博碩士論文 103022004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:18.220.255.227
姓名 陳俊斌(Jyun-Bin Chen)  查詢紙本館藏   畢業系所 遙測科技碩士學位學程
論文名稱 應用Sentinel-1A合成孔徑雷達影像於臺灣中部水稻田之判釋
(Rice crop classification using Sentinel-1A SAR data in Central Taiwan)
相關論文
★ 多時期衛星影像之自動化監督性分類★ 大範圍地區土地使用分類之研究
★ 高解析力衛星影像控制點座標之自動化萃取★ 影像最佳類別數目之研究
★ 遙控直昇機應用於工程管理監測可行性之研究★ 以地理資訊系統輔助共同管道之最適設計
★ 有理函數應用於空載多光譜影像幾何校正之研究★ SPOT自然色影像產生之研究
★ 結合影像區塊及知識庫分類之研究-以IKONOS衛星影像為例★ 遙控飛機空載視訊影像自動化鑲嵌方法之研究
★ 影像分割技術於高解析衛星影像分類之應用★ 小波多層次解析之影像融合應用
★ 線性複合模式應用於變遷偵測之研究★ 改良式變異向量分析法於變遷偵測之探討
★ 區塊分割變遷偵測法於多時期衛星影像之應用★ 資料挖掘技術應用於外來入侵植物研究 (以恆春地區銀合歡為例)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 水稻是臺灣重要的糧食作物之一,也是大多數農村人口主要的生計來源。臺灣水稻種植的面積佔臺灣總面積的5%,約166,616公頃,所以水稻監測是必需且勢在必行的工作。近年來,光學衛星影像,如SPOT, MODIS及FORMOSAT-2,已經被廣泛地應用於臺灣的水稻監測,但是臺灣水稻的生長季節與雨季相符,雲霧覆蓋成為利用光學衛星影像判釋水稻的絆腳石;合成孔徑雷達屬於主動式的微波感測器,可以穿透雲霧且不受天候的影響進行監測,如RADARSAT-2與ERS-2,而此類型的影像通常較光學衛星影像昂貴。2014年Sentinel-1A升空後,提供全球免費的Sentinel-1A合成孔徑雷達VV與VH極化影像。利用多時序合成孔徑雷達影像的後向散射係數計算Normalized Difference Sigma-naught Index (NDSI)指標,可以了解地物在不同時期的變化。本研究利用多時序Sentinel-1A合成孔徑雷達VV與VH極化影像,配合NDSI發展一套自動化判釋的方法,分析臺灣中部水稻種植之範圍,並且探討不同極化與NDSI於判釋水稻的差異性。主要分為五個步驟:第一步驟,將原始影像進行前處理,包括輻射校正、幾何校正及雜訊濾除。第二步驟,根據水稻物候計算NDSI並定義靜態NDSI與動態NDSI。第三步驟,因為中部地區水稻種植區域較為集中,利用此空間特性進行多尺度影像分割。第四步驟,利用期望值最大化法與NDSI閾值發展一套自動化方法,判釋水稻與非水稻的種植區域。第五個步驟,利用政府水稻地真資料與水稻種植面積統計資料進行判釋成果的精度評估。研究成果顯示,升軌模式靜態NDSI VH與VV分類結果的總體精度分別為85.1%和65.1%,Kappa係數分別為0.69和0.29,動態NDSI 分類結果的總體精度分別為92.1%和78.2%,Kappa係數分別為0.85和0.56。降軌模式靜態NDSI VH與VV分類結果的總體精度分別為88.1%和69.1%,Kappa係數分別為0.75和0.37,動態NDSI 分類結果的總體精度分別為92.0%和81.1%,Kappa係數分別為0.84和0.62。比較分類結果面積與政府統計資料,升軌與降軌模式VH極化的分類結果的RMSE僅占總面積1%以下,VV極化的RMSE則相對較高。顯示不論是升軌模式或降軌模式,利用動態NDSI與VH極化可以獲得較佳的水稻判釋成果,且本研究發展的方法能有效地應用於水稻判釋之相關研究。
摘要(英) Rice is the most important staple food crop and the primary source of livelihoods for the majority of rural populations in Taiwan. The area allocated for rice cultivation accounts for approximately 5% (166,616 ha) of the total cultivating area. Therefore, rice monitoring is a crucial activity in Taiwan due to official initiatives. In recent years, optical satellite data acquired from sensors such as SPOT, MODIS, and FORMOSAT-2 satellites have been widely used for rice crop classification. However, because rice is mainly cultivated in the rainy season in Taiwan, the optical satellite data reveal challenges due to cloud cover during this season. The synthetic aperture radar (SAR) such as Radarsat-2 and ERS-2 data, which can penetrate clouds and operate in all weather conditions, are generally expensive. With the launch of Sentinel-1A in 2014, it is possible to acquire free VV and VH polarization data in the study region. This study aims to develop a mapping approach to delineate rice cultivation areas in Central Taiwan using the Normalized Difference Sigma-naught Index (NDSI) calculated from the time-series Sentinel-1A VV and VH polarization data. Two types of NDSI were used in this study: (1) static NDSI, which was calculated using only two images of sowing and heading dates, and (2) dynamic NDSI, which was calculated using the time series of images. An assessment of the applicability of VV and VH polarization data of Sentinel-1A and different types of NDSI for rice crop mapping was also performed. The methodology of this study comprises five steps: (1) data pre-processing, including radiometric, geometric corrections, and speckle noise filtering of the backscattering coefficient of VV and VH polarization data, (2) calculation of static and dynamic NDSI, (3) image segmentation, (4) threshold-based rice classification using the expectation-maximization algorithm, and (5) accuracy assessment of the mapping results using the ground rice reference data and government rice area statistics. The mapping results achieved from the ascending static NDSI VH and VV polarization data indicated the overall accuracies of 85.1% and 65.1% and Kappa coefficients of 0.69 and 0.29, respectively, while those from the ascending dynamic NDSI VH and VV polarization data indicated the better overall accuracies of 92.1% and 78.2% and Kappa coefficients of 0.85 and 0.56, respectively. Similarly, the results obtained the descending static NDSI VH and VV polarization data (overall accuracies of 92.0% and 81.1% and Kappa coefficients of 0.84 and 0.62) were better than those from the ascending static NDSI VH and VV polarization (overall accuracies of 88.1% and 69.1% and Kappa coefficients of 0.75 and 0.37). Furthermore, the RMSE value obtained by comparing the ascending and descending VH classification results and government statistics was lower than 1%, in all cases. Compared to VH polarization, the RMSE of VV polarization results was higher than that of VH results. This study demonstrates that the potential applicability of VH polarization data using the dynamic method for rice crop mapping in the study region. The methods were thus proposed for rice monitoring in the study region.
關鍵字(中) ★ 水稻
★ 合成孔徑雷達影像
★ Sentinel-1A
★ NDSI
關鍵字(英) ★ rice
★ Synthetic Aperture Radar image
★ Sentinel-1A
★ NDSI
論文目次 第一章 緒論 1
1-1 研究動機 1
1-2 研究目的 3
1-3 論文架構 4
第二章 文獻回顧 5
2-1 光學衛星影像應用於水稻之判釋 5
2-2合成孔徑雷達影像應用於水稻之判釋 9
第三章 研究區域與資料 16
3-1 研究區概況 16
3-1-1自然環境 16
3-1-2 研究區水稻物候 18
3-2 研究資料 20
3-2-1 Sentinel-1A影像 20
3-2-2 水稻地真資料 23
3-2-3 水稻種植面積統計資料 24
3-2-4 數值高程模型 (Digital Elevation Model, DEM) 25
第四章 研究方法 26
4-1資料前處理 27
4-1-1 合成孔徑雷達影像前處理 27
4-1-2 地真資料網格化處理 32
4-2 影像分類 33
4-2-1 Normalized Difference Sigma naught Index 分析 33
4-2-2多尺度影像分割 (Multiresolution segmentation) 39
4-2-3期望值最大化演算法(Expectation-Maximization algorithm, EM) 42
4-2-4 NDSI閾值(NDSI threshold) 45
4-3 精度評估 45
第五章 成果與討論 46
5-1 升軌模式於水稻分類結果與精度評估 47
5-1-1靜態NDSI分類結果與精度評估 47
5-1-2動態NDSI分類結果與精度評估 58
5-2降軌模式於水稻分類結果與精度評估 68
5-2-1靜態NDSI分類結果與精度評估 68
5-2-2動態NDSI分類結果與精度評估 79
5-3 影像分類結果討論 89
5-3-1 不同軌道特性於水稻判釋之結果 90
5-3-2 不同極化方式於水稻判釋之結果 91
5-3-3 不同NDSI型態於水稻判釋之結果 94
第六章 結論與建議 96
6-1結論 96
6-2建議 99
參考文獻 100
參考文獻 ˙中文參考文獻
方鋐亦,2015,融合高時空解析度影像於水稻判釋 -以台灣為例,國立中央大學遙測科技碩士學位學程論文。
王志添、陳錕山,2003。雷達影像多時處理研究。航測及遙測學刊 ;8卷1期 , P47 – 56。
朱曉玲、汪小欽、凌飛龍、池泓,2007。Envisat ASAR在水稻識別中的應用,廈門理工學院學報,vol.15(3),頁18-21。
官群倫,2013,應用物件導向影像分類於主題圖繪製之探討,中國文化大學地學研究所地理組碩士論文。
邱哲彥,2007,線性多偏極掃瞄式合成孔徑雷達影像模擬,國立中央大學太空科學研究所碩士論文。
邵芸、郭華東、范湘濤、劉浩,2001。水稻時域散射特徵分析及其應用研究,遙感學報,vol.5(5),頁340-346。
邵芸、廖靜娟、、范湘濤、劉浩,2002。水稻時域後向散射特性分析:雷達衛星觀測與模型模擬結果對比,遙感學報,vol.6(6),頁440-450。
洪浩倫,2007,利用多尺度匹配自動套疊衛星雷達影像,國立中央大學太空科學研究所碩士論文。
張立雨,2013,光學衛星影像變異偵測,國立中央大學土木工程學系博士論文。
張嘉豪,2014,融合合成孔徑雷達影像與衛星遙測多光譜影像於林地覆蓋分類,國立屏東科技大學森林系碩士論文。
郭秀玲,2003,紋理分析於農地利用判釋之研究-以苗栗縣大湖鄉為例,逢甲大學土地管理所碩士論文。
陳正儒,2014,以衛星影像物候資訊進行稻作分區之研究,國立中央大學土木工程學系研究所博士論文。
陳承昌,2006,支持向量機及PlausibleNeuralNetwork於水稻田辨識之研究,國立交通大學土木工程學系碩士論文。
陳青,2009,"應用經驗模態分解法分析多時期SPOT衛星影像上一年兩期之稻作",國立中央大學土木工程學系研究所碩士論文。
陳彥宏,2004,運用紋理資訊輔助高解析度衛星影像於都會區水稻田萃取之研究,逢甲大學土地管理所碩士論文。
黃則林、廖閱郎、王賢杰,1982,水稻光譜特性之探討,林務局農林航空測量所,叢刊第35號,遙測報告第7號。
黃思維,2010,"應用經驗模態分解法分析多時期SPOT衛星影像上一年兩期之稻作",國立中央大學土木工程學系研究所碩士論文。
楊沈斌、申双和、張萍萍、李秉柏,2007。ENVISAT ASAR數據用於大區域稻田識別研究,南京氣象學院學報,vol.30(3),頁365-370。
董彥芳、龐勇、孫國清、李增元,2006。ENVISAT ASAR數據用於水稻監測和參數反演,武漢大學學報(信息科學版),vol.31(2),頁124-127。
潘國樑,遙測學大綱,二版,科技圖書股份有限公司,臺北市,民國九十八年。
盧英權,作物學,國立編譯館,臺北市,民國八十三年。
蕭雅勻,2015,應用MODIS時間序列影像探討東日本大海嘯對稻田受損及復育之影響,國立中央大學土木工程學系研究所博士論文。
行政院農業委員會,農業統計年報(102年),2014,臺北。






˙英文參考文獻
Askne, J. I. H., Dammert, P. B. G., and Ulander, L. M. H., 1997. C-band repeat-pass interferometric SAR observations of the forest, IEEE Transactions on Geoscience and Remote Sensing, vol.35(1), pp.25-35.
Bastiaanssen, W.G.M., Molden, D.J., Makin, I.W., 2000. Remote Sensing for irrigated agriculture: examples from research and possible applications. Agricultural Water Management, vol.46(2), pp137-155.
Boschetti, M., Stroppiana, D., Brivio, P. A., Bocchi, S., 2009. Multi-year monitoring of rice crop phenology through time series analysis of MODIS images. International Journal of Remote Sensing, vol.30(18), 4643-4662.
Bouvet, A., Le Toan, T., 2011. Use of ENVISAT/ASAR wide-swath data for timely rice fields mapping in the Mekong River Delta, Remote Sensing of Environment, vol.115 (4), pp1090-1101.
Bouvet, A., Le Toan, T., Lam Dao, N., 2009. Monitoring of the rice cropping system in the Mekong Delta using ENVISAT/ASAR dual polarization data, IEEE Transactions on GeoScience and Remote Sensing, vol.47 (2), pp517-526.
Chen, C. F., Son, N. T., Chang, L. Y., Chen C. R., 2011. Classification of rice cropping systems by empirical mode decomposition and linear mixture model for time-series MODIS 250 m NDVI data in the Mekong Delta, Vietnam. International Journal of Remote Sensing, vol.32 (18), 5115-5134.
Chen, C. F., Son, N. T., Chen C. R., Chang, L. Y., 2011. Wavelet filtering of time-series moderate resolution imaging spectroradiometer data for rice crop mapping using support vector machines and maximum likelihood classifier. Journal of Applied Remote Sensing, vol.5 (1), 53515-53525.
Chen, J., Han, Y., Zhang., J., Mapping rice crop fields using C band polarimetric SAR data, The 3rd International conference on Agro-Geomatics, pp1-4, Beijing, China, August 11–14, 2014.
Chipanshi, A.C., Chanda, R., Totolo, O, 2003. Vulnerability assessment of the maize and sorghum crops to climate change in botswana. Climate Change, vol.61, pp339−360.
Dewi, K. S., Ishak, H. I., Widyo, N. S., et al. 2010. Detecting Rice Phenology in Paddy Fields with Complex Cropping Pattern Using Time Series MODIS Data:A Case study of Northern Part of West Java-Indonesia.ITB Journal of Science, 42A(2), 91-106.
Furuta, R., Tomiyama, N., A Study of Detection of Landslide Disasters due to the Pakistan Earthquake using ALOS data, 34th International Symposium on Remote Sensing of Environment, Sydney, Australia, April 10-15, 2011.
Furuya, J., Kobayashi, S., 2009. Impact of global warming on agricultural product markets: stochastic world food model analysis. Sustainability Science, vol.4, pp71-79.
Galford, G.L., Mustard, J.F., Melillo, J., Gendrin, A., Cerri, C.C., Cerri, C.E.P., 2008. Wavelet analysis of MODIS time series to detect expansion and intensification of row crop agriculture in Brazil. Remote Sensing of Environment, vol.112 (2), pp576-587.
Gebhardt, S., Huth, J., Lam Do, N., Roth, A., Kuenzer, C., 2012. A comparison of TerraSAR-X quadpol backscattering with RapidEye multispectral vegetation indices over rice fields in the Mekong Delta, Vietnam, International Journal of Remote Sensing, vol.33 (24), pp7644-7661.
Gumma, M. M., Gauchan D., Nelson A., Pandey S., Rala, A., 2011. Temporal changes in rice-growing area and their impact on livelihood over a decade: A case study of Nepal, Agriculture, Ecosystem & Environment, vol.142 (3-4), 382-392.
Hoang, K., H., Bernier, M., Duchesne, S., Tran, M., Y., Identification of rice fields in a complex land-use region using RADARSAT-2 data, The 3rd International Asia-Pacific conference on Synthetic Aperature Radar (APSAR) , pp26-30, Seoul, Korea, September 26–30, 2011.
Kamthonkiat, D., Honda, K., Turral, H., Tripathi, N., K., 2005. Discrimination of irrigated and rainfed rice in a tropical agricultural system using SPOT VEGETATION NDVI and rainfall data, International Journal of Remote Sensing, vol.26 (12), 2527-2547.
Le Toan Thuy, Laur, H., Mougin, E., 1989. Multi-temporal and dual-polarisation observation of agricultural vegetation covers by X-band SAR image, IEEE Transactions on GeoScience and Remote Sensing, vol.27 (6), pp709-718.
Le Toan Thuy, Ribbes, F., Wang L. F., Floury, N., Ding, K. H., Kong, J. A., Fujita, M., 1997. Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results, IEEE Transactions on GeoScience and Remote Sensing, vol.35 (1), pp41-56.
Lee, J.S., 1981. Speckle analysis and smoothing for synthetic aperature radar images, Computer Grapgics and Image Processing, vol.17(1), pp24-32.
Lillesand, T. N., Kiefer R. W., Chipman, J. W., 2008. Remote Sensing and Image Interpretation, 6th Ed., John Wiley&Sons.
Lv, T., & Liu C. (2010). Study on extraction of crop information using time-series MODIS data in the Chao Phraya Basin of Thailand. Advances in Space Research, vol.45 (6), 775-784.
Maclean, J.L., Dawe, D.C., Hardy, B., 2002. Rice almanc: Source book for the most important economic activity on earth, CABI Publishing.
Matthews, R., Wassmann, R, 2003. Modelling the impacts of climate change and methane emission reductions on rice production: A review. European Journal of Agronomy, vol.19 (4), pp573−598.
Matthews, R.B., Kropff, M.J., Bachelet, D. Modeling the Impact of Climate Change on Rice Production in Asia; CAB International in association with the International Rice Research Institute: Wallingford, UK, 1995.
Matthews, R.B., Kropff, M.J., Horie, T., Bachelet, D., 1997. Simulating the impact of climate change on rice production in Asia and evaluating options for adaptation. Agricultural System, vol.54 (3), pp399−425.
Metz, B., Davidson, O.R., Bosch, P.R, Dave, R., Meyer, L.A. Contribution of Working GroupsⅠ, Ⅱ, and Ⅲ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press: Cambridge, UK and New York, NY, USA, 2007.
Murakami, T., Ogawa, S., Ishitsuka, K., Kumagai, K., Saito, G., 2001. Crop discrimination with multi-temporal SPOT/HRV data in the Saga Plains, Japan. International Journal of Remote Sensing, vol.22 (7), pp1335-1348.
Peng, S., Huang, J., Sheehy, J.E., Laza, R.C., Visperas, R.M., Zhong, X., Centeno, G.S., Khush, G.S., Cassman, K.G., 2004. Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America, vol.101, pp9971–9975.
Rejaur Rahman, Md., Saha, S.K., 2008. Multi-resolution segmentation for object-based classification and accuracy assessment of land use/land cover classification using remotely sensed data, Journal of the Indian Society of Remote Sensing, vol.36 (2), pp189-201.
Sakamoto, T., Nguyen, N.V., Ohno, H., Ishitsuka, N., Yokozawa, M., 2006. Spatio-Temporal Distribution of Rice Phenology and Cropping Systems in The Mekong Delta With Special Reference to The Seasonal Water Flow of The Mekong and Bassac Rivers,Remote Sensing of Environment, vol.100, 1-16.
Sakamoto, T., Yokozawa, M., Toritani, H., Shibayama, M., Ishitsuka, N., Ohno, H., 2005. A Crop Phenology Detection Method using Time-Series MODIS data.Remote Sensing of Environment, vol.96, pp366-374.
Shao, Y., Fan, X, Liu, H., Xiao, J., Ross, S., Brisco, B., Brown, R., Staples, G., 2001. Rice monitoring and production estimation using multitemporal RADARSAT, Remote Sensing of Environment, vol.76 (3), pp310-325.
Son, N. T., Chen, C. F., Chen, C. R., Duc, H. N., Chang, L. Y., 2014. A Phenology-Based Classification of Time-Series MODIS Data for Rice Crop Monitoring in Mekong Delta, Vietnam.Remote Sensing, vol.6 (1), 135-156.
Thi Thu Ha Nguyena, C. A. J. M. De Biea, Amjad Alia, E. M. A. Smalinga, Thai Hoanh Chub, 2012. Mapping the irrigated rice cropping patterns of the Mekong delta, Vietnam, through hyper-temporal SPOT NDVI image analysis, International Journal of Remote Sensing, vol.33 (2) pp415-434.
Van Duivenbooden, N., Abdoussalam, S., Ben Mohamed, A, 2002. Impact of climate change on agricultural production in the sahel—Part 2. Case study for groundnut and cowpea in Niger. Climatic Change, vol.54 (3), pp349−368.
Wu, F., Wang, C., Zhang, H., Zhang, B., 2011. Rice crop monitoring in south China with RADARSAT-2 quad-polarization SAR data, IEEE Geoscience and Remote Sensing Letters, vol.8 (2), pp196-200.
Wu, F., Zhang, B., Zhang, H., Wang, C., Tang, Y., 2012. Analysis of rice growth using multi-temporal RADARSAT-2 quad-polarization SAR images, Intelligent Automation and Soft Computing, vol.18 (8), pp997-1007.
Xiao, X., Boles, S., Frolking S., Li, C., Babu, J. Y., Salas, W., Moore, B., 2006. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sensing of Environment, vol.100, pp95-113.
Yang, C., Everitt, J. H., Murden, D., 2011. Evaluating high resolution SPOT 5 satellite imagery for crop identification.Computers and Electronics in Agriculture, 75, pp347-354.
Yang, S., B., Zhao, X., Li, B., Hua, G., 2012. Interpreting RADARSAT-2 quad-polarization SAR signatures from rice paddy based on experiments, IEEE Geoscience and Remote Sensing Letters, vol.9 (1), pp65-69.
Yang, S., Shen, S., Li, B., Le Toan, T., He, W., 2008. Rice mapping and monitoring using ENVISAT ASAR data. IEEE Geoscience and Remote Sensing Letters, vol.5, pp108-112.
Yonezawa, C., Imai, T., Kunii, D., Watanabe, M., Saito., G., Polarimetric observation for rice field by RADARSAT-2 and ALOS/PALSAR, 2011 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp2282-2285, Vancouver, British Columbia, Canada, July 24–29, 2011.
Yonezawa, C., Negishi, M., Azuma, K., Watanabe, M., Ishitsuka, N., Ogawa, S., Saito, G., 2012. Growth monitoring and classification of rice fields using multitemporal RADARSAT-2 full-polarmetric data, International Journal of Remote Sensing, vol.33 (18), pp5696-5711.
指導教授 陳繼藩(Chi-Farn Chen) 審核日期 2016-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明