博碩士論文 103323025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.145.191.22
姓名 呂泓毅(Hung-I Lu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
(Bending Behavior of OLED Barrier and Indium Tin Oxide Thin Films)
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ MOCVD玻璃承載盤溫度場分析
★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究
★ AISI 347不銹鋼腐蝕疲勞行為★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響
★ AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為★ 電子構裝用無鉛銲錫之低週疲勞行為研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 可撓式有機發光二極體(OLED)元件應用時可能會長期承受固定撓曲變形,本研究目的即在探討可撓式OLED封裝薄膜和銦錫氧化物(ITO)導電薄膜在長期受固定應力或應變作用後可能出現的損傷。本研究所採用的材料為一款商用封裝薄膜、一款商用ITO/PEN導電薄膜與一款商用ITO/PET導電薄膜,對於各薄膜材料施予不同曲率半徑之張力或壓力固定撓曲變形量,分別評估固定撓曲變形對於封裝薄膜阻水氣能力的影響以及ITO導電薄膜在固定撓曲變形後的導電性能劣化程度,並比較不同塑膠基板對於ITO撓曲變形影響的差異。
實驗結果顯示,封裝薄膜試片在曲率半徑5 mm以上的壓力彎曲作用1,000小時後,阻水氣滲透能力在40 °C、90% RH恆溫恆濕環境中未明顯改變,而且未發現任何損傷產生於封裝薄膜試片上。封裝薄膜試片於曲率半徑10 mm和5 mm的張力彎曲作用下,在小於100小時的固定撓曲後,試片同樣保持完好,然而在1,000小時後,試片可能產生裂紋導致水氣滲透率上升。而在ITO導電薄膜方面,壓力彎曲對於ITO/PEN導電薄膜和ITO/PET導電薄膜在給定的曲率半徑固定撓曲作用下的影響皆不明顯,然而ITO/PEN導電薄膜在曲率半徑10 mm的張力彎曲作用下以及ITO/PET導電薄膜在曲率半徑5 mm的張力彎曲作用下,ITO表面產生明顯裂紋導致電阻上升。彎曲應力對於ITO/PEN導電薄膜的影響明顯大於對於ITO/PET導電薄膜的影響,主要可歸因於PEN基板與PET基板的硬度及厚度的不同,具有較低硬度和較小厚度的PET基板能夠使ITO薄膜有較好的能力承受固定撓曲變形的作用,產生較小程度的導電性能劣化。
摘要(英) Flexible organic light emitting diode (OLED) devices may be used under long-term static bending in certain applications. The objective of this study is thus to investigate the effect of long-term static bending on the functional properties of barrier thin film and indium tin oxide (ITO) thin film in flexible OLED. In this study, a commercial barrier film, a commercial ITO/PEN sheet, and a commercial ITO/PET sheet are used. Encapsulation properties of the barrier film and electrical properties of the ITO/PEN and ITO/PET sheets are independently evaluated by conducting static bending tests at various radii of curvature. Moreover, characteristics of ITO thin film fabricated on PEN and PET substrates are also compared to assess the effect of substrate material.
For static bending of the barrier film, experimental results reveal that no significantly detrimental effect to the water vapor transmission rate (WVTR) at 40 °C and 90% RH is found for compressive bending up to 1,000 h and for tensile bending up to 100 h with a radius of curvature of 5 mm or above. However, WVTR of the barrier film is significantly increased and cracks are found in the barrier film when subject to tensile bending of a radius of 10 mm and 5 mm for 1,000 h. For mechanical testing of the ITO thin films under static bending, results indicate that no significant change in electrical resistance of the ITO/PEN and ITO/PET sheets is found for compressive bending after 1,000 h with a curvature radius of 10 mm or above. However, the ITO/PEN and ITO/PET sheets are seriously damaged under a tensile bending of 10-mm radius and 5-mm radius, respectively. The given ITO/PET sheet exhibits a greater resistance to long-term mechanical bending than ITO/PEN sheet in terms of change in electrical conductance, which is attributed to the effect of stiffness and thickness of substrate. As PET substrate has a lower stiffness and thickness than the PEN substrate, ITO thin film in the ITO/PET sheet has a smaller stress given a bending radius. Consequently, a smaller extent of change in the electrical conductance of ITO thin film is found in the ITO/PET sheet, compared to the ITO/PEN sheet.
關鍵字(中) ★ 阻水阻氣薄膜
★ 銦錫氧化物
★ 可撓式基板
★ 固定撓曲
★ 水氣滲透
關鍵字(英) ★ Barrier film
★ Indium tin oxide
★ Flexible substrate
★ Long-term static bending
★ WVTR
論文目次 LIST OF TABLES VII
LIST OF FIGURES VIII
1. INTRODUCTION 1
1.1 Flexible Electronics 1
1.2 Thin Film Encapsulation 3
1.3 Indium Tin Oxide Thin Film 7
1.4 Bending Characteristics of Thin Film 8
1.5 Purpose 10
2. MATERIALS AND EXPERIMENTAL PROCEDURES 12
2.1 Materials and Specimen Preparation 12
2.2 Static Bending Test 13
2.2.1 Barrier thin film 13
2.2.2 ITO thin film 13
2.3 WVTR Test 14
2.4 Microstructural Analysis 16
3. RESULTS AND DISCUSSION 17
3.1 Bending Effect on Barrier Thin Film 17
3.1.1 Encapsulation properties 17
3.1.2 Failure analysis 21
3.2 Bending Effect on ITO Thin Film 23
3.2.1 Electrical properties 23
3.2.2 Failure analysis 26
4. CONCLUSIONS 31
REFERENCES 33
TABLES 42
FIGURES 44
參考文獻 1. M. T. Greiner and Z.-H. Lu, “Thin-Film Metal Oxides in Organic Semiconductor Devices: Their Electronic Structures, Work Functions and Interfaces,” NPG Asia Mater, Vol. 5, pp. e55-1-16, 2013.
2. S.-I. Yoo, J.-A. Yoon, N.-H. Kim, J.-W. Kim, J.-S. Kang, C.-B. Moon, and W.-Y. Kim, “Improvement of Efficiency Roll-Off in Blue Phosphorescence OLED Using Double Dopants Emissive Layer,” Journal of Luminescence, Vol. 160, pp. 346-350, 2015.
3. H.-S. Kim, S.-I. Moon, D.-E. Hwang, K.-W. Jeong, C.-K. Kim, D.-G. Moon, and C. Hong, “Novel Fabrication Method of Microlens Arrays with High OLED Outcoupling Efficiency,” Optics & Laser Technology, Vol. 77, pp. 104-110, 2016.
4. J. Zhou, N. Ai, L. Wang, H. Zheng, C. Luo, Z. Jiang, S. Yu, Y. Cao, and J. Wang, “Roughening the White OLED Substrate’s Surface through Sandblasting to Improve the External Quantum Efficiency,” Organic Electronics, Vol. 12, pp. 648-653, 2011.
5. Q. Sun, D. Li, G. Dong, X. Jin, L. Duan, L. Wang, and Y. Qiu, “Improved Organic Optocouplers Based on a Deep Blue Fluorescent OLED and an Optimized Bilayer Heterojunction Photosensor,” Sensors and Actuators B: Chemical, Vol. 188, pp. 879-885, 2013.
6. J.-H. Lee, M.-H. Wu, C.-C. Chao, H.-L. Chen, and M.-K. Leung, “High Efficiency and Long Lifetime OLED Based on a Metal-Doped Electron Transport Layer,” Chemical Physics Letters, Vol. 416, pp. 234-237, 2005.
7. J.-S. Kang, J.-A. Yoon, S.-I. Yoo, J.-W. Kim, S. Yi, F. Zhu, K.-W. Cheah, and W.-Y. Kim, “Luminous Efficiency Enhancement in Blue Phosphorescent Organic Light-Emitting Diodes with an Electron Confinement Layers,” Optical Materials, Vol. 47, pp. 78-82, 2015.
8. M.-C. Oh, J.-H. Park, H.-J. Jeon, and J.-S. Go, “Hollow-Core Polymeric Nanoparticles for the Enhancement of OLED Outcoupling Efficiency,” Displays, Vol. 37, pp. 72-78, 2015.
9. Q. Yang, Y. Hao, Z. Wang, Y. Li, H. Wang, and B. Xu, “Double-Emission-Layer Green Phosphorescent OLED Based on LiF-Doped TPBi as Electron Transport Layer for Improving Efficiency and Operational Lifetime,” Synthetic Metals, Vol. 162, pp. 398-401, 2012.
10. A Full-Color, Low-Power, Wearable Display for Mobile Applications, SPIE, http://spie.org/newsroom/technical-articles-archive/4167-a-full--color-low--power-wearable-display-for-mobile-applications, accessed on January 11, 2016.
11. S. Kappaun, C. Slugovc, and E. List, “Phosphorescent Organic Light-Emitting Devices: Working Principle and Iridium Based Emitter Materials,” International Journal of Molecular Sciences, Vol. 9, pp. 1527-1547, 2008.
12. NREL’s e-Ca Test, NREL, http://www.nrel.gov/docs/fy13osti/56665.pdf, accessed on January 11, 2016.
13. T. Riedl, T. Winkler, H. Schmidt, J. Meyer, D. Schneidenbach, H. H. Johannes, W. Kowalsky, T. Weimann, and P. Hinze, “Reliability Aspects of Organic Light Emitting Diodes,” in Reliability Physics Symposium (IRPS), 2010 IEEE International, California, USA, pp. 327-333, May 2-6, 2010.
14. Thinness, Strength, and Bend-Ability Render Visions of Wrap-Around Displays, Corning, https://www.corning.com/worldwide/en/products/display-glass/products/corning-willow-glass.html, accessed on January 11, 2016.
15. C.-Y. Lim, J.-K. Park, Y.-H. Kim, and J.-I. Han, “Mechanical and Electrical Stability Indium-Tin-Oxide Coated Polymer Substrates under Continuous Bending Stress Condition,” Journal of International Council on Electrical Engineering, Vol. 2, pp. 237-241, 2012.
16. Peccell Product Information, Peccell Technologies, Inc., http://www.hs-kr.com/pds/peccell_products_en.pdf, accessed on April 28, 2016.
17. C. C. Ibeh, Thermoplastic Materials: Properties, Manufacturing Methods, and Applications, CRC Press, Cleveland, USA, 2011.
18. A. Turak, “Interfacial Degradation in Organic Optoelectronics,” RSC Advances, Vol. 3, pp. 6188-6225, 2013.
19. J.-S. Park, H. Chae, H.-K. Chung, and S.-I. Lee, “Thin Film Encapsulation for Flexible AM-OLED: A Review,” Semiconductor Science and Technology, Vol. 26, pp. 034001-1-8, 2011.
20. Barix Multilayers: a Water and Oxygen Barrier for Flexible Organic Electronics, Vitex Systems, http://mitstanfordberkeleynano.org/events_past/0504%20-%20Organic%20Electronics/5%20-%20Nanoforum050422a.pdf, accessed on March 4, 2016.
21. W. S. Wong and A. Salleo, Flexible Electronics: Materials and Applications, Springer Publishing Company, Incorporated, New York, USA, 2009.
22. A. S. da Silva Sobrinho, M. Latrèche, G. Czeremuszkin, J. E. Klemberg-Sapieha, and M. R. Wertheimer, “Transparent Barrier Coatings on Polyethylene Terephthalate by Single- and Dual-Frequency Plasma-Enhanced Chemical Vapor Deposition,” Journal of Vacuum Science & Technology A, Vol. 16, pp. 3190-3198, 1998.
23. Y.-C. Han, E. Kim, W. Kim, H.-G. Im, B.-S. Bae, and K.-C. Choi, “A Flexible Moisture Barrier Comprised of a SiO2-Embedded Organic–Inorganic Hybrid Nanocomposite and Al2O3 for Thin-Film Encapsulation of OLEDs,” Organic Electronics, Vol. 14, pp. 1435-1440, 2013.
24. P. F. Carcia, R. S. McLean, M. H. Reilly, M. D. Groner, and S. M. George, “Ca Test of Al2O3 Gas Diffusion Barriers Grown by Atomic Layer Deposition on Polymers,” Applied Physics Letters, Vol. 89, pp. 031915-1-3, 2006.
25. S. Majee, M. F. Cerqueira, D. Tondelier, J. C. Vanel, B. Geffroy, Y. Bonnassieux, P. Alpuim, and J. E. Bourée, “Permeation Barrier Performance of Hot Wire-CVD Grown Silicon-Nitride Films Treated by Argon Plasma,” Thin Solid Films, Vol. 575, pp. 72-75, 2015.
26. S. Lee, H. Choi, S. Shin, J. Park, G. Ham, H. Jung, and H. Jeon, “Permeation Barrier Properties of an Al2O3/ZrO2 Multilayer Deposited by Remote Plasma Atomic Layer Deposition,” Current Applied Physics, Vol. 14, pp. 552-557, 2014.
27. Z. Jia, M. B. Tucker, and T. Li, “Failure Mechanics of Organic–Inorganic Multilayer Permeation Barriers in Flexible Electronics,” Composites Science and Technology, Vol. 71, pp. 365-372, 2011.
28. N. Kim, W. J. Potscavage Jr, A. Sundaramoothi, C. Henderson, B. Kippelen, and S. Graham, “A Correlation Study between Barrier Film Performance and Shelf Lifetime of Encapsulated Organic Solar Cells,” Solar Energy Materials and Solar Cells, Vol. 101, pp. 140-146, 2012.
29. R. Dunkel, R. Bujas, A. Klein, and V. Horndt, “Method of Measuring Ultralow Water Vapor Permeation for OLED Displays,” Proceedings of the IEEE, Vol. 93, pp. 1478-1482, 2005.
30. J.-H. Choi, Y.-M. Kim, Y.-W. Park, J.-W. Huh, B.-K. Ju, I.-S. Kim, and H.-N. Hwang, “Evaluation of Gas Permeation Barrier Properties Using Electrical Measurements of Calcium Degradation,” Review of Scientific Instruments, Vol. 78, pp. 064701-1-5, 2007.
31. S. Schubert, H. Klumbies, L. Müller-Meskamp, and K. Leo, “Electrical Calcium Test for Moisture Barrier Evaluation for Organic Devices,” Review of Scientific Instruments, Vol. 82, pp. 094101-1-8, 2011.
32. R. Paetzold, A. Winnacker, D. Henseler, V. Cesari, and K. Heuser, “Permeation Rate Measurements by Electrical Analysis of Calcium Corrosion,” Review of Scientific Instruments, Vol. 74, pp. 5147-5150, 2003.
33. Indium Tin Oxide (ITO) (In2O3):(SnO2), Indium Corporation, http://www.indium.com/inorganic-compounds/indium-compounds/indium-tin-oxide/#products, accessed on March 4, 2016.
34. H. L. Hartnagel, A. L. Dawar, A. K. Jain, and C. Jagadish, Semiconducting Transparent Thin Films, Institute of Physical Publishing, Bristol, England, 1995.
35. M. J. Alam and D. C. Cameron, “Optical and Electrical Properties of Transparent Conductive ITO Thin Films Deposited by Sol–Gel Process,” Thin Solid Films, Vol. 377-378, pp. 455-459, 2000.
36. S. Yu, W. Yang, L. Li, and W. Zhang, “Improved Chemical Stability of ITO Transparent Anodes with a SnO2 Buffer Layer for Organic Solar Cells,” Solar Energy Materials and Solar Cells, Vol. 144, pp. 652-656, 2016.
37. Y. Gil and H. Kim, “Hybrid ITO Transparent Conductive Electrodes Embedded with Pt Nanoclusters for Enhanced Output Efficiency of Gan-Based Light-Emitting Diodes,” Thin Solid Films, Vol. 603, pp. 307-312, 2016.
38. N.-N. Tan, D.-T. Hung, V.-T. Anh, B.-C. Kang, and H.-C. Kim, “Improved Patterning of ITO Coated with Gold Masking Layer on Glass Substrate Using Nanosecond Fiber Laser and Etching,” Applied Surface Science, Vol. 336, pp. 163-169, 2015.
39. S.-H. Park, S.-J. Lee, J.-H. Lee, J. Kal, J. Hahn, and H.-K. Kim, “Large Area Roll-to-Roll Sputtering of Transparent ITO/Ag/ITO Cathodes for Flexible Inverted Organic Solar Cell Modules,” Organic Electronics, Vol. 30, pp. 112-121, 2016.
40. J. M. Burst, W. L. Rance, D. M. Meysing, C. A. Wolden, W. K. Metzger, S. M. Garner, P. Cimo, T. M. Barnes, T. A. Gessert, and M. O. Reese, “Performance of Transparent Conductors on Flexible Glass and Plastic Substrates for Thin Film Photovoltaics,” in Proceedings of the 40th IEEE Photovoltaic Specialists Conference, Denver, USA, pp. 1589-1592, June 8-13, 2014
41. A. Kirubanandham and S. Basu, “On Characterization of Mechanical Deformation in Flexible Electronic Structures,” Agilent Technologies, Inc., Santa Clara, USA, 2012.
42. K. Lim, S. Jung, J.-K. Kim, J.-W. Kang, J.-H. Kim, S.-H. Choa, and D.-G. Kim, “Flexible PEDOT: PSS/ITO Hybrid Transparent Conducting Electrode for Organic Photovoltaics,” Solar Energy Materials and Solar Cells, Vol. 115, pp. 71-78, 2013.
43. K. Leppänen, B. Augustine, J. Saarela, R. Myllylä, and T. Fabritius, “Breaking Mechanism of Indium Tin Oxide and Its Effect on Organic Photovoltaic Cells,” Solar Energy Materials and Solar Cells, Vol. 117, pp. 512-518, 2013.
44. Y. Leterrier, L. Médico, F. Demarco, J. A. E. Månson, U. Betz, M. F. Escolà, M. Kharrazi Olsson, and F. Atamny, “Mechanical Integrity of Transparent Conductive Oxide Films for Flexible Polymer-Based Displays,” Thin Solid Films, Vol. 460, pp. 156-166, 2004.
45. Y.-C. Lin, W.-Q. Shi, and Z.-Z. Chen, “Effect of Deflection on the Mechanical and Optoelectronic Properties of Indium Tin Oxide Films Deposited on Polyethylene Terephthalate Substrates by Pulse Magnetron Sputtering,” Thin Solid Films, Vol. 517, pp. 1701-1705, 2009.
46. C.-C. Lee, “Modeling and Validation of Mechanical Stress in Indium Tin Oxide Layer Integrated in Highly Flexible Stacked Thin Films,” Thin Solid Films, Vol. 544, pp. 443-447, 2013.
47. H. Machinaga, E. Ueda, A. Mizuike, Y. Takeda, K. Shimokita, and T. Miyazaki, “Effects of Annealing Temperature on Mechanical Durability of Indium-Tin Oxide Film on Polyethylene Terephthalate Substrate,” Thin Solid Films, Vol. 559, pp. 36-39, 2014.
48. B. Sim, E.-H. Kim, J. Park, and M. Lee, “Highly Enhanced Mechanical Stability of Indium Tin Oxide Film with a Thin Al Buffer Layer Deposited on Plastic Substrate,” Surface and Coatings Technology, Vol. 204, pp. 309-312, 2009.
49. S. Choi, Y. Zhou, W. Haske, J.-W. Shim, C. Fuentes-Hernandez, and B. Kippelen, “ITO-Free Large-Area Flexible Organic Solar Cells with an Embedded Metal Grid,” Organic Electronics, Vol. 17, pp. 349-354, 2015.
50. S.-S. Kim, S.-Y. Choi, C.-G. Park, and H.-W. Jin, “Transparent Conductive ITO Thin Films through the Sol-Gel Process Using Metal Salts,” Thin Solid Films, Vol. 347, pp. 155-160, 1999.
51. I. A. Rauf, “Low Resistivity and High Mobility Tin-Doped Indium Oxide Films,” Materials Letters, Vol. 18, pp. 123-127, 1993.
52. M. Sibiński, K. Znajdek, S. Walczak, M. Słoma, M. Górski, and A. Cenian, “Comparison of ZnO:Al, ITO and Carbon Nanotube Transparent Conductive Layers in Flexible Solar Cells Applications,” Materials Science and Engineering: B, Vol. 177, pp. 1292-1298, 2012.
53. E.-H. Kim, C.-W. Yang, and J.-W. Park, “Improving the Delamination Resistance of Indium Tin Oxide (ITO) Coatings on Polymeric Substrates by O2 Plasma Surface Treatment,” Current Applied Physics, Vol. 10, pp. S510-S514, 2010.
54. T. C. Hauger, A. Zeberoff, B. J. Worfolk, A. L. Elias, and K. D. Harris, “Real-Time Resistance, Transmission and Figure-of-Merit Analysis for Transparent Conductors under Stretching-Mode Strain,” Solar Energy Materials and Solar Cells, Vol. 124, pp. 247-255, 2014.
55. M. N. Saleh and G. Lubineau, “Understanding the Mechanisms That Change the Conductivity of Damaged ITO-Coated Polymeric Films: A Micro-Mechanical Investigation,” Solar Energy Materials and Solar Cells, Vol. 130, pp. 199-207, 2014.
56. Z. Yu, Y.-Q. Li, F. Xia, and W. Xue, “The Characteristics of Indium Tin Oxide Films Prepared on Various Buffer Layer-Coated Polymer Substrates,” Surface and Coatings Technology, Vol. 204, pp. 131-134, 2009.
57. C. Peng, Z. Jia, H. Neilson, T. Li, and J. Lou, “In Situ Electro‐Mechanical Experiments and Mechanics Modeling of Fracture in Indium Tin Oxide‐Based Multilayer Electrodes,” Advanced Engineering Materials, Vol. 15, pp. 250-256, 2013.
58. O. van der Sluis, A. A. Abdallah, P. C. P. Bouten, P. H. M. Timmermans, J. M. J. den Toonder, and G. de With, “Effect of a Hard Coat Layer on Buckle Delamination of Thin ITO Layers on a Compliant Elasto-Plastic Substrate: An Experimental–Numerical Approach,” Engineering Fracture Mechanics, Vol. 78, pp. 877-889, 2011.
59. D. G. Neerinck and T. J. Vink, “Depth Profiling of Thin ITO Films by Grazing Incidence X-Ray Diffraction,” Thin Solid Films, Vol. 278, pp. 12-17, 1996.
60. R.-C. Chang, F.-T. Tsai, and C.-H. Tu, “A Direct Method to Measure the Fracture Toughness of Indium Tin Oxide Thin Films on Flexible Polymer Substrates,” Thin Solid Films, Vol. 540, pp. 118-124, 2013.
61. C.-W. Yang and J.-W. Park, “The Cohesive Crack and Buckle Delamination Resistances of Indium Tin Oxide (ITO) Films on Polymeric Substrates with Ductile Metal Interlayers,” Surface and Coatings Technology, Vol. 204, pp. 2761-2766, 2010.
62. S. Jung, K. Lim, J.-W. Kang, J.-K. Kim, S.-I. Oh, K. Eun, D.-G. Kim, and S.-H. Choa, “Electromechanical Properties of Indium–Tin–Oxide/Poly(3,4-Ethylenedioxythiophene): Poly(Styrenesulfonate) Hybrid Electrodes for Flexible Transparent Electrodes,” Thin Solid Films, Vol. 550, pp. 435-443, 2014.
63. J.-H. Kim and J.-W. Park, “Improving the Flexibility of Large-Area Transparent Conductive Oxide Electrodes on Polymer Substrates for Flexible Organic Light Emitting Diodes by Introducing Surface Roughness,” Organic Electronics, Vol. 14, pp. 3444-3452, 2013.
64. Y.-S. Kim, W.-J. Hwang, K.-T. Eun, and S.-H. Choa, “Mechanical Reliability of Transparent Conducting IZTO Film Electrodes for Flexible Panel Displays,” Applied Surface Science, Vol. 257, pp. 8134-8138, 2011.
65. Z. Yu, Y. Li, F. Xia, Z. Zhao, and W. Xue, “Properties of Indium Tin Oxide Films Deposited on Unheated Polymer Substrates by Ion Beam Assisted Deposition,” Thin Solid Films, Vol. 517, pp. 5395-5398, 2009.
66. M. M. Hamasha, K. Alzoubi, S. Lu, and S. B. Desu, “Durability Study on Sputtered Indium Tin Oxide Thin Film on Poly Ethylene Terephthalate Substrate,” Thin Solid Films, Vol. 519, pp. 6033-6038, 2011.
67. S.-F. Tseng, W.-T. Hsiao, K.-C. Huang, D. Chiang, M.-F. Chen, and C.-P. Chou, “Laser Scribing of Indium Tin Oxide (ITO) Thin Films Deposited on Various Substrates for Touch Panels,” Applied Surface Science, Vol. 257, pp. 1487-1494, 2010.
68. J.-M. Park, G.-Y. Gu, Z.-J. Wang, D.-J. Kwon, and K. L. Devries, “Interfacial Durability and Electrical Properties of CNT or ITO/PVDF Nanocomposites for Self-Sensor and Micro Actuator Applications,” Applied Surface Science, Vol. 287, pp. 75-83, 2013.
69. J.-M. Park, Z.-J. Wang, D.-J. Kwon, G.-Y. Gu, and K. L. Devries, “Electrical Properties of Transparent CNT and ITO Coatings on PET Substrate Including Nano-Structural Aspects,” Solid-State Electronics, Vol. 79, pp. 147-151, 2013.
70. T.-C. Li, C.-F. Han, K.-T. Chen, and J.-F. Lin, “Fatigue Life Study of ITO/PET Specimens in Terms of Electrical Resistance and Stress/Strain Via Cyclic Bending Tests,” Journal of Display Technology, Vol. 9, pp. 577-585, 2013.
71. T.-C. Li and J.-F. Lin, “Fatigue Life Study of ITO/PET Specimens in Cyclic Bending Tests,” Journal of Materials Science: Materials in Electronics, Vol. 26, pp. 250-261, 2014.
72. A. Abdallah, P. Bouten, J. D. Toonder, and G. d. With, “Buckle Initiation and Delamination of Patterned ITO Layers on a Polymer Substrate,” Surface and Coatings Technology, Vol. 205, pp. 3103 - 3111, 2011.
73. M. Boehme and C. Charton, “Properties of ITO on PET Film in Dependence on the Coating Conditions and Thermal Processing,” Surface and Coatings Technology, Vol. 200, pp. 932-935, 2005.
74. M. Can, A. K. Havare, H. Aydın, N. Yagmurcukardes, S. Demic, S. Icli, and S. Okur, “Electrical Properties of Sam-Modified ITO Surface Using Aromatic Small Molecules with Double Bond Carboxylic Acid Groups for OLED Applications,” Applied Surface Science, Vol. 314, pp. 1082-1086, 2014.
75. X. Ding, J. Yan, T. Li, and L. Zhang, “Transparent Conductive ITO/Cu/ITO Films Prepared on Flexible Substrates at Room Temperature,” Applied Surface Science, Vol. 258, pp. 3082-3085, 2012.
76. D. Han, S. Lee, H. Kim, S. Jeong, and S. Yoo, “Cathodic Multilayer Transparent Electrodes for ITO-Free Inverted Organic Solar Cells,” Organic Electronics, Vol. 14, pp. 1477-1482, 2013.
77. D.-H. Kim, M.-R. Park, H.-J. Lee, and G.-H. Lee, “Thickness Dependence of Electrical Properties of ITO Film Deposited on a Plastic Substrate by RF Magnetron Sputtering,” Applied Surface Science, Vol. 253, pp. 409-411, 2006.
78. E.-H. Kim, G. Kim, G.-H. Lee, and J.-W. Park, “Nucleation and Growth of Crystalline Indium Tin Oxide (ITO) Coatings on Polyethylene Terephthalate (PET),” Surface and Coatings Technology, Vol. 205, pp. 1-8, 2010.
79. T. Minami, “Present Status of Transparent Conducting Oxide Thin-Film Development for Indium-Tin-Oxide (ITO) Substitutes,” Thin Solid Films, Vol. 516, pp. 5822-5828, 2008.
80. J. Lewis, “Material Challenge for Flexible Organic Devices,” Materials Today, Vol. 9, pp. 38-45, 2006.
81. S.-W. Seo, E. Jung, S.-J. Seo, H. Chae, H.-K. Chung, and S.-M. Cho, “Toward Fully Flexible Multilayer Moisture-Barriers for Organic Light-Emitting Diodes,” Journal of Applied Physics, Vol. 114, pp. 143505-1-7, 2013.
82. S.-W. Seo, E. Jung, H. Chae, S.-J. Seo, H.-K. Chung, and S.-M. Cho, “Bending Properties of Organic–Inorganic Multilayer Moisture Barriers,” Thin Solid Films, Vol. 550, pp. 742-746, 2014.
83. N. Kim and S. Graham, “Development of Highly Flexible and Ultra-Low Permeation Rate Thin-Film Barrier Structure for Organic Electronics,” Thin Solid Films, Vol. 547, pp. 57-62, 2013.
84. E. Kim, Y. Han, W. Kim, K.-C. Choi, H.-G. Im, and B.-S. Bae, “Thin Film Encapsulation for Organic Light Emitting Diodes Using a Multi-Barrier Composed of MgO Prepared by Atomic Layer Deposition and Hybrid Materials,” Organic Electronics, Vol. 14, pp. 1737-1743, 2013.
85. A.-R. Cho, E.-H. Kim, S.-Y. Park, and L.-S. Park, “Flexible OLED Encapsulated with Gas Barrier Film and Adhesive Gasket,” Synthetic Metals, Vol. 193, pp. 77-80, 2014.
86. S. Majee, B. Geffroy, Y. Bonnassieux, and J.-E. Bourée, “Interface Effects on the Moisture Barrier Properties of SiNx/PMMA/SiNx Hybrid Structure,” Surface and Coatings Technology, Vol. 254, pp. 429-432, 2014.
87. N. Kim, “Fabrication and Characterization of Thin-Film Encapsulation for Organic Electronics,” Ph.D. Thesis, Georgia Institute of Technology, Atlanta, USA, 2009.
88. LINTEC Product Information, LINTEC Corporation, Tokyo, Japan, 2016.
89. K. Nishijima, S. Naganawa, S. Naganawa, and E. Fuchi, “Adhesive Agent Composition, Adhesive Sheet, and Electronic Device and Production Method Therefor,” U.S. Patent, No. 20,150,299,519, October 22, 2015.
90. Product Specification of WT155hh, Win-Optical Technology Co., Ltd., http://www.win-optical.com.tw/pdf/wt155hh.pdf, accessed on April 25, 2016.
91. S. P. Subbarao, M. E. Bahlke, and I. Kymissis, “Laboratory Thin-Film Encapsulation of Air-Sensitive Organic Semiconductor Devices,” IEEE Transactions on Electron Devices, Vol. 57, pp. 153-156, 2010.
92. S.-W. Seo, E. Jung, H. Chae, and S.-M. Cho, “Optimization of Al2O3/ZrO2 Nanolaminate Structure for Thin-Film Encapsulation of OLEDs,” Organic Electronics, Vol. 13, pp. 2436-2441, 2012.
93. M. Kempe, A. Dameron, and M. Reese, Calcium Based Test Method for Evaluation of Photovoltaic Edge-Seal Materials, NREL, www.nrel.gov/docs/fy11osti/50839.pdf, accessed on August 2, 2016.
94. G. L. Graff, R. E. Williford, and P. E. Burrows, “Mechanisms of Vapor Permeation through Multilayer Barrier Films: Lag Time Versus Equilibrium Permeation,” Journal of Applied Physics, Vol. 96, pp. 1840-1849, 2004.
95. J. Busfield, A. Thomas, and K. Yamaguchi, “Electrical and Mechanical Behavior of Filled Rubber. III. Dynamic Loading and the Rate of Recovery,” Journal of Polymer Science Part B: Polymer Physics, Vol. 43, pp. 1649-1661, 2005.
96. K. Yamaguchi, J. Busfield, and A. Thomas, “Electrical and Mechanical Behavior of Filled Elastomers. I. The Effect of Strain,” Journal of Polymer Science Part B: Polymer Physics, Vol. 41, pp. 2079-2089, 2003.
97. H. Shimamura and T. Nakamura, “Mechanical Properties Degradation of Polyimide Films Irradiated by Atomic Oxygen,” Polymer Degradation and Stability, Vol. 94, pp. 1389-1396, 2009.
98. G. Crawford, Flexible Flat Panel Displays, Wiley, New York, USA, 2005.
指導教授 林志光(Chih-Kuang Lin) 審核日期 2016-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明