博碩士論文 103323087 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:3.145.9.200
姓名 黃識軒(Shih-Hsuan Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 核殼式陽極結構與電解液添加劑對鋅漿料空氣電池之電化學特性影響研究
(Effects of core-shell anode structure and additives in electrolyte on the electrochemical performance of zinc slurry air battery)
相關論文
★ 銅導線上鍍鎳或錫對遷移性之影響及鍍金之鎳/銅銲墊與Sn-3.5Ag BGA銲料迴銲之金脆研究★ 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析
★ 光電化學蝕刻n-型(100)單晶矽獲得矩陣排列之巨孔洞研究★ 銅箔基板在H2O2/H2SO4溶液中之微蝕行為
★ 助銲劑對迴銲後Sn-3Ag-0.5Cu電化學遷移之影響★ 塗佈奈米銀p型矽(100)在NH4F/H2O2 水溶液中之電化學蝕刻行為
★ 高效能Ni80Fe15Mo5電磁式微致動器之設計與製作★ 銅導線上鍍金或鎳/金對遷移性之影響及鍍金層對Sn-0.7Cu與In-48Sn BGA銲料迴銲後之接點強度影響
★ 含氮、硫雜環有機物對鍋爐鹼洗之腐蝕抑制行為研究★ 銦、錫金屬、合金與其氧化物的陽極拋光行為探討
★ n-型(100)矽單晶巨孔洞之電化學研究★ 鋁在酸性溶液中孔蝕行為研究
★ 微陽極引導電鍍與監測★ 鍍金層對Bi-43Sn與Sn-9Zn BGA銲料迴銲後之接點強度影響及二元銲錫在不同溶液之電解質遷移行為
★ 人體血清白蛋白構形改變之電化學及表面電漿共振分析研究★ 光電化學蝕刻製作n-型(100)矽質微米巨孔 陣列及連續壁結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究主要著重於開發高電容量鋅漿料空氣電池的開發與測試,分為三大研究部分如下:第一部分為改善金屬電極,採用核殼式結構鋅電極,以電極實驗部分利用水熱法鍍錫晶種搭配無電鍍化學還原法成長鋅金屬於碳氈上製備本研究之電極,根據掃描式電子顯微鏡(Scanning electrcon microscope, SEM)觀察得知,水熱法鍍錫晶種於碳氈上改善原本碳氈鍍鋅上去會有不均勻的缺點並可充分的發揮碳氈高比表面積的特性。第二部分則於電解液中加入添加劑去改善鋅的自腐蝕情況及抑制枝晶(dendrite)之形成;本研究分別使用五種添加劑EDTA、Tween20、Tartaric acid、SnCl2、BiCl3並以塔佛分析(Tafel plot)、循環伏安法(Cyclic voltammetry plot, CV)及SEM分析觀測電化學特性及表面形貌。第三部分則綜合上述兩部分組成鋅漿料空氣電池全電池進行電池特性分析,由一次放電測試可得知,核殼式陽極結構可成功傳遞電子進行鋅的氧化還原反應,而由循環充放電結果可知,Tartaric acid、Tween20無法有效抑制dendrite之產生並降低其電池之庫倫效率,故選擇一適當之添加劑為未來發展空氣電池之一大挑戰。
摘要(英) Secondary zinc slurry air battery has more and more attention due to their high energy density, low cost and environmental friendliness in recent. The primary zinc air battery has been used in small devices such as hearing aids, and the secondary one may be considered as one of potential candidates for a grid-scale energy storage device in the future. In this study, we attempted to develop a high capacity of zinc slurry air battery by three ways. In the first part, we prepared core-shell structure zinc anode on the carbon firber via hydrothermal method (Sn-modified) and electroless plating deposition (Zn-coating). The effects of reducing agent, working temperature and pH value on microstructural, morphological and electrochemical characteristic have been investigated using scanning electron microscope (SEM). Result from SEM, the carbon fiber was coated by an uniform Zn film after Sn-modified. In the second part, we used five additives (i.e., EDTA, Tween20, Tartaric acid, SnCl2 and BiCl3) into the battery electrolyte in order to avoid self-discharge and dendrite formation during the battery test, respectively. Tafel plot and cyclic voltammetry plot have analyzed the performance of these additives. Finally, base on above results, the core-shell structure zinc anode and these suitable additives were chosen to applied in the house-made rechargeable zinc air battery module. Result from battery performance, the core-shell structure zinc anode can improve capacity of Zn-air battery due to its high surface area of three dimension structure. It consequently improves the overall voltage efficiency mainly due to the utilization of higher surface area of three dimension structure than that of traditional zinc plate anode. However, some additives like Tartaric acid and Tween20 can′t inhibited the dendrite formation and decrease the Coulomb efficiency of battery. In the future work, development of suitable additives is an important issue in air battery.
關鍵字(中) ★ 碳氈
★ 核殼式結構
★ 添加劑
★ 鋅空氣電池
關鍵字(英) ★ Carbon fiber
★ Core-shell structure
★ Additives
★ Zinc-air battery
論文目次 摘要 I
Abstract II
致謝 IV
目錄 V
表目錄 X
圖目錄 XI
第一章、序論 1
1-1 前言 1
1-2 研究動機 2
1-3 研究目的 4
第二章、文獻回顧 5
2-1 鋅空氣電池簡介 5
2-1-1 金屬-空氣燃料電池 5
2-2 鋅空器電池反應 6
2-2-1 鋅空氣電池全反應 6
2-2-2 鋅陽極氧化反應 7
2-2-3 空氣陽極還元反應 8
2-3 鋅-空氣電池之構造 9
2-3-1 空氣電極 10
2-3-2 鋅陽極 10
2-3-2-1 鋅陽極的特性 10
2-3-2-2 鋅陽極的形式 11
2-3-2-3 核殼式陽極結構鋅漿料電極 12
2-3-3 電解液及添加劑 14
第三章、實驗方法與步驟 17
3-1 實驗規劃 17
3-2 實驗材料與藥品 18
3-3 實驗儀器設備 19
3-3-1 實驗設備 19
3-3-2 分析儀器 19
3-4 實驗流程 20
3-5 核殼式陽極結構製備 20
3-6 添加劑 22
3-7 全電池組 23
3-8 材料分析 23
3-8-1 場發射掃描式電子顯微鏡 23
3-8-2 Tafel分析 23
3-8-3 CV循環伏安法 24
3-8-4 全電池充放電測試 25
第四章、實驗結果 26
4-1 核殼式陽極結構製備與分析 26
4-1-1 水熱法鍍錫晶種 27
4-1-1-1 水熱法調整氯化亞錫濃度 27
4-1-1-2 水熱法調整氯化銨濃度 27
4-1-2 無電鍍還原法鍍鋅 28
4-1-2-1 無電鍍還原法調整硫酸鋅濃度 28
4-1-2-2 無電鍍還原法調整次磷酸鈉濃度 28
4-1-2-3 無電鍍還原法調整鍍液pH值 29
4-1-2-4 無電鍍還原法調整鍍液溫度 29
4-2 電解液添加劑分析 30
4-2-1 Tafel分析 30
4-2-2 線性極化分析 32
4-2-3 CV循環伏安法分析 33
4-2-4 SEM表面形貌分析 33
4-3 鋅漿料空氣電池電化學性質量測 34
4-3-1 一次放電測試 34
4-3-2 全電池電化學性質分析 34
4-3-2-1 無添加劑 34
4-3-2-2 添加EDTA 35
4-3-2-3 添加Tween20 35
4-3-2-4 添加Tartaric acid 36
4-3-2-5 添加BiCl3 36
4-3-2-6 添加SnCl2 37
第五章、實驗討論 38
5-1 核殼式陽極結構製備與分析 38
5-1-1 水熱法鍍錫晶種 38
5-1-1-1 水熱法調整氯化亞錫濃度 38
5-1-1-2 水熱法調整氯化銨濃度 38
5-1-2 無電鍍還原法鍍鋅 39
5-1-2-1 無電鍍還原法調整硫酸鋅濃度 39
5-1-2-2 無電鍍還原法調整次磷酸鈉濃度 39
5-1-2-3 無電鍍還原法調整鍍液pH值 40
5-1-2-4 無電鍍還原法調整鍍液溫度 40
5-1-3 碳氈有無前處理差異 41
5-2 電解液添加劑分析 42
5-2-1 Tafel分析 42
5-2-2 CV循環伏安法分析 42
5-2-3 SEM表面形貌分析 43
5-3 鋅漿料空氣電池電化學性質量測 43
5-3-1 一次放電測試 43
5-3-2 全電池電化學性質分析 44
5-3-2-1 無添加劑 44
5-3-2-2 添加EDTA 44
5-3-2-3 添加Tween20 45
5-3-2-4 添加Tartaric acid 46
5-3-2-5 添加BiCl3 46
5-3-2-6 添加SnCl2 47
第六章、結論 48
第七章、未來展望 50
第八章、參考文獻 51
參考文獻 [1] 鄭婉真,“電網用電化學儲能市場發展趨勢分析”,財團法人工業技術研究院之產業經濟與趨勢研究中心,民國101年。
[2] P.K Katti, M.K Khedkar, Renewable Energy 32 (2007) 1346.
[3] P. Siano, Renewable and Sustainable Energy Reviews 30 (2014) 461.
[4] K.G.D Santo, E. Kanashiro, S.G.D Santo, M.A. Saidel, Renewable and Sustainable Energy Reviews 52 (2015) 1072.
[5] F. Klumpp, Energy Procedia 73 (2015) 124.
[6] J. Cho, S. Jeong, Y. Kim, Progress in Energy and Combustion Science 48 (2015) 84.
[7] M.A. Rahman, X. Wang, C. Wen, Journal of The Electrochemical Society, 160 (2013) A1759.
[8] C. Chang, Technol. Rev 104 (2001) 86.
[9] D. Linden,“Handbook of Batteries”, 3rd, McGraw-Hill Publishing company, New York , 2001.
[10] 洪傳獻,“鋅空氣電池與其他電池在電動車應用之比較”,鋅空氣電池技術及其在電動車應用研討會,台灣台北,民國88年。
[11] 萬其超,“電化學之原理與運用”,徐氏基金會,台灣台北,民國85年。
[12] D.P. Gregory, “Metal-Air Batteries”, Mills & Boon, London, 1972.
[13] V. Neburchilov, H. Wang, J.J. Martin, W. Qu, Journal of Power Sources 195 (2010) 1271.
[14] S. Müller, F. Holzer, O. Haas, J. Appl. Electrochem. 28 (1998) 895.
[15] F.R. Mclarnon, E.J. Cairns, J. Electrochem. Soc. 138 (1991) 645.
[16] T. P. Dirkse, J. Electrochem. Soc. 128 (1981) 1412.
[17] W.G. Sunu, D.N. Bennion, J. Electrochem. Soc. 127 (1980) 2007.
[18] Pourbaix, Marcel, “Atlas of electrochemical equilibria in aqueous solutions”, Houston, 1974.
[19] P.C. Foller, J. Appl. Electrochem. 527 (1986) 16.
[20] E. Deiss, F. Holzer, O. Haas, Electrochim. Acta 47 (2002) 3995.
[21] M. L. Calegaro, F. H. B. Lima, E. A. Ticianelli, Journal of Power Sources 158 (2006) 735-739.
[22] 辛毓真,“鑭鈣銅氧相關系列催化劑在鋅-空氣電池中還原反應之研究”,國立交通大學碩士論文,民國95年。
[23] M.J. Riezenman, “Metal fuel cells”, IEEE Spectrum 38 (2001) 55.
[24] S. Siu, J.W. Evans, J. Electrochem. Soc. 144 (1997) 1278-1280.
[25] Platt′s Metals Week, “Cominco invests in zinc air battery”, New York, 71, 45, 14, 2000.
[26] A. Puapattanakula, S. Therdthianwongb, A. Therdthianwongc, N. Wongyaoc, Energy Procedia 34 (2013) 173–180.
[27] P. Lian, J. Wang, D. Cai, L. Ding, Q. Jia, H. Wang, Electrochimica Acta 116 (2014) 103.
[28] Z. Li, H. Zhao, J. Wang, P. Lv, Z. Zhang, Z. Zeng, Q. Xia, Electrochimica Acta 182 (2015) 398.
[29] H. Zhou, Y. Zhong, Z. He, L. Zhang, J. Wang, J. Zhang, C. Cao, Applied Surface Science 314 (2014) 1.
[30] J.H. Um, H. Park, Y.H. Cho, M. P.B. Glazer, D.C. Dunand, H. Choe, Y.E. Sung, RSC Adv. 4 (2014) 58059.
[31] H. Chen, Q. Zhang, X. Han, J. Cai, M. Liu, Y. Yang, K. Zhang, J. Mater. Chem. A 3 (2015) 24022.
[32] H. Wang, G. Wang, Y. Ling, F. Qian, Y. Song, X. Lu, S. Chen, Y. Tong, Y. Li, Nanoscale 5 (2013) 10283.
[33] C.R. Dennison, M. Beidaghi, K.B. Hatzell, J.W. Campos, Y. Gogotsi, Journal of Power Sources 247 (2014) 489.
[34] K.B. Hatzell, M. Beidaghi, J.W. Campos, C.R. Dennison, E.C. Kumbur, Y. Gogotsi, Electrochimica Acta 111 (2013) 888.
[35] J.W. Campos, M. Beidaghi, K.B. Hatzell, C.R. Dennison, B. Musci, V. Presser, E.C. Kumbur, Y. Gogotsi, Electrochimica Acta 98 (2013) 123.
[36] M. Duduta, B. Ho, V.C. Wood, P. Limthongkul, V.E. Brunini, W.C. Carter, Y.M. Chiang 1 (2011) 511.
[37] Tyler J. Petek, Slurry Electrode for An All-Iron Flow Battery for Low Cost Large-Scale Energy Storage, Case Western Reserve University, 2013.
[38] 楊昌中,“儲能技術發展與鋅二次空氣電池介紹”,台灣奈米資訊電子報,民國103年。
[39] M. Shafiei, A.T. Alpas, Journal of Power Sources 196 (2011) 7771.
[40] D. Song, J. Zhou, W. Jiang, X. Zhang, Y. Yan, F. Li, Materials Letters 63 (2009) 282.
[41] 呂秉錚,“可機械充電式鋅-空氣電池之電鍍鋅電極製程與其電化學行為之研究”國立清華大學碩士論文,民國90年。
[42] M. Xu, D.G. Ivey, Z. Xie, W. Qu, Journal of Power Sources 283 (2015) 358.
[43] J.M. Wang, L. Zhang, C. Zhang, J.Q. Zhang, Journal of Power Sources 102 (2001) 139.
[44] F. Mansfeld, S. Gilman, J. Electrochem. Soc. 117 (1970) 1328.
[45] M.R.H.D Almeida, E.P. Barbano, M.F.D. Carvalho, I.A. Carlos, J.L.P. Siqueira, L.L. Barbosa, Surface & Coatings Technology 206 (2011) 95.
[46] H. Yang, Y. Cao, X. Ai, L. Xiao, Journal of Power Sources 128 (2004) 97.
[47] R.K. Ghavami , Z. Rafiei, S.M. Tabatabaei, Journal of Power Sources 164 (2007) 934.
[48] M. Liang, H. Zhou, Q Huang, S. Hu, W. Li, J. Appl. Electrochem. 41 (2011) 991.
[49] C.W. Lee, K. Sathiyanarayanan, S.W. Eom, H.S.Kim, M.S. Yun, Journal of Power Sources 159 (2006) 1474.
[50] C.J. Lan, C.Y. Lee, T.S. Chin, Electrochimica Acta 52 (2007) 5407.
[51] 陳進凱,“無電鍍製程製備矽通孔之CoWP擴散阻障層”,材料年會,民國102年。
指導教授 林景崎(Jing-Chie Lin) 審核日期 2016-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明