參考文獻 |
References
[1] A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys,” Acta Materialia, vol. 48, pp 279-306, 2000.
[2] A. L. Greer, “Metallic Glasses,” Science, vol. 267, pp. 1947, 1995.
[3] H. W. Sheng, W. K. Luo, F. M. Alamgir, J. M. Bai, and E. Ma, “Atomic packing and short-to-medium range order in metallic glasses,” Nature, vol. 439, page 419-425, 2006.
[4] T. Egami, “Understanding the properties and structure of metallic glasses at the atomic level,” Journal of the Minerals Metals and Materials Society, vol. 62, pp. 70 -75, 2010.
[5] A. Hirata, P. F. Guan, T. Fujita, Y. Hirotsu, A. Inoue, A. R. Yavari, T. Sakurai, and M. W. Chen, “Direct observation of local atomic order in a metallic glass,” Nature Materials, vol. 10, pp. 28-33, 2011.
[6] W. Klement, R. H. Willens, P. Duwez, “Non-crystalline structure in solidified gold-silicon alloys,” Nature, vol. 187, pp 869 - 870, 1960.
[7] J. C. Huang, J. P. Chu, and J. S. C. Jang, “Recent progress in metallic glasses in Taiwan,” Intermetallics, vol. 17, no. 12, pp. 973–987, 2009.
[8] A. Inoue and A. Takeuchi, “Recent development and application products of bulk glassy alloys,” Acta Materialia, vol. 59, no. 6, pp. 2243–2267, 2011.
[9] A. Inoue and T. Zhang, “Fabrication of bulk glassy Zr55Al10Ni5Cu30 alloy of 30 mm in diameter by a suction casting method,” Material Transitions, JIM, vol. 37, pp. 185–187, 1996.
[10] A. Peker and W. L. Johnson, “A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5,” Applied Physics Letter, vol. 63, pp. 2342–2344, 1993
[11] Z. W. Hsiao, C. C. Fu, P. H. Tsai, J. S. C. Jang, S. R. Jian, and J. C. Huang, “Effect of nano-crystallization on the mechanical properties of the (Zr53Cu30Ni9Al8)99.5Si0.5 bulk metallic glasses,” Materials Science Forum, vol. 638-642, pp 2933-2937, 2010.
[12] Y. Yokoyama, K. Fujita, A.R. Yavari, and A. Inoue, “Malleable hypoeutectic Zr–Ni–Cu–Al bulk glassy alloys with tensile plastic elongation at room temperature,” Philosophical Magazine Letters, vol. 89, Issue 5, 2009.
[13] X. Hui, S.N. Liu, S.J. Pang, L.C. Zhuo, T. Zhang, G.L. Chena and Z.K. Liu,”High-zirconium-based bulk metallic glasses with large plasticity,” Scripta Materialia, vol. 63, pp. 239–242, 2010.
[14] N. Hua, L. Huang, W. He, S. Pang, and T. Zhang, “A Ni-free high-zirconium-based bulk metallic glass with enhanced plasticity and biocompatibility,” Journal of Non-Crystalline Solids, vol. 376, pp. 133–138, 2013.
[15] D. Wang, G. Liao, J. Pan, Z. Tang, P. Peng, L. Liu, and T. Shi, “Superplastic micro-forming of Zr65Cu17.5Ni10Al7.5 bulk metallic glass with silicon mold using hot embossing technology,” Journal Alloys Compound, vol. 484, pp. 118–122, 2009.
[16] M. Z. Ma, R. P. Liu, Y. Xiao, D. C. Lou, L. Liu, Q. Wang, and W. K. Wang, “Wear resistance of Zr-based bulk metallic glass applied in bearing rollers,” Materials Science and Engineering A, vol 386, pp. 326–330, 2004.
[17] L. Huang, D.C. Qiao, B.A. Green, P.K. Liaw, J.F. Wang, S.J. Pang, and T. Zhang, “Biocorrosion study on zirconium-based bulk-metallic glasses,” Intermetallics, vol. 17, pp. 195–199, 2009.
[18] A. Kawashima, T. Wada, K. Ohmura, G.Q. Xie, and A. Inoue, “A Ni- and Cu-free Zr-based bulk metallic glass with excellent resistance to stress corrosion cracking in simulated body fluids”, Materials Science and Engieering A, vol. 542, pp. 140–146, 2012.
[19] B. Guan, X. Shi , Z. Dan. G. Xie. M. Niinomi, and F. Qin, “Corrosion behavior, mechanical properties and cell cytotoxity of Zr-based bulk metallic glasses,” Intermetallics, vol. 72, pp. 69–75, 2016.
[20] IARC, “Monographs on evaluation of carcinogenic risk of chemicals to humans, Vol. 23: some metals and metallic compounds - summary of data reported and evaluation,” WHO/IARC, Lyon, France, 1980.
[21] W. M. Elshahawy, I. Watanabe, and P. Kramer, “In vitro cytotoxicity evaluation of elemental ions released from different prosthodontic materials,” Dental Materials, vol. 25, no. 12, pp. 1551–1555, 2009.
[22] J. C. Wataha, P. E. Lockwood, and A. Schedle. “Effect of silver, copper, mercury, and nickel ions on cellular proliferation during extended, low-dose exposures,” Journal of Biomedical Materials Research, vol. 52, no. 2, pp. 360-364, 2000.
[23] M. Niinomi, M. Nakai, and J. Hieda, “Development of new metallic alloys for biomedical applications,” Acta Biomaterialia, vol. 8, pp. 3888–3903, 2012.
[24] C. Balagna, S. Spriano, and M.G. Faga, “Characterization of Co-Cr-Mo alloy after a thermal treatment for high wear resistance,” Materials Science and Engineering A, vol. 32, pp. 1868–1877, 2012.
[25] T. Wada, F.X. Qin, X.M. Wang, M. Yoshimura, A. Inoue, N. Sugiyama, R. Ito, and N. Matsushita, “Formation and bioactivation of Zr–Al–Co bulk metallic glasses,” Journal Material Research, vol. 24, pp. 2941–2948, 2009.
[26] J. Tan, F. S. Pan, Y. Zhang, B. A. Sun, J. He, N. Zheng, M. Stoica, U. Kühn, and J. Eckert, “Formation of Zr-Co-Al bulk metallic glasses with high strength and large plasticity,” Intermetallics, vol. 31, pp. 282–286, 2012.
[27] J. Tan, Y.Zhang, M.Stoica, U.Kuhn, N.Mattern, F. S. Pan, and J. Eckert, “Study of mechanical property and crystallization of a ZrCoAl bulk metallic glass,” Intermetallics, vol. 19, no 4, pp. 567–571, 2011.
[28] T. H. Li, K. T. Hsu, P. H. Tsai, J. S. C. Jang, and J. C. Huang, “Effect of the multiple-metastable crystalline phases on predicting the glass forming ability of ZrAlCo amorphous metallic alloys,” unpublished.
[29] F. X. Qin, X. M.Wang, and A. Inoue, “Effect of annealing on microstructure and mechanical property of a Ti-Zr-Cu-Pd bulk metallic glass,” Intermetallics, vol. 15, no. 10, pp. 1337–1342, 2007.
[30] K. S. Lee, H. J. Jun, D. W. Kim, J. Eckert, and Y. W. Chang, “Structural relaxation and crystallization of a Zr44Ti11CU9.8Ni10.2Be25 bulk metallic glass,” Materials Transactions, vol. 48, no. 7, pp. 1722–1728, 2007.
[31] H. Sakamoto, T. Yamada, N. Okumura, and T. Sato, “Improvement in brittleness of amorphous Fe-Si-B-C alloy ribbons by controlling casting conditions,” Materials Science and Engineering A, vol. 206, no. 1, pp. 150-153, 1996.
[32] M. Chen, A. Inoue, W. Zhang, and T. Sakurai, “Extraordinary plasticity of ductile bulk metallic glasses,” Physical Review Letters, vol. 96, no. 24, pp. 1–4, 2006.
[33] C. Fan and A. Inoue, “Ductility of bulk nanocrystalline composites and metallic glasses at room temperature,” Applied Physics Letters, vol. 77, no. 1, p. 46, 2000.
[34] R. Wei, X. L. Wang, S. Yang, F. Jiang, and L. He, “Formation of CuZr-based bulk metallic glass composites containing nanometer-scale B2-CuZr phase through sub-Tg annealing,” Journal of Alloys and Compounds, vol. 617, pp. 699–706, 2014.
[35] S. González, E. Pellicer, S. Suriñach, M. D. Baró, and J. Sort, “Mechanical and corrosion behaviour of as-cast and annealed Zr60Cu20Al10Fe5Ti5 bulk metallic glass,” Intermetallics, vol. 28, pp. 149–155, 2012.
[36] H. S. Chen. “Glassy Metals,” Report Progress Physics, vol. 43, no. 4, pp. 353-432, 1980.
[37] A. J. Drehman, A. L. Greer and D. Turnbull. “Bulk formation of a metallic glass: Pd40Ni40P20,” Applied Physics Letter. vol. 41, pp. 716, 1982.
[38] T. G. Nieh and J. Wadsworth. “Homogeneous deformation of metallic glasses,” Scripta Materialia, vol. 54, issue 3, pp. 387-392, 2006.
[39] A. Inoue, T. Zhang, N. Nishiyama, K. Ohba, and T. Masumoto, “Preparation of 16 mm diameter rod of amorphous Zr65Al7.5Ni10Cu17.5 alloy,” Materials Transactions, JIM, vol. 34, no. 12. pp. 1234–1237, 1993
[40] N. Nishiyama, K. Takenaka, H. Miura, N. Saidoh, Y.Q. Zeng, A. Inoue. “The world’s biggest glassy alloy ever made” Intermetallics, vol. 30, pp. 19-24, 2012.
[41] J. S. C. Jang, Y. S. Chang, T. H. Li, P. J. Hsieh, J. C. Huang, and C. Y. A. Tsao, “Plasticity enhancement of Mg58Cu28.5Gd11Ag2.5 based bulk metallic glass composites dispersion strengthened by Ti particles,” Journal of Alloys and Compounds, vol. 504, pp. S102–S105, 2010.
[42] J. C. Qiao and J. M. Pelletier, “Dynamic mechanical relaxation in bulk metallic glasses: A Review,” Journal of Materials Science and Technology, vol. 30, no. 6, pp. 523–545, 2014.
[43] N. Nishiyama and A. Inoue, "Direct comparasion between critical cooling rate and some quantitative parameters for evaluation of glass-forming ability in Pd-Cu-Ni-P alloys," Material Transaction, vol. 43, pp. 1913-1917, 2002.
[44] C. Suryanarayana and A. Inoue, “Bulk Metallic Glasses”, Taylor and Francis Group, FL: CRC Press, 2011.
[45] D. Turnbull, “Under what conditions can a glass be formed?,” Contemporer Physics, vol. 10, no. 5, pp. 473-488, 1969.
[46] A. Inoue, “High strength bulk amorphous alloys with low critical cooling rates”. Material. Transaction, JIM, vol. 36, pp. 866–875, 1995.
[47] Z. P. Lu and C.T. Liu, “A new glass-forming ability criterion for bulk metallic glasses,” Acta Materialia, vol. 50, no. 13, pp. 3501–3512, 2002.
[48] X.H. Du, J.C. Huang, C.T. Liu, and Z.P. Lu, “New criterion of glass forming ability for bulk metallic glasses,” Journal Applied Physics, vol. 101, pp 086108-1–086108-3, 2007.
[49] P. Blyskun, P. Maj, M. Kowalczyk, J. Latuch, and T. Kulik, “Relation of various GFA indicators to the critical diameter of Zr-based BMGs,” Journal of Alloys and Compounds, vol. 625, pp. 13–17, 2014.
[50] A. S. Argon, “Plastic deformation in metallic glasses”, Acta Metallurgica, vol. 27, issue 1, pp. 47-58, 1979.
[51] F. Spaepen, “ A microscopic mechanism for steady state inhomogeneous flow in metallic glasses,” Acta Metallurgica, vol. 25, issue 4, pp. 407-415, 1977.
[52] C. A. Schuh, T. C. Hufnagel, and U. Ramamurty, “Mechanical behavior of amorphous alloys,” Acta Materialia, vol. 55, no. 12, pp. 4067–4109, 2007.
[53] P. S. Steif, F. Spaepen, and J. W. Hutchinson, “Strain localization in amorphous metals”, Acta Metallurgica, vol. 30, issue 2, pp. 447-455, 1982.
[54] J. J. Lewandowski and A. L. Greer, “Temperature rise at shear bands in metallic glasses,” Nature Materials, vol. 5, pp. 15 – 18, 2006.
[55] T. Zhang and A. Inoue, “New Glassy Zr-Al-Fe and Zr-Al-Co Alloys with a Large Supercooled Liquid Region.,” Materials Transactions, vol. 43, no. 2, pp. 267–270, 2002.
[56] J. Tan, C. J. Li, Y. H. Jiang, R. Zhou, and J. Eckert, “Correlation between internal states and strength in bulk metallic glass,” PRICM: 8 Pacific Rim International Congress on Advanced Materials, pp. 3199-3206, 2013.
[57] G. He, Z.F. Zhang, W. Loser, J. Eckert, and L. Schultz, “Effect of Ta on glass formation, thermal stability and mechanical properties of a Zr52.25Cu28.5Ni4.75Al9.5Ta5 bulk metallic glass,” Acta Materialia, vol. 51, pp. 2383–2395, 2003.
[58] J. J. Lewandowski, W. H. Wang, and A. L. Greer, “Intrinsic plasticity or brittleness of metallic glasses,” Philosophical Magazine Letter, vol. 85, pp. 77–87, 2005.
[59] A. Inoue, “Mechanical properties of Zr-based bulk glassy alloys containing nanoscale compound particles,” Intermetallics, vol. 8, no. 5–6, pp. 455–468, 2000.
[60] K. Hajlaoui, A. R. Yavari, A. LeMoulec, W. J. Botta, F. G. Vaughan, J. Das, A. L. Greer, and Å. Kvick, “Plasticity induced by nanoparticle dispersions in bulk metallic glasses,” Journal of Non-Crystalline Solids, vol. 353, no. 3, pp. 327–331, 2007.
[61] H.E. Kissinger, “Reaction kinetics in differential thermal analysis,” Analysis Chemistry, vol. 29, pp. 1702-1706, 1957.
[62] F. X. Qin, H.F. Zhang, B.Z. Ding, and Z.Q. Hu, “Nanocrystallization kinetics of Ni-based bulk amorphous alloy,” Intermetallics, vol. 12, pp. 1197–1203, 2004.
[63] P. Murali and U. Ramamurty, “Embrittlement of a bulk metallic glass due to sub-Tg annealing,” Acta Materialia, vol. 53, no. 5, pp. 1467–1478, 2005.
[64] K. Mondal, T. Ohkubo, T. Toyama, Y. Nagai, M. Hasegawa, and K. Hono, “The effect of nanocrystallization and free volume on the room temperature plasticity of Zr-based bulk metallic glasses,” Acta Materialia, vol. 56, no. 18, pp. 5329–5339, 2008.
[65] G. Kumar, D. Rector, R. D. Conner, and J. Schroers, “Embrittlement of Zr-based bulk metallic glasses,” Acta Materialia, vol. 57, no. 12, pp. 3572–3583, 2009.
[66] H. W. Yang, J. Wen, M. X. Quan, and J. Q. Wang, “Evaluation of the volume fraction of nanocrystals devitrified in Al-based amorphous alloys,” Journal of Non-Crystalline Solids, vol. 355, no. 4–5, pp. 235–238, 2009.
[67] A. L. Greer, “Partially of fully devitrified alloys for mechanical properties,” Materials Science and Engineering A, vol. 304–306, no. 1–2, pp. 68–72, 2001.
[68] A. Gebert, K. Mummert, J. Eckert, and A. Inoue, “Electrochemical investigation on the bulk glass forming Zr55Cu30Al10Ni5 alloy”, Materials and Corrosion, vol. 48, no. 5, pp. 293-297, 1997.
[69] N. Hua, L. Huang, J. Wang, Y. Cao, W. He, S. Pang, and T. Zhang, “Corrosion behavior and in vitro biocompatibility of Zr-Al-Co-Ag bulk metallic glasses: An experimental case study,” Journal of Non-Crystalline Solids, vol. 358, no. 12–13, pp. 1599–1604, 2012.
[70] B. Guan, X. Shi, Z. Dan, G. Xie, M. Niinomi, and F. Qin, “Corrosion behavior, mechanical properties and cell cytotoxity of Zr-based bulk metallic glasses,” Intermetallics, vol. 72, pp. 69–75, 2016.
[71] S.J. Pang, T. Zhang, K. Asami, and A. Inoue, “Formation, corrosion behavior, and mechanical properties of bulk glassy Zr-Al-Co-Nb alloys,” Journal of Materials Research, vol. 8, no. 7, pp. 1652-1658, 2003.
[72] K. Mondal, B.S. Murty, and U.K. Chatterjee, “Electrochemical behaviour of amorphous and nanoquasicrystalline Zr-Pd and Zr-Pt alloys in different environments” Corrosion Science, vol. 47, pp. 2619-2635, 2005.
[73] R. Wang, Y. Wang, J. Yang, J. Sun, and L. Xiong, “Influence of heat treatment on the mechanical properties, corrosion behavior, and biocompatibility of Zr56Al16Co28 bulk metallic glass,” Journal of Non-Crystalline Solids, vol. 411, pp. 45–52, 2015.
[74] C. H. Huang, J. C. Huang, J. B. Li, and J. S. C. Jang, “Simulated body fluid electrochemical response of Zr-based metallic glasses with different degrees of crystallization,” Materials Science and Engineering C, vol. 33, no. 7, pp. 4183–4187, 2013.
[75] W. H. Peter, R. Buchanan, C. Liu, P. Liaw, M. Morrison, J. Horton, C. Carmichael, and J. Wright, “Localized corrosion behavior of a zirconium-based bulk metallic glass relative to its crystalline state,” Intermetallics, vol. 10, no. 11–12, pp. 1157–1162, 2002.
[76] R. Pierre, “Handbook of Corrosion Engineering," McGraw-Hill Companies, Inc., New York, (1999).
[77] P. H. Tsai, I. S. Huang, T. H. Li, J. S. C. Jang, J. C. Huang, and K. C. Hsieh, “Crystallization behavior and thermal stability of two-glassy phase Zr-based bulk metallic glasses,” Advanced Materials Research, vol. 89–91, pp. 562–567, 2010.
[78] J. S. C. Jang, Y. W. Chen, L. J. Chang, and G. J. Chen, “Crystallization behavior of the Zr61Al7.5Cu17.5Ni10Si4 amorphous alloy,” Materials Chemistry and Physics, vol. 88, no. 1, pp. 227–233, 2004.
[79] J. S. C. Jang, T. H. Hung, and L. J. Chang, “The effect of boron on the thermal properties of the zirconium-based bulk amorphous alloys,” Materials Science and Engineering A, vol. 375–377, no. 1–2 SPEC. ISS., pp. 307–311, 2004.
[80] T. Z. T. Wada A. Inoue, “Formation, thermal stability and mechanical properties in Zr-Al-Co bulk glassy alloys.,” Materials Transactions, vol. 43, no. 11, pp. 4, 2002.
[81] W. H. Jiang, F. X. Liu, H. Choo, and P. K. Liaw, “Effect of structural relaxation on mechanical behavior of a Zr-based bulk-metallic glass,” Materials Transactions, vol. 48, no. 7, pp. 1781–1784, 2007.
[82] A. Concustell, G. Alcala, S. Mato, T. G. Woodcock, A. Gebert, J. Eckert, and M. D. Baro, “Effect of relaxation and primary nanocrystallization on the mechanical properties of Cu60Zr22Ti18 bulk metallic glass,” Intermetallics, vol. 13, no. 11, pp. 1214–1219, 2005.
[83] W. H. Liang, “The effect of tanthalum additions on mechanical properties of Zr-Co-Al amorphous alloy,” M. S. Thesis, Institute of Material Science and Engineering, National Central University, Chungli, Taiwan, 2016. |