380.
Harris, C. D. and Ullman, E. L., 1945. The Nature of Cities. The ANNALS of the American Academy of Political and Social Science, 242(1), 7-17.
Herold, M., Goldstein, N. C. and Clarke, K. C., 2003. The spatiotemporal form of urban growth: measurement, analysis and modeling. Remote Sensing of Environment, 86, 286-302.
Hoyt, H., 1939. The structure and growth of residential neighborhoods in American cities Washington, Federal Housing Administration.
Ito, Y. and Omatu, S., 1999. Extended LVQ Neural Network Approach to Land Cover Mapping. IEEE Transactions on Geoscience and Remote Sensing, 37(1), 313-317.
Ji, C., 2000. Land-Use Classification of Remotely Sensed Data Using Kohonen Self-organizing Feature Map Neural Networks. Photogrammetric Engineering & Remote Sensing, 66(12), 1451-1460.
Lee, S. and Lathrop, R. G., 2006. Subpixel Analysis of Landsat ETM+ Using Self-Organizing Map (SOM) Neural Networks for Urban Land Cover Characterization. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 44(6), 1642-1654.
Li, X. and Yen, A. G.-O., 2002. Neural-network-based cellular automata for simulating multiple land use changes using GIS. Internationa l Journal of Geographical Information Science, 16(4), 323-343.
Lin, Y.-P., Chu, H.-J., Wu, C.-F. and Verburg, P. H., 2010. Predictive ability of logistic regression, autologistic regression and neural network models in empirical land-use change modeling – a case study. International Journal of Geographical Information Science, 25(1), 65-87.
Liu, H. and Shao, Y., 1998. An improved Learning Vector Quantization Neural Network for Land Cover Classification with Multi-temporal Radarsar Images. IEEE Computational Science and Engineering, 1787-1789.
Liu, W. and Seto, K. C., 2008. Using the ART-MMAP Neural Network to Model and Predict Urban Growth: A Spatiotemporal Data Mining Approach. Environment and Planning B: lanning and Design, 35(2), 296-317.
Liu, X. and Jr, R. G. L., 2002. Urban change detection based on an articial neural network. Internationa l Journa l of Remote Sensing, 23(12), 2513-2518.
Mage, D., Ozolins, G., Peterson, P., Webster, A., Orthofer, R., Vandeweed, V. and Gwynne, M., 1996. Urban Air Pollution in Megacities of the World. Atmospheric Enuironmrnr 30(5), 681-686.
McKinney, M. L., 2008. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst, 11.
Mehrotra, A., Singh, K. K. and Kirat Pal, M. J. N., 2013. Change Detection from Satellite Images Using PNN. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 115, 333-340.
Miller, D. M., Kaminsky, E. J. and Rana, S., 1995. Neural network classification of remote sensing data. Computers & Geosciences, 21(3), 377-386.
OECD, 2012. Compact city Policies:A Comparative Assessment.
Park, R. E., Burgess, E. W. and McKenzie, R. D., 1925. The city. The University of Chicaco Press.
Payal, K. J., 2011. A Review Study On Urban Planning & Artificial Intelligence. International Journal of Soft Computing and Engineering, 1(5), 101-104.
Peiser, R., 2001. Decomposing Urban Sprawl. The Town Planning Review, 72(3), 275-298.
Pijanowski, B. C. and Shellito, B. A., 2001. Using GIS, artificial neural networks and remote sensing to model urban change in the Minneapolis-St. Paul and Detroit metropolitan areas. American Society of Photogrammetry and Remote Sensing Meeting.
Pijanowski, B. C., Brownb, D. G., Shellitoc, B. A. and Manikd, G. A., 2002. Using neural networks and GIS to forecast land use changes: a Land Transformation Model. Computers, Environment and Urban Systems, 26, 553-575.
Pijanowski, B. C., Pithadia, S., Shellito, B. A. and Alexandridis, K., 2005. Calibrating a neural network‐based urban change model for two metropolitan areas of the Upper Midwest of the United States. International Journal of Geographical Information Science, 19(2), 197-215.
Pijanowski, B. C., Tayyebi, A., Doucette, J., Pekin, B. K., Braun, D. and Plourde, J., 2014. A big data urban growth simulation at a national scale: Configuring the GIS and neural network based Land Transformation Model to run in a High Performance Computing (HPC) environment. Environmental Modelling & Software, 51, 250-258.
Rygielski, C., Wang, J.-C. and Yen, D. C., 2002. Data mining techniques for customer relationship management. Technology in Society, 24, 483-502.
Sang, L., Zhang, C., Yang, J., Zhu, D. and Yun, W., 2011. Simulation of land use spatial pattern of towns and villages based on CA–Markov model. Mathematical and Computer Modelling, 54, 938-943.
Tatem, A. J., Lewis, H. G., Atkinson, P. M. and Nixon, M. S., 2003. Increasing the spatial resolution of agricultural land cover maps using a Hopfield neural network. International Journal of Geographical Information Science, 17(7), 647-672.
Turner, B. L., Skole, D., Sanderson, S., Fischer, G., Fresco, L. and Leemans, R., 1995. Land -Use and Land-Cover Change Science/Research Plan. 35(7),
UN, 2015. World Urbanization Prospects: The 2014 Revision.
Veldkamp, A. and Fresco, L. O., 1996. CLUE-CR: an integrated multi-scale model to simulate land use change scenarios in Costa Rica. Ecological Modelling, 91, 231-248.
Veldkamp, A. and Lambin, E. F., 1996. CLUE:a conceptual model to study the Conversion of Land Use and its Effects. Agriculture Ecosystems and Environment, 85, 1-6.
Veldkamp, A. and Lambin, E. F., 2001. Predicting land-use change. Agriculture Ecosystems and Environment, 85, 1-6.
Verburg, P. H. and Veldkamp, A., 2004. Projecting land use transitions at forest fringes in the Philippines at two spatial scales. Landscape Ecology, 19, 77-98.
Verburg, P. H., Koning, G. H. J. d., Kok, K., Veldkamp, A. and Bouma, J., 1999. A spatial explicit allocation procedure for modelling the pattern of land use change based upon actual land use. Ecological Modelling, 116, 45-61.
Verburg, P. H., Schot, P. P., Dijst, M. J. and Veldkamp, A., 2004. Land use change modelling: current practice and research priorities. GeoJournal, 61, 309-324.
Verburg, P. H., Soephboer, W., Veldkamp, A., Limpiada, R., Espaldon, V. and Mastura, S. S. A., 2002. Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S Model. Environmental Management, 30(3), 391-405.
Webstera, F. V., Blya, P. H., Johnstona, R. H., Pauleya, N. and Dasguptaa, M., 1986. Changing Patterns of Urban Travel. Transport Reviews, 6(2),
White, R. and Engelen, G., 1993. Cellular automata and fractal urban form : a cellular modelling approach to the evolution of urban land-use patterns. 25, 1175-1199.
Zhou, W. and Li, Q., 2013. Complexity and Dynamic Modeling of Urban System. International Journal of Machine Learning and Computing, 3(5), 440-444.
United States Geological Survey, 2016. http://earthexplorer.usgs.gov/. |