博碩士論文 993403011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:18.227.111.192
姓名 唐榕崧(Jung-Sung Tang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 超塑成形工法設計及求證以製作民航客機之機翼前緣整流罩
相關論文
★ 使用實驗計劃法求得印刷電路板微鑽針最佳鑽孔參數★ 滾針軸承保持架用材料之電鍍氫脆研究
★ 強制氧化及熱機處理對鎂合金AZ91D固相回收製程之研究★ 滾針軸承保持架圓角修正之有限元素分析
★ 透過乾式蝕刻製作新型鍺全包覆式閘極電晶體元件★ 窗型球柵陣列構裝翹曲及熱應力分析
★ 冷軋延對ZK60擠製材的拉伸與疲勞性質之影響★ 熱引伸輔助超塑成形製作機翼整流罩之設計及分析
★ 超塑性鋁合金5083用於機翼前緣整流罩之研究★ 輕合金輪圈疲勞測試與分析
★ 滾針軸承保持架之有限元分析★ 鎂合金之晶粒細化與超塑性研究
★ 平板式固態氧化物燃料電池穩態熱應力分析★ 固態氧化物燃料電池連接板電漿鍍膜特性研究
★ 7XXX系鋁合金添加Sc之顯微組織與機械性質研究★ 高延性鎂合金之特性及成形性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 以超塑成形使鋁鈑成形至大深寬比且複雜的幾何形狀,並能得到滿意的厚度分布,是非常具有挑戰性的。為解決此類問題,兩階段氣吹成形(two-stage gas forming, TSGF)被提出來應用在飛機的整流罩製作上,前期研究結果顯示傳統超塑性成形以及兩階段氣吹成形方法仍不滿足厚度的需求且有皺折產生,因而提出熱折彎輔助氣吹成形法(hot-bent assisted gas forming, HBAGF)的概念。此法雖然改善了厚度的分布,卻與兩階段氣吹成形法同樣出現皺褶現象。然而,兩種成形方法皺褶形成部位及原因是不相同的,本文將詳細的探討皺摺成因。並藉由三維有限元素分析軟體LS-DYNA輔助,預測熱折彎階段以及氣吹成形後鈑材的變形過程。實驗模具使用三種不同等比例尺寸大小四分之一、二分之一、以及全尺寸。鈑材選用超塑性鋁合金5083,具0.5~2.5mm等各種厚度。比對實驗與有限元素分析結果,可以準確的預判皺褶發生的位置、形狀,以及熱折彎的挫曲情形。並且比較量測點各位置其減薄率實驗與分析結果誤差皆小餘5%。研究結果顯示,皺摺的位置是可被預測且設計。下模經過精進設計後,成功製做出符合厚度規格之整流罩產品。
摘要(英) It is a challenge of superplastic forming, SPF, techniques to form a strake with large depth-to-width ratio from an aluminum sheet. It is tougher if the strake is asked to be uniform in thickness. To address this problem, the authors employ two different SPF techniques, namely two-stage gas forming (TSFG) and hot-bend assisted gas forming (HBAGF) to produce airplane strakelets from AA5083 aluminum sheets. The thickness of such sheets range from 1.0 mm to 2.5 mm. To study the size effect on wrinkle formation and thickness distribution and thus link subscale data to a full scale manufacturing process, experiments on three scales (1:2:4) were performed on the specimens. Undesired wrinkles appear on all strakes formed by each SPF techniques with different sheet thickness. The sites of wrinkle and their formation causes are different but their occurrences are repeatable.
To gain the insight of wrinkle formation on different size strakes, a three-dimensional finite element analysis software LS-DYNA was implemented to predict wrinkles’ shape and occurrence. We found that LS-DYNA is effective software that helps an engineer to design the forming die and to predict the wrinkles location. It makes us to understand the formation of a strake from a metal sheet during the SPF process easily. In the present study, the maximum thickness difference of strakes and its LS-DYNA prediction is less than 5.0%. That is adequate for estimating the thickness profile of SPF parts. Thus, the technique developed in this study promises to save the time of try and errors. It also shows that the HBAGF die led to significant improvement of the thickness profile of superplastically formed parts.
關鍵字(中) ★ 超塑成形
★ 鋁合金5083
★ 整流罩
關鍵字(英)
論文目次 中文摘要 V
ABSTRACT VI
誌謝 VII
目錄 VIII
圖目錄 X
表目錄 XIV
符號說明 XV
ㄧ、前言 1
1-1超塑性概論 1
1-2文獻回顧 5
1-3研究動機與方法 10
二、理論 14
2-1  超塑材料模型 14
2-2  有限元素模型 24
三、實驗及模擬 26
3-1  超塑性鋁合金5083 26
3-2  實驗設備及步驟 30
3-3  模擬方法及步驟 39
四、實驗與模擬結果 56
4-1  兩階段氣吹成形法之皺褶現象 56
4-2  熱折彎氣吹成形法之皺摺現象 58
4-3  挫曲效應造成序列皺褶產生 67
4-4 整流罩之厚度分布 85
五、 結果與討論 95
參考文獻 96
參考文獻 1. A.A. Bochvar, Z.A. Sviderskaya, “Superplasticity in zinc-aluminium alloys”, Otdel Tekh Nauk, Vol 9, pp. 821-827, 1945.
2. R.M.Cleveland, A.K. Ghosh, J.R. Bradley,“Comparison of Superplastic Behavior in Two 5083 Aluminum Alloys”, Mater Sci Eng A, Vol 351, pp. 228-236, 2003.
3. A.K. Ghosh, C.H. Hamiton, Seminar Course, Taiwan Feb, Vol 25, pp. 13-15, 1990.
4. K. Higashi, M.Mabuchi , T.G. Langdon,“High Strain Rate Superplasticity in Metallic Materials and the Potential for Ceramic Materials”, The Iron and Steel Institute of Japan International, pp. 1423-1438, 1996.
5. S. Kalpadjian, Manufacturing Processes for Engineering Materials, Chap7, pp. 444-446.
6. SKY Aluminum C.LTD,“Superplastic 5083 alloy ALNOVI-1”, pp. 1-9, 1994.
7. A.J. Barnes, “Superplastic forming 40 years and still growing”, J. Mater. Eng. Perform., Vol 16, pp. 440–454, 2007.
8. W.A. Backofen, T.R. Turner, D.H. Avery, “Superplasticity in Al-Zn Alloy”, ASM Trans. Quart., Vol 57, pp. 980-990, 1964.
9. L.D. Hefti, “Commercial Airplane Applications of Superplastically Formed AA5083 Aluminum Sheet”, J. Mater. Eng. Perform, Vol 16, pp. 136-141, 2007.
10. A.K. Ghosh, C.H. Hamiton,“Superplastic Forming and Diffusion Bonding”, SPF/DB workshop Taipei, pp. 205-213, 1990.
11. S. Lee, H.C. Lan, J. Lee, J.Y. Wang, J.C. Huang, and C.L. Chu, “Gas Forming a V-Shape Aluminum Sheet into a Trough of Saddle-Contour”, J. Mater. Eng. Perform., Vol 21(11), pp. 2290–2294, 2012.
12. H.C. Lan, Y.K. Fuh, S. Lee and C.L. Chu, “Two-stage superplastic Forming of a V-shape Aluminum Sheet into a Trough with Deep and Irregular Contour”, J. Mater. Eng. Perform., Vol 22(8), pp. 2241-2246, 2013.
13. G. Luckey, P. Friedman, K. Weinmann, “Design and Experimental Validation of a Two-Stage Superplastic Forming Die”, J. Mater. Proc. Tech., Vol 209, pp. 2152-2160, 2009.
14. 林兆榮, 金屬超塑成形原理及應用, 航空工業出版社, p 79, 1990.
15. K. Nakamura, “Manufacturing Method of Formed Product Having Required Wall Thickness by Superplastic Blow Forming Method”, Patent Abstract of Japan, No. 197020, 1989.
16. J.R. Fischer, “Prethinning for Superplastic Forming”, U.S. Patent Number 5823032, 1998.
17. Y. Luo, S.G. Luckey, P.A. Friedman, Y. Peng, “Development of an advanced superplastic forming process utilizing a mechanical pre-forming operation”, Int. J. Mach. Tools Manuf., Vol 48, pp. 1509–1518, 2008.
18. Y. Luo, S.G. Luckey, W.B. Copple, and P.A. Friedman, “Comparison of Advanced SPF Die Technologies in the Forming of a Production Panel”, J. Mater. Eng. Perform, Vol 17(2), pp. 142-152, 2008.
19. K.A. Padmanabhan, G.J. Davis, Superplasticity. 1st ed., Springer verlag, Berlin, pp. 230-235, 1980.
20. C.H. Hamilton, A.K. Ghosh, Superplastic Sheet Forming, Metals Handbook, pp. 852–869, 1988.
21. 張凱鋒, 王國峰, 先進材料超塑成形技術, 科學出版社, p 50, 2012.
22. J Liu, M.J. Tan, Y. Aueulan, A.E.W Jarfors, K.S. Fong, “Superplastic-like forming of non-superplastic AA5083 combined with mechanical pre-forming”, Int. J. Adv. Manuf. Technol., Vol 52, pp. 123–129, 2011.
23. J. Bonet, A. Gil, R. D. Wood, R. Said, R. V. Curtis, “Simulating superplastic forming, Comput”. Methods Appl. Mech. Engrg., Vol 195, pp. 6580–6603, 2006.
24. R.D. Wood, J. Bonet, A.H.S. Wargadipura, “Numerical simulation of the superplastic forming of thin sheet components using the finite element method”, Int. J. Numer. Methods Engrg., Vol 30, pp. 1719–1737, 1990.
25. R. Said, D. Garriga-Majo, J. Bonet, R.D. Wood, R.V. Curtis, “Modelling and validation of superplastic forming of dental prostheses”, Simulation of Materials Processing: Theory, Methods and Applications, Proc. 7th Int. Conf. Numerical Methods in Industrial Forming Processes, Balkema, pp. 837–842, 2001.
26. D. Garriga-Majo, R.V. Curtis, R. Said, J. Bonet, R.D. Wood, M. Ardakani, B. Shollock, “Alloy characterisation for finite element simulation using multiaxial testing”, Villard-de-Lans, Presses Universitaires de Grenoble (PUG), pp. 35–40, 2001.
27. T.W. Ku, B.K. Ha, W.J. Song, B.S. Kang, S.M. Hwang, “Finite element analysis of multi-stage deep drawing process for high-precision rectangular case with extreme aspect ratio”, J. Mater. Process. Technol., Vol 130–131, pp. 128–134, 2002.
28. C.S. Park, T.W. Ku, B.S. Kang, S.M. Hwang, “Process design and blank modification in the multistage rectangular deep drawing of an extreme aspect ratio”, J. Mater. Process. Technol., Vol 153–154, pp. 778–784, 2004.
29. H. Raman, G. Luckey, G. Kridli, P. Friedman, “Development of Accurate Constitutive Models for Simulation of Superplastic Forming”, J. Mater. Eng. Perform., Vol 16, pp. 284-292, 2007.
30. S.G. Luckey, P.A. Friedman, K.J. Weinmann, “Correlation of finite element analysis to superplastic forming experiments”, J. Mater. Process. Technol., Vol 194, pp. 30–37, 2007.
31. N. Cappetti, L. Garofalo, A. Naddeo, M. Nastasia, A. Pellegrino, “A method for setting variables in Super Plastic Forming process”, J. Achiev. Mater. Manuf. Eng., Vol 38, pp. 187-194, 2010.
32. F. Yang and W. Yang, "Kinetics and size effect of grain rotations in nanocrystals with rounded triple junctions," Scripta Materialia, Vol 61, pp. 4, 919-922, 2009.
33. C. M. Hu, C. M. Lai, P. W. Kao, N. J. Ho, and J. C. Huang, "Quantitative measurements of small scaled grain sliding in ultra-fine grained Al–Zn alloys produced by friction stir processing," Materials Characterization, Vol 61, pp. 1043-1053, 2010.
34. H. H. Chenc, J. Y. Wang a, J. Lee, S. Lee, “Superplasticity of AA5083 alloy as processed by equal channel angular extrusion”, J. of Alloy and Compounds, Vol 460, pp. 305–308, 2008.
35. R. Verma, P.A. Friedman, A.K. Ghosh, C. Kim, and S. Kim, “Superplastic Forming Characteristics of Fine-Grained 5083 Aluminum”, J. Mater. Eng. Perform., Vol. 4(5), pp. 543-550, 1995.
36. R. Vermaa, A.K. Ghosh, S. Kimb, C. Kimb, “Grain refinement and superplasticity in 5083 Al”, Mater Sci Eng A, Vol 191, pp. 143-150, 1995.
37. R. Verma, P.A. Friedman, A.K. Ghosh, S. Kim, C. Kim, “Characterization of Superplastic Deformation Behavior of a Fine Grain 5083 AI Alloy Sheet”, Metall. Mater. Trans. A, Vol 27A, pp. 1889-1898, 1996.
38. K. Higashi, M. Mabuchi, and T. G. Langdon, "High-Strain-Rate Superplasticity in Metallic Materials and the Potential for Ceramic Materials," ISIJ International, vol. 36, pp. 1423-1438, 1996.
39. SKY Aluminum Co.LTD, "Superplastic 5083 alloy ALNOVI-1", pp.1-9, 1994.
40. Furukawa-Sky Aluminum Corp, “Superplastic 5083 Aluminum alloy Sheet ‘‘ALNOVI-1’’ was Approved by Airbus”, Furukawa Rev., Vol 26, pp 60-61, 2004.
41. W.A. Backofen, T.R. Turner, D.H. Avery, “Superplasticity in Al-Zn Alloy”, ASM Trans. Quart., Vol.57, p.980, 1964.
42. D.H. Avery, W.A. Backofen, “A structural basis for superplasticty”, ASM Trans. Quart., Vol.58, p.551, 1965.
43. K.A. Padmanabhan, G.J. Davies, Superplasticity, MRE Materials Research and Engineering, Springer, p. 312, 1980.
44. AGARD, Superplasticity, Defense Technical Information Center, p. 204, 1987.
45. A.K. Ghosh, C.H. Hamilton,“Superplastic Forming of a Long Rectangular Box Section- Analysis and Experiment”, Rockwell International, Thousand Oaks, California, pp. 245-273, 1979.
46. M. Vulcan, K. Siegert, D. Banabic,“The Influence of Pulsating Strain Rates on the Superplastic Deformation Behaviour of Al-Alloy AA5083 Investigated by Means of Cone Test”, Materials Science Forum, Vol 447-448, pp.139-144, 2004.
47. 藍先進,「超塑成形製程設計及模擬以製作機翼零件」,國立中央大學機械工程研究所,博士論文,2013。
指導教授 李雄(Shyong Lee) 審核日期 2016-6-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明