參考文獻 |
[ 1 ] Akob, D.M., Mills, H.J., Gihring, T.M., Kerkhof, L., Stucki, J.W., Anastacio, A.S., Chin, K.J., Kusel, K., Palumbo, A.V., Watson, D.B., Kostka, J.E., " Functional diversity and electron donor dependence of microbial populations capable of U(VI) reduction in radionuclide-contaminated subsurface sediments ". Applied and Environmental Microbiology 74 (10), 3159-70. (2008)
[ 2 ] Allard, B., Arsenie, I., " Abiotic reduction of mercury by humic substances in aquatic system — an important process for the mercury cycle ". Water Air & Soil Pollution 56 (1), 457-464. (1991)
[ 3 ] Amap/Unep, Technical Background Report to the Global Atmospheric Mercury Assessment., Arctic Monitoring and Assessment Programme/UNEP Chemicals Branch. (2008)
[ 4 ] Amyot, M., Gill, G.A., Morel, F.M.M., " Production and loss of dissolved gaseous mercury in coastal seawater ". Environmental Science & Technology 31 (12), 3606-3611. (1997)
[ 5 ] Amyot, M., Morel, F.M., Ariya, P.A., " Dark oxidation of dissolved and liquid elemental mercury in aquatic environments ". Environmental Science & Technology 39 (1), 110-4. (2005)
[ 6 ] Bakir, F., Damluji, S.F., Amin-Zaki, L., Murtadha, M., Khalidi, A., Al-Rawi, N.Y., Tikriti, S., Dhahir, H.I., Clarkson, T.W., Smith, J.C., Doherty, R.A., " Methylmercury Poisoning in Iraq ". Science 181 (4096), 230-241. (1973)
[ 7 ] Barkay, T., Gillman, M., Turner, R.R., " Effects of dissolved organic carbon and salinity on bioavailability of mercury ". Applied and Environmental Microbiology 63 (11), 4267-71. (1997)
[ 8 ] Barkay, T., Kritee, K., Boyd, E., Geesey, G., " A thermophilic bacterial origin and subsequent constraints by redox, light and salinity on the evolution of the microbial mercuric reductase ". Environmental Microbiology 12 (11), 2904-17. (2010)
[ 9 ] Barkay, T., Miller, S.M., Summers, A.O., " Bacterial mercury resistance from atoms to ecosystems ". FEMS Microbiology Reviews 27 (2-3), 355-384. (2003)
[ 10 ] Barkay, T., Wagner-Dobler, I., " Microbial transformations of mercury: potentials, challenges, and achievements in controlling mercury toxicity in the environment ". Advances in Applied Microbiology 57, 1-52. (2005)
[ 11 ] Barringer, J.L., Szabo, Z., " Overview of investigations into mercury in ground water, soils, and septage, new jersey coastal plain ". Water Air & Soil Pollution 175 (1-4), 193-221. (2006)
[ 12 ] Barringer, J.L., Szabo, Z., A, P.," Occurrence and Mobility of Mercury in Groundwater ". Current Perspectives in Contaminant Hydrology and Water Resources Sustainability. (2013)
[ 13 ] Benoit, J.M., Gilmour, C.C., Heyes, A., Mason, R.P., Miller, C.L.," Geochemical and Biological Controls over Methylmercury Production and Degradation in Aquatic Ecosystems ". Biogeochemistry of Environmentally Important Trace Elements. pp. 262-297. (2003)
[ 14 ] Brooks, S.C., " Waste characteristics of the former S-3 ponds and outline of uranium chemistry relevant to NABIR field research center studies ". (2001)
[ 15 ] Burow, K.R., Nolan, B.T., Rupert, M.G., Dubrovsky, N.M., " Nitrate in groundwater of the United States, 1991-2003 ". Environmental Science & Technology 44 (13), 4988-97. (2010)
[ 16 ] Caccavo, F., Jr., Lonergan, D.J., Lovley, D.R., Davis, M., Stolz, J.F., Mcinerney, M.J., " Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism ". Applied and Environmental Microbiology 60 (10), 3752-9. (1994)
[ 17 ] Carter, J.P., Hsaio, Y.H., Spiro, S., Richardson, D.J., " Soil and sediment bacteria capable of aerobic nitrate respiration ". Applied and Environmental Microbiology 61 (8), 2852-8. (1995)
[ 18 ] Cataldo, D.A., Maroon, M., Schrader, L.E., Youngs, V.L., " Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid ". Communications in Soil Science and Plant Analysis 6 (1), 71-80. (2008)
[ 19 ] Charlet, L., Bosbach, D., Peretyashko, T., " Natural attenuation of TCE, As, Hg linked to the heterogeneous oxidation of Fe(II): an AFM study ". Chemical Geology 190 (1-4), 303-319. (2002)
[ 20 ] Colombo, M.J., Ha, J., Reinfelder, J.R., Barkay, T., Yee, N., " Oxidation of Hg(0) to Hg(II) by diverse anaerobic bacteria ". Chemical Geology 363, 334-340. (2014)
[ 21 ] Colombo, M.J., Ha, J.Y., Reinfelder, J.R., Barkay, T., Yee, N., " Anaerobic oxidation of Hg(0) and methylmercury formation by Desulfovibrio desulfuricans ND132 ". Geochimica Et Cosmochimica Acta 112, 166-177. (2013)
[ 22 ] Compeau, G.C., Bartha, R., " Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment ". Applied and Environmental Microbiology 50 (2), 498-502. (1985)
[ 23 ] Driscoll, C.T., Mason, R.P., Chan, H.M., Jacob, D.J., Pirrone, N., " Mercury as a Global Pollutant: Sources, Pathways, and Effects ". Environmental Science & Technology 47 (10), 4967-4983. (2013)
[ 24 ] Fitzgerald, W.F., Engstrom, D.R., Mason, R.P., Nater, E.A., " The case for atmospheric mercury contamination in remote areas ". Environmental Science & Technology 32 (1), 1-7. (1998)
[ 25 ] Fitzgerald, W.F., Lamborg, C.H., " Geochemistry of Mercury in the Environment ". Treatise on Geochemistry 9, 107-148. (2003)
[ 26 ] Foster, S.S.D., " The Ninth Ineson Lecture: Assessing and Controlling the Impacts of Agriculture on Groundwater--from Barley Barons to Beef Bans ". Quarterly Journal of Engineering Geology and Hydrogeology 33 (4), 263-280. (2000)
[ 27 ] Gai, K., Hoelen, T.P., Hsu-Kim, H., Lowry, G.V., " Mobility of Four Common Mercury Species in Model and Natural Unsaturated Soils ". Environmental Science & Technology 50 (7), 3342-51. (2016)
[ 28 ] Gilmour, C.C., Podar, M., Bullock, A.L., Graham, A.M., Brown, S.D., Somenahally, A.C., Johs, A., Hurt, R.A., Jr., Bailey, K.L., Elias, D.A., " Mercury methylation by novel microorganisms from new environments ". Environmental Science & Technology 47 (20), 11810-20. (2013)
[ 29 ] Golding, G.R., Kelly, C.A., Sparling, R., Loewen, P.C., Rudd, J.W.M., Barkay, T., " Evidence for facilitated uptake of Hg(II) byVibrio anguillarumandEscherichia coliunder anaerobic and aerobic conditions ". Limnology and Oceanography 47 (4), 967-975. (2002)
[ 30 ] Grassi, S., Netti, R., " Sea water intrusion and mercury pollution of some coastal aquifers in the province of Grosseto (Southern Tuscany — Italy) ". Journal of Hydrology 237 (3-4), 198-211. (2000)
[ 31 ] Gray, J.E., Hines, M.E., " Mercury: Distribution, transport, and geochemical and microbial transformations from natural and anthropogenic sources ". Applied Geochemistry 21 (11), 1819-1820. (2006)
[ 32 ] Green, S.J., Prakash, O., Gihring, T.M., Akob, D.M., Jasrotia, P., Jardine, P.M., Watson, D.B., Brown, S.D., Palumbo, A.V., Kostka, J.E., " Denitrifying bacteria isolated from terrestrial subsurface sediments exposed to mixed-waste contamination ". Applied and Environmental Microbiology 76 (10), 3244-54. (2010)
[ 33 ] Gu, B., Bian, Y., Miller, C.L., Dong, W., Jiang, X., Liang, L., " Mercury reduction and complexation by natural organic matter in anoxic environments ". Proceedings of the National Academy of Sciences of the United States of America 108 (4), 1479-83. (2011)
[ 34 ] Hamelin, S., Amyot, M., Barkay, T., Wang, Y., Planas, D., " Methanogens: principal methylators of mercury in lake periphyton ". Environmental Science & Technology 45 (18), 7693-700. (2011)
[ 35 ] Harada, M., " Minamata disease: methylmercury poisoning in Japan caused by environmental pollution ". Critical Reviews in Toxicology 25 (1), 1-24. (1995)
[ 36 ] Harris, R.C., Rudd, J.W., Amyot, M., Babiarz, C.L., Beaty, K.G., Blanchfield, P.J., Bodaly, R.A., Branfireun, B.A., Gilmour, C.C., Graydon, J.A., Heyes, A., Hintelmann, H., Hurley, J.P., Kelly, C.A., Krabbenhoft, D.P., Lindberg, S.E., Mason, R.P., Paterson, M.J., Podemski, C.L., Robinson, A., Sandilands, K.A., Southworth, G.R., St Louis, V.L., Tate, M.T., " Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition ". Proceedings of the National Academy of Sciences of the United States of America 104 (42), 16586-91. (2007)
[ 37 ] Holm, H.W., Cox, M.F., " Transformation of elemental mercury by bacteria ". Applied Microbiology 29 (4), 491-4. (1975)
[ 38 ] Hsu-Kim, H., Kucharzyk, K.H., Zhang, T., Deshusses, M.A., " Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: a critical review ". Environmental Science & Technology 47 (6), 2441-56. (2013)
[ 39 ] Hu, H.Y., Lin, H., Zheng, W., Tomanicek, S.J., Johs, A., Feng, X.B., Elias, D.A., Liang, L.Y., Gu, B.H., " Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria ". Nature Geoscience 6 (9), 751-754. (2013)
[ 40 ] Kerin, E.J., Gilmour, C.C., Roden, E., Suzuki, M.T., Coates, J.D., Mason, R.P., " Mercury methylation by dissimilatory iron-reducing bacteria ". Applied and Environmental Microbiology 72 (12), 7919-21. (2006)
[ 41 ] Kim, K.H., Kabir, E., Jahan, S.A., " A review on the distribution of Hg in the environment and its human health impacts ". Journal of Hazardous Materials 306, 376-85. (2016)
[ 42 ] Krabbenhoft, D.P., Sunderland, E.M., " Global Change and Mercury ". Science 341 (6153), 1457-1458. (2013)
[ 43 ] Lalonde, J.D., Amyot, M., Kraepiel, A.M., Morel, F.M., " Photooxidation of Hg(0) in artificial and natural waters ". Environmental Science & Technology 35 (7), 1367-72. (2001)
[ 44 ] Lalonde, J.D., Amyot, M., Orvoine, J., Morel, F.M., Auclair, J.C., Ariya, P.A., " Photoinduced oxidation of Hg0(aq) in the waters from the St. Lawrence estuary ". Environmental Science & Technology 38 (2), 508-14. (2004)
[ 45 ] Lane, D.J., " 16S/23S rRNA sequencing. ". In Nucleic acid techniques in bacterial systematics, pp 115-175. (1991)
[ 46 ] Lin, C.-C., Yee, N., Barkay, T.," Microbial Transformations in the Mercury Cycle ". Environmental Chemistry and Toxicology of Mercury. pp. 155-191. (2012)
[ 47 ] Lin, C.-J., Pehkonen, S.O., " The chemistry of atmospheric mercury: a review ". Atmospheric Environment 33 (13), 2067-2079. (1999)
[ 48 ] Lin, H., Morrell-Falvey, J.L., Rao, B., Liang, L., Gu, B., " Coupled mercury-cell sorption, reduction, and oxidation on methylmercury production by Geobacter sulfurreducens PCA ". Environmental Science & Technology 48 (20), 11969-76. (2014)
[ 49 ] Liu, G., Cai, Y., O′driscoll, N., Feng, X., Jiang, G.," Overview of Mercury in the Environment ". Environmental Chemistry and Toxicology of Mercury. pp. 1-12. (2012)
[ 50 ] Magos, L., Clarkson, T.W., " Overview of the clinical toxicity of mercury ". Annals of Clinical Biochemistry 43 (4), 257-68. (2006)
[ 51 ] Mason, R.P.," Mercury emissions from natural processes and their importance in the global mercury cycle ". Mercury Fate and Transport in the Global Atmosphere. pp. 173-191. (2009)
[ 52 ] Mason, R.P., Fitzgerald, W.F., Morel, F.M.M., " The Biogeochemical Cycling of Elemental Mercury - Anthropogenic Influences ". Geochimica et Cosmochimica Acta 58 (15), 3191-3198. (1994)
[ 53 ] Mergeay, M., Nies, D., Schlegel, H.G., Gerits, J., Charles, P., Van Gijsegem, F., " Alcaligenes eutrophus CH34 Is a Facultative Chemolithotroph with Plasmid-Bound Resistance to Heavy Metals ". Journal of Bacteriology 162 (1), 328-334. (1985)
[ 54 ] Monchy, S., Benotmane, M.A., Janssen, P., Vallaeys, T., Taghavi, S., Van Der Lelie, D., Mergeay, M., " Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals ". Journal of Bacteriology 189 (20), 7417-25. (2007)
[ 55 ] Morel, F.M.M., Kraepiel, A.M.L., Amyot, M., " The Chemical Cycle and Bioaccumulation of Mercury ". Annual Review of Ecology and Systematics 29 (1), 543-566. (1998)
[ 56 ] Murphy, E.A., Dooley, J., Windom, H.L., Smith, R.G., " Mercury Species in Potable Ground-Water in Southern New-Jersey ". Water Air & Soil Pollution 78 (1-2), 61-72. (1994)
[ 57 ] Muskal, N., Mandler, D., " Thiol self-assembled monolayers on mercury surfaces: the adsorption and electrochemistry of omega-mercaptoalkanoic acids ". Electrochimica Acta 45 (4-5), 537-548. (1999)
[ 58 ] Muskal, N., Turyan, I., Mandler, D., " Self-assembled monolayers on mercury surfaces ". Electroanalytical Chemistry 409 (1-2), 131-136. (1996)
[ 59 ] Najera, I., Lin, C.C., Kohbodi, G.A., Jay, J.A., " Effect of chemical speciation on toxicity of mercury to Escherichia coli biofilms and planktonic cells ". Environmental Science & Technology 39 (9), 3116-20. (2005)
[ 60 ] Ni Chadhain, S.M., Schaefer, J.K., Crane, S., Zylstra, G.J., Barkay, T., " Analysis of mercuric reductase (merA) gene diversity in an anaerobic mercury-contaminated sediment enrichment ". Environmental Microbiology 8 (10), 1746-52. (2006)
[ 61 ] Nocker, A., Burr, M., Camper, A.K., " Genotypic microbial community profiling: a critical technical review ". Microbial Ecology 54 (2), 276-89. (2007)
[ 62 ] Nriagu, J.O., " Mechanistic Steps in the Photoreduction of Mercury in Natural-Waters ". Science of the Total Environment 154 (1), 1-8. (1994)
[ 63 ] Pacyna, E.G., Pacyna, J.M., Steenhuisen, F., Wilson, S., " Global anthropogenic mercury emission inventory for 2000 ". Atmospheric Environment 40 (22), 4048-4063. (2006)
[ 64 ] Pacyna, E.G., Pacyna, J.M., Sundseth, K., Munthe, J., Kindbom, K., Wilson, S., Steenhuisen, F., Maxson, P., " Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020 ". Atmospheric Environment 44 (20), 2487-2499. (2010)
[ 65 ] Parks, J.M., Johs, A., Podar, M., Bridou, R., Hurt, R.A., Jr., Smith, S.D., Tomanicek, S.J., Qian, Y., Brown, S.D., Brandt, C.C., Palumbo, A.V., Smith, J.C., Wall, J.D., Elias, D.A., Liang, L., " The genetic basis for bacterial mercury methylation ". Science 339 (6125), 1332-5. (2013)
[ 66 ] Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R.B., Friedli, H.R., Leaner, J., Mason, R., Mukherjee, A.B., Stracher, G.B., Streets, D.G., Telmer, K., " Global mercury emissions to the atmosphere from anthropogenic and natural sources ". Atmospheric Chemistry and Physics 10 (13), 5951-5964. (2010)
[ 67 ] Protano, G., Riccobono, F., Sabatini, G., " Does salt water intrusion constitute a mercury contamination risk for coastal fresh water aquifers? ". Environmental Pollution 110 (3), 451-458. (2000)
[ 68 ] Ratasuk, N., Nanny, M.A., " Characterization and quantification of reversible redox sites in humic substances ". Environmental Science & Technology 41 (22), 7844-50. (2007)
[ 69 ] Rittmann, B.E., Mccarty, P.L.," Environmental Biotechnology: Principles and Applications. ". McGraw-Hill. (2001)
[ 70 ] Rivett, M.O., Buss, S.R., Morgan, P., Smith, J.W., Bemment, C.D., " Nitrate attenuation in groundwater: a review of biogeochemical controlling processes ". Water Research 42 (16), 4215-32. (2008)
[ 71 ] Rudrik, J.T., Bawdon, R.E., Guss, S.P., " Determination of mercury and organomercurial resistance in obligate anaerobic bacteria ". Microbiology 31 (3), 276-81. (1985)
[ 72 ] Schaefer, J.K., Letowski, J., Barkay, T., " mer-mediated resistance and Volatilization of Hg(II) under anaerobic conditions ". Geomicrobiology Journal 19 (1), 87-102. (2002)
[ 73 ] Schaefer, J.K., Yagi, J., Reinfelder, J.R., Cardona, T., Ellickson, K.M., Tel-Or, S., Barkay, T., " Role of the Bacterial Organomercury Lyase (MerB) in Controlling Methylmercury Accumulation in Mercury-Contaminated Natural Waters ". Environmental Science & Technology 38 (16), 4304-4311. (2004)
[ 74 ] Schluter, K., " Review: evaporation of mercury from soils. An integration and synthesis of current knowledge ". Environmental Geology 39 (3-4), 249-271. (2000)
[ 75 ] Selin, N.E., " Global Biogeochemical Cycling of Mercury: A Review ". Annual Review of Environment and Resources 34 (1), 43-63. (2009)
[ 76 ] Senko, J.M., Istok, J.D., Suflita, J.M., Krumholz, L.R., " In-situ evidence for uranium immobilization and remobilization ". Environmental Science & Technology 36 (7), 1491-6. (2002)
[ 77 ] Siciliano, S.D., O′driscoll, N.J., Lean, D.R., " Microbial reduction and oxidation of mercury in freshwater lakes ". Environmental Science & Technology 36 (14), 3064-8. (2002)
[ 78 ] Silver, S., Phung Le, T., " A bacterial view of the periodic table: genes and proteins for toxic inorganic ions ". Industrial Microbiology & Biotechnology 32 (11-12), 587-605. (2005)
[ 79 ] Skogerboe, R.K., Wilson, S.A., " Reduction of ionic species by fulvic acid ". Analytical Chemistry 53 (2), 228-232. (1981)
[ 80 ] Skyllberg, U., " Chemical Speciation of Mercury in Soil and Sediment ". Environmental Chemistry and Toxicology of Mercury, 219-258. (2012)
[ 81 ] Smith, T., Pitts, K., Mcgarvey, J.A., Summers, A.O., " Bacterial oxidation of mercury metal vapor, Hg(0) ". Applied and Environmental Microbiology 64 (4), 1328-32. (1998)
[ 82 ] St. Louis, V.L., Rudd, J.W.M., Kelly, C.A., Beaty, K.G., Flett, R.J., Roulet, N.T., " Production and Loss of Methylmercury and Loss of Total Mercury from Boreal Forest Catchments Containing Different Types of Wetlands† ". Environmental Science & Technology 30 (9), 2719-2729. (1996)
[ 83 ] Stein, E.D., Cohen, Y., Winer, A.M., " Environmental distribution and transformation of mercury compounds ". Critical Reviews in Environmental Science and Technology 26 (1), 1-43. (2009)
[ 84 ] Unep, " U.N. Environment Programme DTI/1636/GE ". (2013)
[ 85 ] Usepa, " Mercury: Laws and Regulations ". (2012)
[ 86 ] Wakida, F.T., Lerner, D.N., " Non-agricultural sources of groundwater nitrate: a review and case study ". Water Research 39 (1), 3-16. (2005)
[ 87 ] Wang, Q., Kim, D., Dionysiou, D.D., Sorial, G.A., Timberlake, D., " Sources and remediation for mercury contamination in aquatic systems--a literature review ". Environmental Pollution 131 (2), 323-36. (2004)
[ 88 ] Wang, Y., Boyd, E., Crane, S., Lu-Irving, P., Krabbenhoft, D., King, S., Dighton, J., Geesey, G., Barkay, T., " Environmental conditions constrain the distribution and diversity of archaeal merA in Yellowstone National Park, Wyoming, U.S.A ". Microbial Ecology 62 (4), 739-52. (2011)
[ 89 ] Wang, Y., Wiatrowski, H.A., John, R., Lin, C.C., Young, L.Y., Kerkhof, L.J., Yee, N., Barkay, T., " Impact of mercury on denitrification and denitrifying microbial communities in nitrate enrichments of subsurface sediments ". Biodegradation 24 (1), 33-46. (2013)
[ 90 ] Who, Future Use of Materials for Dental Restoration. (2011)
[ 91 ] Who, " Mercury and health ". (2012)
[ 92 ] Wiatrowski, H.A., Das, S., Kukkadapu, R., Ilton, E.S., Barkay, T., Yee, N., " Reduction of Hg(II) to Hg(0) by Magnetite ". Environmental Science & Technology 43 (14), 5307-5313. (2009)
[ 93 ] Wiatrowski, H.A., Ward, P.M., Barkay, T., " Novel reduction of mercury (II) by mercury-sensitive dissimilatory metal reducing bacteria ". Environmental Science & Technology 40 (21), 6690-6. (2006)
[ 94 ] Yu, Q., Szymanowski, J., Myneni, S.C.B., Fein, J.B., " Characterization of sulfhydryl sites within bacterial cell envelopes using selective site-blocking and potentiometric titrations ". Chemical Geology 373, 50-58. (2014)
[ 95 ] Zheng, W., Liang, L., Gu, B., " Mercury reduction and oxidation by reduced natural organic matter in anoxic environments ". Environmental Science & Technology 46 (1), 292-9. (2012)
[ 96 ] Zheng, W., Lin, H., Mann, B.F., Liang, L., Gu, B., " Oxidation of dissolved elemental mercury by thiol compounds under anoxic conditions ". Environmental Science & Technology 47 (22), 12827-34. (2013)
[ 97 ] 廖炳傑, " 異化性鐵還原狀態下非生物性汞氧化還原作用及其對地下水水質之影響 ". 國立中央大學碩士論文. (2014) |