博碩士論文 101326024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:3.142.54.169
姓名 蔡承佑(Chen-Yu Tsai)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 2014年鹿林山氣膠水溶性無機離子短時間動態變化特性
(Short-term dynamic variations of aerosol water-soluble inorganic ions at Mountain Lulin in 2014)
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文於2014年春季在鹿林山背景觀測站(以下簡稱為鹿林山,2,862 m)以即時氣膠水溶性監測儀(Particle-Into-Liquid-Sampler coupled to an Ion Chromatograph, PILS-IC)監測PM2.5氣膠水溶性無機離子(WSIIs),並收集測站監測的PM2.5、PM10氣膠質量濃度、PM10、PM1氣膠散光及吸光係數、氣膠粒徑分布、氣膠總數目、氣體污染物動態變化。
鹿林山正好位於盛行西風下風處,適合觀測春季中南半島生質燃燒煙團及亞洲大陸污染傳輸。本文監測不同污染事件短時間氣膠水溶性無機離子動態變化,同時評估大氣SO2與NH3溶解在雲霧中形成的WSIIs濃度,以瞭解雲霧中未被活化和霧珠中氣膠水溶性無機離子動態變化。
當鹿林山逆推軌跡來源為自由大氣,各項污染物濃度都很低。NH4+、NO3-、SO42和K+分別為0.1 ± 0.4、0.2 ± 0.4、0.7 ± 0.7和0.0 ± 0.0 μg m-3,應可代表東亞大氣在生質燃燒好發期間乾淨背景大氣的WSIIs濃度。然而當受到生質燃燒影響時,CO、PM2.5質量濃度、PM1綠光散光、吸光係數都有增高現象。NH4+、NO3-、SO42和K+分別達到1.9 ± 1.5、1.0 ± 1.0、3.6 ± 2.9和0.2 ± 0.2 μg m-3高濃度。從無機離子相關性分析,顯示這些氣膠化合物型態以硫酸銨、硝酸銨為主。
當發生雲霧事件時,CO、NOx有隨時間上升的趨勢,NH4+、NO3-、SO42-無機離子濃度明顯上升,觀測結果雲霧多為山下氣流抬升形成。NH4+與SO42-有中高程度相關性(R2>0.64),推論這兩種無機離子結合型態可能為硫酸銨或硫酸氫銨。從ExNO3-與ExNH4+計算判斷NO3-生成機制,發現在不同時段分別有HNO3(g) 凝結在氣膠、N2O5水解以及硝酸銨氣膠(Mwaniki et al., 2014)。另外發現微粒粒徑分布的眾數粒徑在雲霧中有由小逐漸變大的傾向,顯示雲霧中有氣膠膠凝成長的現象。
本文使用PILS-IC量測的SO42-和NH4+以及假設大氣SO2和NH3與霧珠中溶解的SO42-和NH4+達成平衡,計算DIGMI (Dissolved Gas over Measured Ions)值。SO2在一般雲霧中DIGMI值大多接近1.0,顯示有不錯的氣體轉化現象,然而受到生質燃燒煙團影響的雲霧中會有大量氣膠使DIGMI值低於1.0或SO2溶於霧珠中使DIGMI值遠大於1.0。NH3方面,不管是否受到生質燃燒煙團影響,雲霧事件中平均DIGMI值都大於1.0,代表NH3在霧珠中溶解度高。
摘要(英) This work monitored short-term variations of water-soluble inorganic ions (WSIIs) of atmospheric PM2.5 using Particle-Into-Liquid-Sampler coupled with an Ion Chromatograph (PILS-IC) at the Lulin Atmospheric Background Station (LABS, 2,862 m a.s.l.) in spring 2014. In addition, PM2.5 and PM10 mass concentrations, PM10 and PM1.0 scattering and absorption coefficients, aerosol size spectra, aerosol total number concentration, and dynamic variations of gaseous pollutants were also monitored at LABS.
Under prevailing westerly, LABS is a proper site for observing transported biomass burning (BB) smoke and Asian continent pollution due to its downstream location of the air masses transported from Southeast Asia. In this study, short-term dynamic variations of WSIIs were observed during different pollution events. Meanwhile, formations of WSIIs from dissolved atmospheric SO2 and NH3 in fog were evaluated to investigate dynamic variations of WSIIs in inactivated aerosol and fog droplets during fog.
All pollutant levels were very low when backward trajectories were originated from free atmosphere. The concentrations of NH4+, NO3-, SO42, and K+ were 0.1 ± 0.4, 0.2 ± 0.4, 0.7 ± 0.7, and 0.0 ± 0.0 μg m-3, respectively, which may represent clean atmospheric background of East Asia during extensive BB period. In contrast, CO, PM2.5 mass level, PM1 green scattering and absorption coefficients were all enhanced when affected by the transported BB smoke. The corresponding concentrations of NH4+, NO3-, SO42, and K+ were 1.9 ± 1.5, 1.0 ± 1.0, 3.6 ± 2.9, and 0.2 ± 0.2 μg m-3, respectively. From linear correlation analyses of these chemical components, ammonium sulfate and ammonium nitrate are their possible compound forms.
The levels of CO, NOx, NH4+, SO42-, and NO3- were observed to increase with time during fog event periods at LABS. It suggests that ground-level pollutants were transported by the uplift flow to form fog at LABS. Moderately high linear correlation between SO42- and NH4+ (R2>0.64) indicated that the compound form of these two ions might be ammonium sulfate or ammonium bisulfate. From the calculation of ExNO3- and ExNH4+, three nitrate formation pathways (Mwaniki, et al., 2014) can be inferred to be condensed HNO3(g) onto aerosol surface, N2O5 hydrolysis, or the formation of ammonium nitrate particles in different times. Moreover, the modal diameter of aerosol size spectra was gradually increased in the fog events which showed a coagulation growth of aerosol in the fog.
A value of DIGMI (Dissolved Gas over Measured Ions) was calculated from measured SO42- and NH4+ concentrations by PILS-IC and the dissolved SO42- and NH4+ concentrations in fog droplets in equilibrium with atmospheric SO2 and NH3. The DIGMI values of SO2 were mostly close to 1.0 during normal fog events indicating good gas dissolution. However, the DIGIMI values varied greatly when affected by the transported BB smoke. For NH3, the mean DIGIMI values were both greater than 1.0 with/without an effect of the transported BB smoke implying a good dissolution of NH3 in fog droplets.
關鍵字(中) ★ 氣膠水溶性無機離子短時間動態變化
★ 長程傳輸生質燃燒煙團影響下氣膠化學特性
★ 雲霧事件氣膠化學特性
★ PILS-IC
關鍵字(英) ★ Short-term dynamic variations of aerosol water-soluble inorganic ions
★ aerosol chemical properties affected by long-range biomass burning smoke
★ aerosol chemical properties in fog events
★ PILS-IC
論文目次 摘要 .................................................................................................................................. i
ABSTRACT .................................................................................................................. iii
致謝 ................................................................................................................................. v
目錄 ................................................................................................................................ vi
圖目錄 ............................................................................................................................ ix
表目錄 .......................................................................................................................xxvii
第一章、前言 ................................................................................................................. 1
1.1 研究緣起 ........................................................................................................ 1
1.2 研究目的 ........................................................................................................ 2
第二章、文獻回顧 ......................................................................................................... 3
2.1 氣膠水溶性無機離子 .................................................................................... 3
2.1.1 氣膠中和狀況與結合型態 ................................................................. 5
2.2 高山地區氣膠 ................................................................................................ 6
2.2.1 雲霧事件氣膠特性 ............................................................................. 6
2.3 生質燃燒 ........................................................................................................ 8
2.3.1 生質燃燒行為排放氣體 ..................................................................... 8
2.3.2 生質燃燒水溶性氣膠特性 ................................................................. 8
2.3.3 生質燃燒氣膠光學特性 ..................................................................... 9
2.4 氣膠水溶性無機離子連續監測儀器 .......................................................... 10
2.4.1 濕式前驅氣體分離器 ....................................................................... 10
2.4.2 即時氣膠水溶性無機離子監測儀器 ............................................... 11
2.5 氣體溶解度 .................................................................................................. 13
2.5.1 二氧化硫(SO2)溶解度 ...................................................................... 13
2.5.2 氨氣(NH3)溶解度 ............................................................................. 15
第三章、研究方法 ....................................................................................................... 16
3.1 研究架構 ...................................................................................................... 16
3.2 採樣地點與採樣週期 .................................................................................. 17
3.3 採樣設備與方法 .......................................................................................... 19
3.3.1 手動採樣器 ....................................................................................... 19
3.3.2 採樣濾紙前處理與設置 ................................................................... 20
3.4 大氣氣膠連續監測系統 .............................................................................. 24
3.4.1 即時氣膠水溶性離子層析儀 ........................................................... 24
3.4.2 自動監測儀器 ................................................................................... 26
3.4.3 NOAA氣膠觀測系統....................................................................... 27
3.4.4 積分式散光儀(Integrating Nephelometer) ....................................... 28
3.4.5 微粒碳吸收光度計(PSAP) ............................................................... 31
3.4.6 粒徑分布監測系統 ........................................................................... 35
3.4.7 其他連續監測儀器 ........................................................................... 38
3.5 氣流軌跡模式(NOAA HYSPLIT) ............................................................... 39
第四章、結果與討論 ................................................................................................... 40
4.1 鹿林山氣膠水溶性無機離子動態變化 ...................................................... 40
4.1.1 鹿林山手動採樣與PILS-IC PM2.5氣膠水溶性無機離子比對 ...... 40
4.1.2 鹿林山氣膠水溶性無機離子動態變化時間序列 ........................... 43
4.1.3 生質燃燒及雲霧事件辨識方法 ....................................................... 49
4.1.4 不同氣流來向軌跡分類與鹿林山氣膠水溶性無機離子動態變化 ....................................................................................................................... 54
4.2 鹿林山生質燃燒煙團傳輸氣體和氣膠成分動態變化 .............................. 57
4.2.1 第一次生質燃燒事件(3月7日至3月8日) ................................. 57
4.2.2 第二次生質燃燒事件(3月9日至3月11日) ............................... 71
4.2.3 第三次生質燃燒事件(3月15日至3月19日) ............................. 82
4.2.4 第四次生質燃燒事件(3月29日至3月30日) ............................. 95
4.2.5 第五次生質燃燒事件(4月1日至4月2日) ............................... 107
4.2.6 彙整鹿林山生質燃燒事件氣體資料與氣膠動態特性 ................. 119
4.3 鹿林山雲霧事件氣膠動態變化 ................................................................ 125
4.3.1 第一次雲霧事件(2014年3月14日至3月15日) ..................... 126
4.3.2 第二次雲霧事件(2014年3月28日) ........................................... 136
4.3.3 第三次雲霧事件(2014年4月14日至4月15日) ..................... 147
4.3.4 彙整鹿林山雲霧事件氣體資料與氣膠動態特性 ......................... 158
4.4 探討鹿林山氣膠水溶性無機離子成分與氣體成分比值 ........................ 166
4.4.1 鹿林山不同污染事件氣膠水溶性無機離子成分與氣體成分差異比較 ............................................................................................................. 170
4.5 可溶性氣體於雲霧中溶解情況 ................................................................ 174
4.5.1 DIGMI值敏感度分析 .................................................................... 178
4.5.2 雲霧事件實例計算 ......................................................................... 182
4.5.3 彙整鹿林山雲霧事件氣體溶解情況 ............................................. 192
第五章、結論與建議 ................................................................................................. 195
5.1 結論 ............................................................................................................ 195
5.2 建議 ............................................................................................................ 198
第六章、參考文獻 ..................................................................................................... 199
附錄一、2014年3月1日至4月15日鹿林山觀測期間逆推軌跡圖 .................. 209
附錄二、2014年3月1日至4月15日鹿林山觀測期間火點圖 .......................... 221
附錄三、口試委員意見與答覆 ................................................................................. 226
參考文獻 Aikawa, M., Hiraki, T., ShOGA, M., Tamaki, M., 2005. Six-year trend and frequency distribution of the pH value of fog water collected on Mt. Rokko (Kobe City, Japan). Bulletin of the Hyogo Prefectural Institute of Public Health and Environmental Sciences 1, 1-5.
Akagi, S.K., Yokelson, R.J., Wiedinmyer, C., Alvarado, M.J., Reid, J.S., Karl, T., Crounse, J.D., Wennberg, P.O., 2011. Emission factors for open and domestic biomass burning for use in atmospheric models. Atmospheric Chemistry and Physics 11, 4039-4072.
Andreae, M.O., Merlet, P., 2001. Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles 15, 955-966.
Behera, S.N., Sharma, M., Aneja, V.P., Balasubramanian, R., 2013. Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environmental science and pollution research international 20, 8092-8131.
Benedict, K.B., Day, D., Schwandner, F.M., Kreidenweis, S.M., Schichtel, B., Malm, W.C., Collett, J.L., 2013. Observations of atmospheric reactive nitrogen species in Rocky Mountain National Park and across northern Colorado. Atmospheric Environment 64, 66-76.
Bond, T.C., Anderson, T.L., Campbell, D., 1999. Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols. Aerosol Science & Technology 30, 582-600.
Carmichael, G.R., Peters, L.K., 1979. Some aspects of SO2 absorption by water-generalized treatment. Atmospheric Environment (1967) 13, 1505-1513.
Chang, S.-C., Lai, I.L., Wu, J.-T., 2002. Estimation of fog deposition on epiphytic
bryophytes in a subtropical montane forest ecosystem in northeastern Taiwan. Atmospheric Research 64, 159-167.
Chang, S.-Y., Fang, G.-C., Chou, C.C.-K., Chen, W.-N., 2006. Source identifications of PM10 aerosols depending on hourly measurements of soluble components characterization among different events in Taipei Basin during spring season of 2004. Chemosphere 65, 792-801.
Chang, S.-Y., Lee, C.-T., Chou, C.C.K., Liu, S.-C., Wen, T.-X., 2007. The continuous field measurements of soluble aerosol compositions at the Taipei Aerosol Supersite, Taiwan. Atmospheric Environment 41, 1936-1949.
Cheng, S.-h., Yang, L.-x., Zhou, X.-h., Xue, L.-k., Gao, X.-m., Zhou, Y., Wang, W.-x., 2011. Size-fractionated water-soluble ions, situ pH and water content in aerosol on hazy days and the influences on visibility impairment in Jinan, China. Atmospheric Environment 45, 4631-4640.
Chuang, M.-T., Lee, C.-T., Chou, C.C.K., Lin, N.-H., Sheu, G.-R., Wang, J.-L., Chang, S.-C., Wang, S.-H., Chi, K.H., Young, C.-Y., Huang, H., Chen, H.-W., Weng, G.-H., Lai, S.-Y., Hsu, S.-P., Chang, Y.-J., Chang, J.-H., Wu, X.-C., 2014. Carbonaceous aerosols in the air masses transported from Indochina to Taiwan: Long-term observation at Mt. Lulin. Atmospheric Environment 89, 507-516.
Clegg, S., Brimblecombe, P., 1989. Solubility of ammonia in pure aqueous and multicomponent solutions. The Journal of Physical Chemistry 93, 7237-7248.
Colbeck, I., Harrison, R.M., 1984. Ozone—secondary aerosol—visibility relationships in North-West England. Science of the Total Environment 34, 87-100.
Croft, P.J., Ward, B., 2015. CLOUDS AND FOG | Fog. 180-188.
Draxler, R., Rolph, G., 2013. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website. Silver Spring, MD: NOAA Air Resources Laboratory. ready. arl. noaa. gov/HYSPLIT. php.
Elperin, T., Fominykh, A., Krasovitov, B., 2013. Rain scavenging of soluble gases by non-evaporating and evaporating droplets from inhomogeneous atmosphere. Meteorology and Atmospheric Physics 122, 215-226.
Gao, X., Xue, L., Wang, X., Wang, T., Yuan, C., Gao, R., Zhou, Y., Nie, W., Zhang, Q., Wang, W., 2012. Aerosol ionic components at Mt. Heng in central southern China: abundances, size distribution, and impacts of long-range transport. The Science of the total environment 433, 498-506.
Genfa, Z., Slanina, S., Brad Boring, C., Jongejan, P.A.C., Dasgupta, P.K., 2003. Continuous wet denuder measurements of atmospheric nitric and nitrous acids during the 1999 Atlanta Supersite. Atmospheric Environment 37, 1351-1364.
Giulianelli, L., Gilardoni, S., Tarozzi, L., Rinaldi, M., Decesari, S., Carbone, C., Facchini, M.C., Fuzzi, S., 2014. Fog occurrence and chemical composition in the Po valley over the last twenty years. Atmospheric Environment 98, 394-401.
Guo, J., Tilgner, A., Yeung, C., Wang, Z., Louie, P.K., Luk, C.W., Xu, Z., Yuan, C., Gao, Y., Poon, S., Herrmann, H., Lee, S., Lam, K.S., Wang, T., 2014. Atmospheric peroxides in a polluted subtropical environment: seasonal variation, sources and sinks, and importance of heterogeneous processes. Environmental science & technology 48, 1443-1450.
Han, T., Liu, X., Zhang, Y., Qu, Y., Zeng, L., Hu, M., Zhu, T., 2015. Role of secondary aerosols in haze formation in summer in the Megacity Beijing. Journal of environmental sciences 31, 51-60.
Henning, S., 2003. Seasonal variation of water-soluble ions of the aerosol at the high-alpine site Jungfraujoch (3580 m asl). Journal of Geophysical Research 108.
Hobbs, P.V., 2003. Evolution of gases and particles from a savanna fire in South Africa. Journal of Geophysical Research 108.
Jacobson, M.Z., 2001. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409, 695-697.
Kaufman, Y.J., Fraser, R.S., 1997. The effect of smoke particles on clouds and climate forcing. Science 277, 1636-1639.
Keene, W.C., Pszenny, A.A.P., Galloway, J.N., Hawley, M.E., 1986. Sea-salt corrections and interpretation of constituent ratios in marine precipitation. Journal of Geophysical Research: Atmospheres 91, 6647-6658.
Klemm, O., Tseng, W.-T., Lin, C.-C., Klemm, K., Lin, N.-H., 2015. pH Control in Fog and Rain in East Asia: Temporal Advection of Clean Air Masses to Mt. Bamboo, Taiwan. Atmosphere 6, 1785-1800.
Lee, C.-T., Chuang, M.-T., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, S.-C., Wang, S.-H., Huang, H., Chen, H.-W., Liu, Y.-L., Weng, G.-H., Lai, H.-Y., Hsu, S.-P., 2011. The enhancement of PM2.5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan. Atmospheric Environment 45, 5784-5794.
Lee, M., Heikes, B.G., O′Sullivan, D.W., 2000. Hydrogen peroxide and organic hydroperoxide in the troposphere: a review. Atmospheric Environment 34, 3475-3494.
Lee, T., Yu, X.-Y., Kreidenweis, S.M., Malm, W.C., Collett, J.L., 2008. Semi-continuous measurement of PM2.5 ionic composition at several rural locations in the United States. Atmospheric Environment 42, 6655-6669.
Li, J., 2003. Individual aerosol particles from biomass burning in southern Africa: 2, Compositions and aging of inorganic particles. Journal of Geophysical Research 108.
Lin, X., Indira, N.K., Ramonet, M., Delmotte, M., Ciais, P., Bhatt, B.C., Reddy, M.V., Angchuk, D., Balakrishnan, S., Jorphail, S., Dorjai, T., Mahey, T.T., Patnaik, S.,Begum, M., Brenninkmeijer, C., Durairaj, S., Kirubagaran, R., Schmidt, M., Swathi, P.S., Vinithkumar, N.V., Yver Kwok, C., Gaur, V.K., 2015. Long-lived atmospheric trace gases measurements in flask samples from three stations in India. Atmospheric Chemistry and Physics 15, 9819-9849.
Lin, Y.C., Lin, C.Y., Lin, P.H., Engling, G., Lin, Y.C., Lan, Y.Y., June Chang, C.W., Kuo, T.H., Hsu, W.T., Ting, C.C., 2013. Influence of Southeast Asian biomass burning on ozone and carbon monoxide over subtropical Taiwan. Atmospheric Environment 64, 358-365.
Lu, Z., Zhang, Q., Streets, D.G., 2011. Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010. Atmospheric Chemistry and Physics 11, 9839-9864.
Mwaniki, G.R., Rosenkrance, C., Wallace, H.W., Jobson, B.T., Erickson, M.H., Lamb, B.K., Hardy, R.J., Zalakeviciute, R., VanReken, T.M., 2014. Factors contributing to elevated concentrations of PM2.5 during wintertime near Boise, Idaho. Atmospheric Pollution Research 5.
O′Sullivan, D.W., Lee, M., Noone, B.C., Heikes, B.G., 1996. Henry′s law constant determinations for hydrogen peroxide, methyl hydroperoxide, hydroxymethyl hydroperoxide, ethyl hydroperoxide, and peroxyacetic acid. The Journal of Physical Chemistry 100, 3241-3247.
Ocskay, R., Salma, I., Wang, W., Maenhaut, W., 2006. Characterization and diurnal variation of size-resolved inorganic water-soluble ions at a rural background site. Journal of environmental monitoring : JEM 8, 300-306.
Ohta, S., Okita, T., 1990. A chemical characterization of atmospheric aerosol in Sapporo. Atmospheric Environment. Part A. General Topics 24, 815-822.
Olszyna, K.J., Meagher, J.F., Bailey, E.M., 1988. Gas-phase, cloud and rain-water measurements of hydrogen peroxide at a high-elevation site. Atmospheric Environment (1967) 22, 1699-1706.
Orsini, D.A., Ma, Y., Sullivan, A., Sierau, B., Baumann, K., Weber, R.J., 2003. Refinements to the particle-into-liquid sampler (PILS) for ground and airborne measurements of water soluble aerosol composition. Atmospheric Environment 37, 1243-1259.
Pathak, R., 2004. Characteristics of aerosol acidity in Hong Kong. Atmospheric Environment 38, 2965-2974.
Pathak, R., Wu, W., Wang, T., 2009. Summertime PM 2.5 ionic species in four major cities of China: nitrate formation in an ammonia-deficient atmosphere. Atmospheric Chemistry and Physics 9, 1711-1722.
Pope III, C.A., Dockery, D.W., 1992. Acute health effects of PM10 pollution on symptomatic and asymptomatic children. American Review of Respiratory Disease 145, 1123-1128.
Ram, K., Sarin, M., 2011a. Day–night variability of EC, OC, WSOC and inorganic ions in urban environment of Indo-Gangetic Plain: implications to secondary aerosol formation. Atmospheric Environment 45, 460-468.
Ram, K., Sarin, M.M., 2011b. Day–night variability of EC, OC, WSOC and inorganic ions in urban environment of Indo-Gangetic Plain: Implications to secondary aerosol formation. Atmospheric Environment 45, 460-468.
Ren, Y., Ding, A., Wang, T., Shen, X., Guo, J., Zhang, J., Wang, Y., Xu, P., Wang, X., Gao, J., 2009. Measurement of gas-phase total peroxides at the summit of Mount Tai in China. Atmospheric Environment 43, 1702-1711.
Riuttanen, L., Dal Maso, M., de Leeuw, G., Riipinen, I., Sogacheva, L., Vakkari, V., Laakso, L., Kulmala, M., 2013. Long-range transport of biomass burning smoke to Finland in 2006. Atmospheric Chemistry and Physics Discussions 13, 4289-4330.
Seibert, P., Kromp-Kolb, H., Kasper, A., Kalina, M., Puxbaum, H., Jost, D.T., Schwikowski, M., Baltensperger, U., 1998. Transport of polluted boundary layer air from the Po Valley to high-alpine sites. Atmospheric Environment 32, 3953-3965.
Seinfeld, J.H., Pandis, S.N., 2012. Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons.
Simon, S., 2016. Chemical Composition of Fog Water at Four Sites in Taiwan. Aerosol and Air Quality Research 16, 618-631.
Solomon, S., 2007. The physical science basis: Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
Straub, D.J., Hutchings, J.W., Herckes, P., 2012. Measurements of fog composition at a rural site. Atmospheric Environment 47, 195-205.
Streets, D., Yarber, K., Woo, J.H., Carmichael, G., 2003. Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions. Global Biogeochemical Cycles 17.
Sun, Y., Wang, Z., Fu, P., Jiang, Q., Yang, T., Li, J., Ge, X., 2013. The impact of relative humidity on aerosol composition and evolution processes during wintertime in Beijing, China. Atmospheric Environment 77, 927-934.
Suntharalingam, P., Jacob, D.J., Palmer, P.I., Logan, J.A., Yantosca, R.M., Xiao, Y., Evans, M.J., Streets, D.G., Vay, S.L., Sachse, G.W., 2004. Improved quantification of Chinese carbon fluxes using CO2/CO correlations in Asian outflow. Journal of Geophysical Research: Atmospheres 109, n/a-n/a.
Truex, T.J., Pierson, W.R., McKee, D.E., 1980. Sulfate in diesel exhaust. Environmental Science & Technology 14, 1118-1121.
Wada, A., Matsueda, H., Sawa, Y., Tsuboi, K., Okubo, S., 2011. Seasonal variation of enhancement ratios of trace gases observed over 10 years in the western North Pacific. Atmospheric Environment 45, 2129-2137.
Wang, Y., Guo, J., Wang, T., Ding, A., Gao, J., Zhou, Y., Collett, J.L., Wang, W., 2011. Influence of regional pollution and sandstorms on the chemical composition of cloud/fog at the summit of Mt. Taishan in northern China. Atmospheric Research 99, 434-442.
Wang, Y., Zhuang, G., Zhang, X., Huang, K., Xu, C., Tang, A., Chen, J., An, Z., 2006a. The ion chemistry, seasonal cycle, and sources of PM2.5 and TSP aerosol in Shanghai. Atmospheric Environment 40, 2935-2952.
Wang, Y., Zhuang, G., Zhang, X., Huang, K., Xu, C., Tang, A., Chen, J., An, Z., 2006b. The ion chemistry, seasonal cycle, and sources of PM 2.5 and TSP aerosol in Shanghai. Atmospheric Environment 40, 2935-2952.
Weber, R.J., Orsini, D., Daun, Y., Lee, Y.N., Klotz, P.J., Brechtel, F., 2001. A Particle-into-Liquid Collector for Rapid Measurement of Aerosol Bulk Chemical Composition. Aerosol Science and Technology 35, 718-727.
Wen, L., Chen, J., Yang, L., Wang, X., Caihong, X., Sui, X., Yao, L., Zhu, Y., Zhang, J., Zhu, T., Wang, W., 2015. Enhanced formation of fine particulate nitrate at a rural site on the North China Plain in summer: The important roles of ammonia and ozone. Atmospheric Environment 101, 294-302.
Wilhelm, E., Battino, R., Wilcock, R.J., 1977. Low-pressure solubility of gases in liquid water. Chemical reviews 77, 219-262.
Xu, L., Chen, X., Chen, J., Zhang, F., He, C., Zhao, J., Yin, L., 2012. Seasonal variations and chemical compositions of PM2.5 aerosol in the urban area of Fuzhou, China. Atmospheric Research 104-105, 264-272.
Xue, J., Lau, A.K., Yu, J.Z., 2011. A study of acidity on PM 2.5 in Hong Kong using online ionic chemical composition measurements. Atmospheric environment 45, 7081-7088.
Xue, J., Yuan, Z., Lau, A.K., Yu, J.Z., 2014. Insights into factors affecting nitrate in PM2. 5 in a polluted high NOx environment through hourly observations and size distribution measurements. Journal of Geophysical Research: Atmospheres 119, 4888-4902.
Yang, M., Howell, S., Zhuang, J., Huebert, B., 2009. Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China–interpretations of atmospheric measurements during EAST-AIRE. Atmospheric Chemistry and Physics 9, 2035-2050.
Yang, Z., Li, X.D., Deng, J., Wang, H.Y., 2015. Stable sulfur isotope ratios and water-soluble inorganic compositions of PM10 in Yichang City, central China. Environmental science and pollution research international 22, 13564-13572.
Yokelson, R.J., Griffith, D.W.T., Ward, D.E., 1996. Open-path Fourier transform infrared studies of large-scale laboratory biomass fires. Journal of Geophysical Research: Atmospheres 101, 21067-21080.
Zauscher, M.D., Wang, Y., Moore, M.J., Gaston, C.J., Prather, K.A., 2013. Air quality impact and physicochemical aging of biomass burning aerosols during the 2007 San Diego wildfires. Environ Sci Technol 47, 7633-7643.
Zhang, Q., Tie, X., Lin, W., Cao, J., Quan, J., Ran, L., Xu, W., 2013. Variability of SO2 in an intensive fog in North China Plain: Evidence of high solubility of SO2. Particuology 11, 41-47.
Zhang, T., Cao, J.J., Tie, X.X., Shen, Z.X., Liu, S.X., Ding, H., Han, Y.M., Wang, G.H., Ho, K.F., Qiang, J., Li, W.T., 2011. Water-soluble ions in atmospheric aerosols measured in Xi′an, China: Seasonal variations and sources. Atmospheric Research 102, 110-119.
Zheng, D.-Q., Guo, T.-M., Knapp, H., 1997. Experimental and modeling studies on the solubility of CO 2, CHC1F 2, CHF 3, C 2 H 2 F 4 and C 2 H 4 F 2 in water and aqueous NaCl solutions under low pressures. Fluid Phase Equilibria 129, 197-209.
Zhou, Y., Wang, T., Gao, X., Xue, L., Wang, X., Wang, Z., Gao, J., Zhang, Q., Wang, W., 2010. Continuous observations of water-soluble ions in PM2.5 at Mount Tai (1534 m a.s.l.) in central-eastern China. Journal of Atmospheric Chemistry 64, 107-127.
行政院環境保護署環境檢驗所,2004。環境檢驗方法偵測極限測定指引(NIEA-PA107)。 林家慶,2008。鹿林山空氣品質背景監測之背景值分析。國立中央大學大氣物理所碩士論文。
許紹鵬,2010。鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性。國立中央大學環境工程研究所碩士論文。
張佑嘉,2011。中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性。國立中央大學環境工程研究所碩士論文。
許博閔,2011。鹿林山大氣背景站不同氣團氣膠光學特性。國立中央大學環境工程研究所碩士論文。
林書暉,2013。2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化。國立中央大學環境工程研究所碩士論文。
蔡茗宇,2014。2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性。國立中央大學環境工程研究所碩士論文。
指導教授 李崇德(Chung-Te Lee) 審核日期 2016-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明