博碩士論文 101383002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:3.141.29.162
姓名 林暉(Huei Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 鋁合金6061-T6鎢極惰性氣體保護銲與真空硬銲接頭之疲勞壽命評估研究
(Fatigue Assessment of 6061-T6 Aluminium Alloy Joints Processed by Tungsten Inert Gas Welding and Vacuum Brazing)
相關論文
★ 三次元量床之虛擬儀器教學與訓練系統之設計與開發★ 駕駛模擬器技術開發及其在駕駛行為研究之應用
★ 電源模組老化因子與加速試驗模型之研究★ 應用駕駛模擬器探討語音防撞警示系統 對駕駛行為之影響
★ 遠距健康監測與復健系統之開發與研究★ 藥柱低週疲勞特性與壽限評估模式之研究
★ 非接觸式電子經緯儀電腦模擬教學系統之研究★ 適應性巡航控制系統對於駕駛績效影響之研究
★ 車輛零組件路況模擬系統之開發研究★ 應用殘障駕駛模擬器探討失衡路況對人體重心影響之研究
★ 聚縮醛(POM)機械性質之射出成型條件最佳化研究★ 駕駛模擬儀之開發驗證及應用於駕駛疲勞之研究
★ 即時眼部狀態偵測系統之研究★ 短玻璃纖維強化聚縮醛射出成型條件最佳化與機械性質之研究
★ 手推輪椅虛擬實境系統開發之研究★ 應用駕駛績效預測車輛碰撞風險之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以熱處理型6061-T6鋁合金為實驗材料,選擇對接與T型接頭,進行鎢極惰性氣體保護銲與真空硬銲,對於鋁合金銲接結構件在等負荷振幅及變動負荷振幅下之疲勞性質及疲勞壽命分析模式進行深入研究。為探討原始銲接結構之疲勞分析方法,將檢視各設計規範之適用性,並建立鋁合金銲接結構在不同受力情況下之最佳疲勞壽命分析模式。
研究結果顯示鎢極惰性氣體保護銲最低硬度值位於熱影響區,而真空硬銲並無明顯熱影響區,因真空硬銲是使用熱輻射方式且加熱均勻。
在對接接頭拉伸性質方面,當試片厚度增加,鎢極惰性氣體保護銲試片拉伸強度減少,但是,真空硬銲試片拉伸強度增加。因真空硬銲屬於擴散銲接,當硬銲接觸面積愈大,可有效提升拉伸強度。
在疲勞性質方面,不論是對接接頭或是T型接頭,鎢極惰性氣體保護銲試片疲勞強度皆高於IIW、BS 8118及Eurocode 9等規範設計曲線。在真空硬銲試片,T型接頭之疲勞強度高於IIW FAT 28、BS 8118 class 29及Eurocode 9 category 31等規範設計曲線,但關於對接接頭,其疲勞性質不適用於IIW FAT 45規範。
在平均應力修正方面,當平均應力為拉伸時,鋁合金6061-T6厚度4 mm之疲勞壽命預測,不論是鎢極惰性氣體保護銲或真空硬銲,皆適用Goodman平均應力修正。但對於T型接頭在支架歷程(平均應力為輕微壓縮)之疲勞壽命預測,鎢極惰性氣體保護銲適用於S-N方法,真空硬銲適用於Goodman平均應力修正。
在厚度修正方面,不論是對接接頭或是T型接頭,鎢極惰性氣體保護銲適用於IIW規範厚度修正公式,但對於真空硬銲之對接接頭,本研究提出一個新的厚度修正公式(利用抗拉強度比值進行厚度修正),其厚度修正結果優於IIW規範。對於T型接頭,在高壽命區間,則須做厚度修正。
摘要(英) Tungsten inert gas welding and vacuum brazing butt joints and T-joints of Al–Mg–Si alloy 6061 in the artificially aged condition T6 were studied. Microhardness, tensile, constant amplitude and variable amplitude fatigue loading tests were performed. The experimental S-N curves were compared with the fatigue design curves recommended by the International Institute of Welding, British Standard, and Eurocode 9. Two mean stress correction methods, Goodman and Gerber, were evaluated.
For the tungsten inert gas welding joints, the area with the lowest microhardness was the HAZ. For the vacuum brazing specimen, no clear HAZ was observed. Because the weldment was heated to a uniform temperature in a vacuum, so local overheating did not occur.
In terms of the tensile properties of butt joints, the tensile strength of the vacuum brazing specimen increased with specimen thickness, whereas that of the tungsten inert gas welding welding specimen decreased.
Tungsten inert gas welding butt joints and T-joints of AA 6061-T6 achieved higher fatigue strength as compared to the fatigue design curves of IIW, BS 8118, and Eurocode 9. In the lower life region (N = 104 ~ 105), it was found that the fatigue strength of vacuum brazing butt joints was lower than that of IIW FAT 45, but still higher than those of the BS 8118 class 42 and Eurocode 9 category 56-7.
When tungsten inert gas welding or vacuum brazing joints of aluminum 6061-T6 was subjected to a variable amplitude loading with tensile mean stress, Goodman method was suitable to modify the mean stress effect. For T-joints, the fatigue life of the tungsten inert gas welding specimens given the bracket history can be predicted using the S-N method. The fatigue life of the vacuum brazing specimens under the bracket history can be predicted using the Goodman mean stress correction method.
In terms of the size effect on the fatigue life, the thickness correction method recommended by the IIW was applicable to the tungsten inert gas welding joints of aluminum 6061-T6. This article proposed an innovational thickness correction method based on the ratio of the ultimate tensile strengths of specimens with different thickness. For butt joints of vacuum brazing, the tensile strength–based thickness correction method was better than the thickness correction methods recommended by the International Institute of Welding. For T-joints, vacuum brazing is required to carry out thickness correction in the higher life region.
關鍵字(中) ★ 真空硬銲
★ 鎢極惰性氣體保護銲
★ 鋁合金
★ 疲勞壽命
★ 平均應力
★ 尺寸效應
關鍵字(英) ★ Vacuum brazing
★ tungsten inert gas welding
★ aluminum alloy
★ fatigue
★ mean stress effect
★ size effect
論文目次 中文摘要-------------------------------------------------Ⅰ
英文摘要------------------------------------------------Ⅲ
誌謝----------------------------------------------------Ⅴ
總目錄--------------------------------------------------Ⅶ
圖目錄-------------------------------------------------XI
表目錄------------------------------------------------XVI
符號說明---------------------------------------------XVIII
第一章、前言---------------------------------------------1
1.1 研究背景---------------------------------------------1
1.2 研究動機與目的---------------------------------------9
第二章、文獻回顧-----------------------------------------10
2.1 鋁合金種類------------------------------------------10
2.2 鋁合金銲接介紹--------------------------------------12
2.2.1 鎢極惰性氣體保護銲之研究----------------------------12
2.2.2 真空硬銲之研究------------------------------------17
2.3 鋁合金銲接結構之疲勞壽命評估之研究---------------------22
2.3.1 影響銲接結構疲勞壽命之因素--------------------------22
2.3.2 鋁合金銲接結構之疲勞設計規範------------------------30
2.3.3 鋁合金銲接件疲勞性質之研究--------------------------34
第三章、研究方法-----------------------------------------36
3.1 實驗規劃及鋁合金銲接件之製作--------------------------36
3.1.1 鋁合金材料----------------------------------------37
3.1.2 田口實驗設計法------------------------------------37
3.1.3 銲接方法------------------------------------------43
3.1.4 銲接接頭形式--------------------------------------44
3.1.5 銲接試片加工--------------------------------------47
3.1.6 金相觀察------------------------------------------48
3.1.7 微硬度測試----------------------------------------49
3.1.8 拉伸測試------------------------------------------50
3.1.9 破斷面觀察及分析-----------------------------------51
3.2 銲接件疲勞試驗方法-----------------------------------52
3.2.1 等振幅疲勞試驗方法---------------------------------52
3.2.2 變動振幅疲勞試驗方法-------------------------------52
3.3 銲接結構疲勞壽命分析---------------------------------55
3.3.1 應力-壽命曲線(S-N Curve)-------------------------56
3.3.2 應力-壽命法--------------------------------------57
3.3.3 平均應力的影響------------------------------------59
3.3.4 厚度修正------------------------------------------61
3.3.5 循環計數法----------------------------------------62
3.3.6 循序法-------------------------------------------65
3.3.7 疲勞損傷累積--------------------------------------66
第四章、結果與討論---------------------------------------69
4.1 真空硬銲製程參數最佳化-------------------------------69
4.2 金相組織觀察----------------------------------------71
4.2.1 鎢極惰性氣體保護銲---------------------------------71
4.2.2 真空硬銲------------------------------------------72
4.3微硬度分析-------------------------------------------73
4.3.1 對接接頭------------------------------------------73
4.3.2 T型接頭------------------------------------------75
4.4拉伸性質---------------------------------------------76
4.4.1 對接接頭------------------------------------------76
4.4.2 T型接頭------------------------------------------77
4.5等負荷振幅疲勞性質------------------------------------78
4.5.1 對接接頭------------------------------------------78
4.5.2 T型接頭------------------------------------------82
4.6變動負荷振幅疲勞性質與厚度修正-------------------------86
4.6.1 對接接頭------------------------------------------86
4.6.2 T型接頭------------------------------------------91
第五章、結論--------------------------------------------96
第六章、未來研究方向-------------------------------------99
附錄A BS 8118規範資料----------------------------------100
附錄B Eurocode 9規範資料-------------------------------104
附錄C IIW規範資料--------------------------------------108
附錄D AWS規範資料--------------------------------------112
參考文獻-----------------------------------------------113
參考文獻 1. W. D. Callister and D. G. Rethwisch, “Materials Science and Engineering,” John Wiley & Sons, United States of America, 9th ed. (2014)
2. 劉文海,“鋁合金車體與底盤之發展動向”,機械工業雜誌,75-84頁。(2006)
3. R. I. Stephens, A. Fatemi, R. R. Stephens and H. O. Fuchs, “Metal Fatigue in Engineering,” John Wiley & Sons, New York, 2nd ed. (2000)
4. M. Matsuishi and T. Endo, “Fatigue of Metals Subjected to Varying Stress,” Japan Society of Mechanical Engineers, Japan. (1968)
5. M. A. Miner, “Cumulative Damage in Fatigue,” Journal of Applied Mechanics, Vol. 67, pp. A159-A164. (1945)
6. T. R. Gurney, “Fatigue of Welded Structures,” Cambridge University Press, London, 2nd ed. (1979)
7. W. H. Munse, “Fatigue of Weldments-Tests, Design, and Service,” Fatigue Testing of Weldments, ASTM STP 648, D. W. Hoeppner, ed., American Society for Testing and Materials, pp. 89-112. (1978)
8. S. J. Maddox, “Fatigue Strength of Welded Structures,” Woodhead Publishing, Abington, Cambridge, 2nd ed. (1991)
9. V. N. Drew, “Fatigue Considerations in Welded Structure,” Society of Automotive Engineers, Technical paper No. 820695. (1982)
10. J. Y. Yung and F. V. Lawrence, “Analytical and Graphical Aids for the Fatigue Design of Weldments,” Society of Automotive Engineers, Technical paper No. 850803. (1985)
11. “Structural Use of Aluminium-Part 1 Code of Practice for Design,” British Standard 8118, British Standards Institution, London. (1991)
12. “Eurocode 9: Design of Aluminium Structures-Part 1-3: Structures Susceptible to Fatigue,” The European Standard EN 1999-1-3: 2007, British Standards Institution, London. (2007)
13. A. Hobbacher, “The Development of the New IIW Fatigue Recommendations,” In: Proceedings of the IIW International Conference on Performance of Dynamically Loaded Welded Structures, New York. (1997)
14. “Specifications for Aluminium Structures,” The Aluminum Association, Washington, DC. (1994)
15. “CAN/CSA-S157-M92 Strength Design in Aluminium,” Canadian Standards Association, Canada. (1993)
16. T. R. Gurney, “The Influence of Thickness on the Fatigue Strength of Welded Joints,” In: Proceedings of the 2nd International Conference on Behaviour of Offshore Structures, London. (Aug 1979)
17. S. J. Maddox, “The Effect of Plate Thickness on the Fatigue Strength of Fillet Welded Joints,” Abington Publishing, Cambridge. (1987)
18. S. J. Maddox, “Scale Effect in Fatigue of Fillet Welded Aluminium Alloys,” In: Proceedings of the 6th International Conference on Aluminium Weldments, Cleveland. (Apr 1995)
19. L. Tucker and S. Bussa, “The SAE Cumulative Fatigue Damage Test Program,” Society of Automotive Engineers, Technical paper No. 750038. (1975)
20. 黃振賢,“機械材料”,文晶圖書股份有限公司,311-331頁。(1980)
21. 賴耿陽,“非鐵金屬材料”,復漢出版社,151-168頁。(1982)
22. 趙光榮,“氬氣鎢極電銲能力本位訓練教材-鋁板平銲基本銲道銲接”,行政院勞工委員會職業訓練局。(2001)
23. 陳皇鈞,“材料科學與工程”,曉園出版社,323-335頁。(1986)
24. 鄭慶民,”熱處理行鋁合金銲接性質之研究”,國立交通大學機械工程學系,博士論文。(2005)
25. 吳政江,”鋁合金5052與6061銲後熱處理機械性質研究”,國立台灣師範大學工業教育研究所,碩士論文。(1997)
26. 董孟軒,”Sc與Cu含量對A201合金銲接特性之研究”,國立中央大學機械工程研究所,碩士論文。(2006)
27. X. H. Wang, J. T. Niu, S. K. Guan, L. J. Wang and D. F. Cheng, “Investigation on TIG Welding of SiCp-Reinforced Aluminium-Matrix Composite Using Mixed Shielding Gas and Al-Si Filler,” Materials Science and Engineering A, Vol. 499, Issues 1-2, pp. 106-110. (2009)
28. 莊弘瑋,”活性助銲劑與銲接製程參數對6061鋁合金銲道熔深能力之研究”,國立交通大學工學院精密與自動化工程學程,碩士論文。(2012)
29. 唐自勇,”A7050與A2024鋁合金異質銲接與銲後熱處理”,國立交通大學機械工程系所,碩士論文。(2013)
30. W. S. Miller, L. Zhuang, J. Bottema, A. J. Wittebrood and P. Desmet, “Recent Development in Aluminium Alloys for the Automotive Industry,” Materials Science and Engineering A, Vol. 280, Issue 1, pp. 37-49. (2000)
31. 凌溢駿,”UNS S31200及UNS S31803雙相不銹鋼真空硬焊性質研究”,大同大學材料工程研究所,碩士論文。(2000)
32. 葉獻文,”鋁、銅合金真空硬銲之研究”,國立中興大學材料工程學系所,碩士論文。(2010)
33. 廖盛如,”6061鋁合金真空硬銲接合面之機械性能與氣密性”,國立中興大學機械工程學系所,碩士論文。(2009)
34. X. Yue, P. He, J. C. Feng, J. H. Zhang and F. Q. Zhu, “Microstructure and Interfacial Reactions of Vacuum Brazing Titanium Alloy to Stainless Steel Using an Ag-Cu-Ti Filler Metal,” Materials Characterization, Vol. 59, Issue 12, pp. 1721-1727. (2008)
35. W. C. Jiang, J. M. Gong and S. T. Tu, “A New Cooling Method for Vacuum Brazing of a Stainless Steel Plate–Fin Structure,” Materials and Design, Vol. 31, Issue 1, pp. 648-653. (2010)
36. S. H. Wang, H. P. Zhou and Y. P. Kang, “The Influence of Rare Earth Elements on Microstructures and Properties of 6061 Aluminium Alloy Vacuum-Brazed Joints,” Journal of Alloys and Compounds, Vol. 352, Issues 1-2, pp. 79-83. (2003)
37. N. N. Chen, Y. Feng, J. Chen, B. Li, F. Y. Chen and J. S. Zhao, “Vacuum Brazing Processes of Aluminum Foam,” Rare Metal Materials and Engineering, Vol. 42, Issue 6, pp.1118-1122. (2013)
38. E. B. Ratts, Y. L. Murphey and Y. N. Zhou, “Thermal Modeling of Controlled Atmosphere Brazing Process Using Virtual Reality Technology,” Applied Thermal Engineering, Vol. 20, Issue 17, pp. 1667-1678. (2000)
39. C. Moller and J. Grann, “Vacuum Aluminum Brazing-What Matters Most,” In: Proceedings of the 5th International Brazing and Soldering Conference, Las Vegas. (APR, 2012)
40. F. Zhao, Z. S. Chen, F. Gao and Y. Tu, “Effect of Brazing Processing Technique on Microstructure of Aluminum Vacuum Brazing,” Material Science and Technology, Vol. 19, No. Suppl. 1, pp.178-181. (2011)
41. N. Chen, Y. Feng, J. Chen, B. Li and F. Chen, “Properties of Aluminum Foam Joints during Contact Reactive Brazing Processes,” Transactions of the China Welding Institution, Vol. 34, No. 4 pp.77-80. (2013)
42. C. Wesolek, “Determining the Strength of Aluminum Braze Joints,” Welding Journal, Vol. 80, No. 10, pp.42-44. (2001)
43. F. Gao, H. Zhao, D. P. Sekulic, Y. Qian and L. Walker, “Solid State Si Diffusion and Joint Formation Involving Aluminium Brazing Sheet,” Materials Science and Engineering A, Vol. 337, Issues 1-2, pp. 228-235. (2002)
44. M. Kobashi, T. Ninomiya, N. Kanetake and T. Choh, “Effect of Alloying Elements in the Brazing Sheet on the Bonding Strength between Al2O3 and Aluminium,” Scripta Materialia, Vol. 34, Issue 3, pp. 415-420. (1996)
45. P. Liu, Y. J. Li, J. Wang and J. S. Guo, “Vacuum Brazing Technology and Microstructure near the Interface of Al/18-8 Stainless Steel,” Materials Research Bulletin, Vol. 38, Issues 9-10, pp. 1493-1499. (2003)
46. S. S. Wang, M. D. Cheng, L. C. Tsao and T. H. Chuang, “Corrosion Behavior of Al-Si-Cu-(Sn, Zn) Brazing Filler Metals,” Materials Characterization, Vol. 47, Issue 5, pp. 401-409. (2001)
47. Q. Y. Zhang, “Reduction of Metal Ions on Aluminium in Molten Flux during Aluminium Brazing,” China Welding, Vol. 3, Issue 1, pp. 10-14. (1994)
48. E. Macherauch and H. Wohlfahrt, “Residual Stresses in Welded Construction and Their Effects,” In: Proceedings of the Welding Institute, 267-282. (November 1977)
49. L. Tall, “Residual Stress in Welding Plates-A Theoretical Study,” Welding Journal, Vol. 43, pp. 10-23. (1964)
50. G. Glinka, “Effect of Residual Stresses on Fatigue Crack Growth in Steel Weldments under Constant and Variable Amplitude Loads,” Fracture Mechanics, ASTM STP 677, American Society for Testing and Materials, United States of America, pp. 198-214. (1979)
51. K. Masubuchi, “Analysis of welded structures,” Pergamon, Oxford. (1980)
52. R. Jaccard, “Fatigue Crack Propagation in Aluminium,” International Institute of Welding, United States of America, Doc. XIII-1377-90. (1990)
53. S. Kou, “Welding Metallurgy,” John Wiley and Sons, New York. (1987)
54. L. W. Eastwood, “Gases in Non-Ferrous Metal and Alloys,” American Society for Metals, Cleveland, Ohio. (1953)
55. R. F. Ashton, R. P. Wesley and C. R. Dixon, “The Effect of Porosity on 5086-116 Aluminium Alloy Welds,” Welding Journal, Vol. 54, Issue 3, pp. 95-98. (1975)
56. T. Matic and Z. Domazet, “Determination of Structural Stress for Fatigue Analysis of Welded Aluminium Components Subjected to Bending,” Fatigue and Fracture of Engineering Materials and Structures, Vol. 28, Issue 9, pp. 835-844. (2005)
57. S. J. Maddox, “Review of Fatigue Assessment Procedures for Welded Aluminium Structures,” International Journal of Fatigue, Vol. 25, Issue 12, pp. 1359-1378. (2003)
58. “European Recommendations for Aluminium Alloy Structures, Fatigue Design,” European Convention for Constructional Steelwork, Brussels, Document No. 68. (1992)
59. “Fatigue Assessment of Aluminium Structures,” Det Norske Veritas, Norway, Technical report No. LIB-J-000010. (1995)
60. J. A. M. Pinho-da-Cruz, J. A. M. Ferreira, J. D. M. Costa and L. F. P. Borrego, “Fatigue Analysis of Thin Al-Mg-Si Welded Joints under Constant and Variable Amplitude Block Loadings,” Thin-Walled Structures, Vol. 41, Issue 5, pp. 389-402. (2003)
61. M. Matema, A. Koursaris and A. Paterson, “Fatigue Properties of Fabricated Aluminium I-Beams,” Journal of The South African Institute of Mining and Metallurgy, Vol. 105, Issue 3, pp. 177-181. (2005)
62. M. Kalenda and D. T. Madeleine, “Corrosion Fatigue Behaviour of Aluminium Alloy 6061-T651 Welded Using Fully Automatic Gas Metal Arc Welding and ER5183 Filler Alloy,” International Journal of Fatigue, Vol. 33, Issue 12, pp. 1539-1547. (2011)
63. K. K. Mustafa, K. Erdinc, S. Aydın and B. Ozden, “Experimental Comparison of MIG and Friction Stir Welding Processes for en AW-6061-T6 (Al-Mg1-Si-Cu) Aluminum Alloy,” The Arabian Journal for Science and Engineering, Vol. 35, Issue 1B, pp. 321-330. (2010)
64. J. Y. Li and J. M. Ma, “Effect of Welding Processes on Fatigue Properties of 6061-T6 Aluminum Welded Joints,” Journal of Aeronautical Materials, Vol. 24, Issue 3, pp. 52-57. (2004)
65. X. X. Yao, R. Sandström and T. Stenqvist, “Strain-Controlled Fatigue of a Braze Clad Al-Mn-Mg Alloy at Room Temperature and at 75 and 180°C,” Materials Science and Engineering A, Vol. 267, Issue 1, pp. 1-6. (1999)
66. X. G. Yang, C. L. Dong, D. Q. Shi and L. Zhang, “Experimental Investigation on Both Low Cycle Fatigue and Fracture Behavior of DZ125 Base Metal and the Brazed Joint at Elevated Temperature,” Materials Science and Engineering A, Vol. 528, Issues 22-23, pp. 7005-7011. (2011)
67. 李輝煌,“田口方法:品質設計的原理與實務”,高立圖書有限公司。(2008)
68. “Standard Practice for Microetching Metals and Alloys,” ASTM-E407, American Society for Testing and Materials, United States of America. (2012)
69. “Method of Vickers Hardness Test,” CNS 2115 Z8004, Chinese National Standards, Taiwan. (1983)
70. “Standard Test Methods for Tension Testing of Metallic Materials,” ASTM-E8, American Society for Testing and Materials, United States of America. (2012)
71. “Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials,” ASTM-E466, American Society for Testing and Materials, United States of America. (2012)
72. D. V. Nelson and H. O. Fuchs, “Predictions of Cumulative Fatigue Damage Using Condensed Load Histories,” in Fatigue under Complex Loading: Analyses and Experiments, Vol. AE-6, R. M. Wetzel, ed., The Society of Automotive Engineers, Warrendale, pp. 163-187. (1977)
73. J. A. Bannantine, J. J. Comer and J. L. Hardrock, “Fundamentals of Metal Fatigue Analysis,” Prentice Hall, New Jersey. (1990)
74. 黃嘉彥,“工程結構之疲勞與破壞”,徐氏基金會。(1998)
75. “Section 3: Metals Test Methods and Analytical Procedure, Vol. 03.01, Metals-Mechanical Testing; Elevated and Low-Temperature Tests,” American Society for Testing and Materials, United States of America. (1986)
76. 陳裕城,“機械零組件之加速耐久分析”,國立中央大學機械工程研究所,碩士論文。(1998)
77. “Specification for Filler Metals for Brazing and Braze Welding,” AWS A5.8/5.8M, American Welding Society, United States of America. (2004)
78. G. T. Yahr, “Fatigue Design Curves for 6061-T6 Aluminum,” Journal of Pressure Vessel Technology, Vol. 119, Issue 2, pp. 211-215. (1997)
指導教授 黃俊仁、馮君平(Jiun-Ren Hwang Chin-Ping Fung) 審核日期 2016-6-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明