博碩士論文 102326008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:97 、訪客IP:3.135.207.137
姓名 李靖婷(Jing-Ting Li)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 汞於脫硝狀態下之氧化還原作用
(Mercury redox transformations under denitrifying conditions)
相關論文
★ 埔心溪補助灌溉水水質與渠道底泥重金屬含量調查分析★ 桃園航空城三所國小周界大氣PAHs濃度探討
★ 無塵室揮發性有機氣體異味調查探討 -以某晶圓級封裝廠為例★ 利用土壤植栽與固相微萃取探討植作對非離子態有機污染物之吸收模式
★ 零價鐵與硫酸鹽的添加對於水田根圈環境汞 之生物有效性與菌相組成的影響★ 以紫外光/二氧化鈦光催化降解程序去除水溶液相內分泌干擾物質壬基苯酚之研究
★ 異化性鐵還原狀態下非生物性汞氧化還原 作用及其對地下水水質之影響★ 水溶液相中多壁奈米碳管分散懸浮與抑菌效果之相關性探討
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用-以北投垃圾焚化爐為例★ 以淨水污泥灰及廢玻璃為矽鋁源合成MCM-41並應用於重鉻酸鹽吸附之研究
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用 -以台中火力發電廠為例★ 細胞固定化影響厭氧氨氧化程序脫氮效能之研究
★ 藉由非抗性模式細菌對鎘之攝取機制探討量子點的生態毒性潛勢★ 利用生物性聚合物交聯所成穿透式網絡結構穩定污染土壤中之重金屬(鉛、鉻、鎘)
★ 蚯蚓處理加速堆肥廚餘去化可行性評估-以臺北市為例★ 氣相層析三段四極柱串聯質譜儀應用於多溴二苯醚環境樣品之分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 汞雖不具任何生物性功能,但在其複雜的環境生地化循環過程中,多數關鍵性的反應乃受到微生物直接或間接的操控。截至目前為止,汞與微生物之間的交互作用研究最為透徹的,乃是原核生物細胞內「汞抗性操作子」(mer operon)中可將二價汞還原成元素汞的汞還原酶(MerA)運轉機制,然此抗汞機制於脫硝狀態下的表現為何、對於汞最後的化性與移動性的影響為何,文獻上幾無相關資訊可得。由於地下水受硝酸鹽污染已成為世界各地最常見的地下水污染問題之一,且多種污染物共存於地下環境的情況並非罕見,再加上近期文獻指出元素汞在缺氧環境中可因天然有機物、微生物分泌物或其細胞膜套上的硫醇官能基氧化成二價汞,因此釐清地下含水層於脫硝狀態下汞受到MerA及硫醇化合物的衝擊程度即顯得有其必要性與時效性。為此,本研究利用基因全組具有汞抗性操作子的脫硝菌Cupriavidus metallidurans CH34,以及剔除其汞抗性基因群所成的變種菌C. metallidurans AE104為模式生物,設計厭氧汞添加培養試驗,深入了解「汞物種」、「脫硝菌」、以及「汞抗性操作子」彼此間在硝酸鹽還原狀態封閉系統中的相互影響作用,盼進一步推估汞在地下飽和層於此狀態下可能的污染擴散。實驗結果證實,雖然在高濃度二價汞的情況下CH34會立即誘導汞抗性操作子以進行汞還原作用,但隨著系統內菌數的增加使得附屬於細胞被膜上的硫醇濃度跟著上升,反而造成原本經還原作用所產生的元素汞發生再氧化的現象,且當進一步以元素汞作為汞來源時仍可觀察到此氧化現象,證實主要是因細胞膜上的硫醇作用所致。本研究結果意味著若地下含水層中的汞在脫硝狀態時即使有汞還原酶的存在,最終仍可能因為元素汞與細胞硫醇基鍵結生成錯合型二價汞,而降低整體汞的流佈與傳輸,亦即有無汞還原酶。
摘要(英) Although mercury (Hg) is a toxic element with no known biological role, it has been widely acknowledged that of various Hg biogeochemical transformations that undergo once Hg is released to the environment, microorganisms play a key role in controlling many of these important reactions by direct or indirect means. To date, the most well characterized interaction between Hg and microbes has been conferred by the Hg resistance (mer) operon, which is an inducible genetic system that encodes a mercuric reductase (MerA) catalyzing the reduction of oxidized Hg, i.e., Hg(II), to elemental Hg, i.e., Hg(0). However, while mer-mediated microbial reduction of Hg(II) has been extensively studied in aerobic resistant prokaryotes, at present little is known about mer activities under denitrifying conditions, particularly how the expressions of merA affect the ultimate chemistry and mobility of Hg in a confined (closed) system such as the aquifer. Given that (i) nitrate has been considered as one of the most commonly occurring pollutants in worldwide groundwater contamination scenarios, (ii) coexistence of two or multiple pollutants in the aquifer is not rare, and (iii) lately anaerobic oxidation of Hg(0) by thiol moieties associated with natural organic matter, cell exudates and the cell envelope has been reported, it is critical and timely to investigate how the behavior of Hg is influenced by MerA and thiolates concurrently in anoxic groundwater environments. In this study, laboratory incubation experiments were conducted using Cupriavidus metallidurans CH34, a denitrifying bacterium that harbors mer operon, and its mutant strain AE104 that lacks mer operon in the genome as the model organisms grown under nitrate-reducing conditions with spike of either Hg(II) or Hg(0) to investigate the interactions among Hg species, denitrifying cells and MerA, and the resulting effect that can be useful in predicting Hg movement in the aquifer. Results showed that while Hg(II) was reduced rapidly to Hg(0) by MerA in the presence of elevated Hg(II) levels, the extent on which Hg(0) was re-oxidized back to Hg(II) was proportional to the growth of cells, presumably due to the increase in the quantity of cell associated thiols. This thiol-induced oxidative complexation between Hg(0) and thiols on cells was further confirmed when Hg(0) was introduced into the culture as one of the Hg sources for the bacteria to react with. These results suggest that under nitrate-reducing conditions, the presence of MerA most likely has little impact on Hg mobility in the saturated zone of aquifers.
關鍵字(中) ★ 脫硝狀態
★ 汞氧化還原
★ 汞抗性操作子
★ 硫醇基團
關鍵字(英) ★ denitrifying conditions
★ Hg redox transformations
★ mer operon
★ thiol compounds
論文目次 第一章 前言 1
1.1 研究源起 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 環境中的汞排放來源 4
2.2 環境中汞的毒性及危害性 5
2.3 環境中汞的氧化還原循環 7
2.3.1 汞的還原反應 8
2.3.2 汞的氧化反應 11
2.4 汞於土壤及地下水之移動性 13
2.5 地下含水層硝酸鹽污染及共同污染案例 14
第三章 實驗材料、設備與方法 16
3.1 實驗材料與儀器設備 16
3.1.1 實驗藥劑 16
3.1.2 儀器與設備 18
3.2 試驗培養基成份配製 20
3.3 試驗之模式生物 23
3.4 分子生物試驗 25
3.4.1 純菌DNA萃取 25
3.4.2 PCR基因放大及電泳 26
3.5 汞添加培養試驗 28
3.6 分析方法 30
3.6.1 總汞分析 30
3.6.2 硝酸鹽濃度分析 32
3.6.3 亞硝酸鹽濃度分析 33
第四章 結果與討論 35
4.1 Cupriavidus metallidurans的merA基因鑑定 35
4.2 微生物之毒性試驗 39
4.3 Purge & trap 回收率試驗 42
4.4 汞氧化還原轉換探討-汞添加試驗 46
4.4.1 Hg(II) 添加試驗 47
4.4.1.1 低汞濃度添加 (10 μg/L) 48
4.4.1.2 高汞濃度添加 (3 mg/L) 54
4.4.2 Hg(0) 添加試驗 63
第五章 結論與建議 70
5.1 結論 70
5.2 建議 70
參考文獻 72
參考文獻 [ 1 ] Akob, D.M., Mills, H.J., Gihring, T.M., Kerkhof, L., Stucki, J.W., Anastacio, A.S., Chin, K.J., Kusel, K., Palumbo, A.V., Watson, D.B., Kostka, J.E., " Functional diversity and electron donor dependence of microbial populations capable of U(VI) reduction in radionuclide-contaminated subsurface sediments ". Applied and Environmental Microbiology 74 (10), 3159-70. (2008)
[ 2 ] Allard, B., Arsenie, I., " Abiotic reduction of mercury by humic substances in aquatic system — an important process for the mercury cycle ". Water Air & Soil Pollution 56 (1), 457-464. (1991)
[ 3 ] Amap/Unep, Technical Background Report to the Global Atmospheric Mercury Assessment., Arctic Monitoring and Assessment Programme/UNEP Chemicals Branch. (2008)
[ 4 ] Amyot, M., Gill, G.A., Morel, F.M.M., " Production and loss of dissolved gaseous mercury in coastal seawater ". Environmental Science & Technology 31 (12), 3606-3611. (1997)
[ 5 ] Amyot, M., Morel, F.M., Ariya, P.A., " Dark oxidation of dissolved and liquid elemental mercury in aquatic environments ". Environmental Science & Technology 39 (1), 110-4. (2005)
[ 6 ] Bakir, F., Damluji, S.F., Amin-Zaki, L., Murtadha, M., Khalidi, A., Al-Rawi, N.Y., Tikriti, S., Dhahir, H.I., Clarkson, T.W., Smith, J.C., Doherty, R.A., " Methylmercury Poisoning in Iraq ". Science 181 (4096), 230-241. (1973)
[ 7 ] Barkay, T., Gillman, M., Turner, R.R., " Effects of dissolved organic carbon and salinity on bioavailability of mercury ". Applied and Environmental Microbiology 63 (11), 4267-71. (1997)
[ 8 ] Barkay, T., Kritee, K., Boyd, E., Geesey, G., " A thermophilic bacterial origin and subsequent constraints by redox, light and salinity on the evolution of the microbial mercuric reductase ". Environmental Microbiology 12 (11), 2904-17. (2010)
[ 9 ] Barkay, T., Miller, S.M., Summers, A.O., " Bacterial mercury resistance from atoms to ecosystems ". FEMS Microbiology Reviews 27 (2-3), 355-384. (2003)
[ 10 ] Barkay, T., Wagner-Dobler, I., " Microbial transformations of mercury: potentials, challenges, and achievements in controlling mercury toxicity in the environment ". Advances in Applied Microbiology 57, 1-52. (2005)
[ 11 ] Barringer, J.L., Szabo, Z., " Overview of investigations into mercury in ground water, soils, and septage, new jersey coastal plain ". Water Air & Soil Pollution 175 (1-4), 193-221. (2006)
[ 12 ] Barringer, J.L., Szabo, Z., A, P.," Occurrence and Mobility of Mercury in Groundwater ". Current Perspectives in Contaminant Hydrology and Water Resources Sustainability. (2013)
[ 13 ] Benoit, J.M., Gilmour, C.C., Heyes, A., Mason, R.P., Miller, C.L.," Geochemical and Biological Controls over Methylmercury Production and Degradation in Aquatic Ecosystems ". Biogeochemistry of Environmentally Important Trace Elements. pp. 262-297. (2003)
[ 14 ] Brooks, S.C., " Waste characteristics of the former S-3 ponds and outline of uranium chemistry relevant to NABIR field research center studies ". (2001)
[ 15 ] Burow, K.R., Nolan, B.T., Rupert, M.G., Dubrovsky, N.M., " Nitrate in groundwater of the United States, 1991-2003 ". Environmental Science & Technology 44 (13), 4988-97. (2010)
[ 16 ] Caccavo, F., Jr., Lonergan, D.J., Lovley, D.R., Davis, M., Stolz, J.F., Mcinerney, M.J., " Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism ". Applied and Environmental Microbiology 60 (10), 3752-9. (1994)
[ 17 ] Carter, J.P., Hsaio, Y.H., Spiro, S., Richardson, D.J., " Soil and sediment bacteria capable of aerobic nitrate respiration ". Applied and Environmental Microbiology 61 (8), 2852-8. (1995)
[ 18 ] Cataldo, D.A., Maroon, M., Schrader, L.E., Youngs, V.L., " Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid ". Communications in Soil Science and Plant Analysis 6 (1), 71-80. (2008)
[ 19 ] Charlet, L., Bosbach, D., Peretyashko, T., " Natural attenuation of TCE, As, Hg linked to the heterogeneous oxidation of Fe(II): an AFM study ". Chemical Geology 190 (1-4), 303-319. (2002)
[ 20 ] Colombo, M.J., Ha, J., Reinfelder, J.R., Barkay, T., Yee, N., " Oxidation of Hg(0) to Hg(II) by diverse anaerobic bacteria ". Chemical Geology 363, 334-340. (2014)
[ 21 ] Colombo, M.J., Ha, J.Y., Reinfelder, J.R., Barkay, T., Yee, N., " Anaerobic oxidation of Hg(0) and methylmercury formation by Desulfovibrio desulfuricans ND132 ". Geochimica Et Cosmochimica Acta 112, 166-177. (2013)
[ 22 ] Compeau, G.C., Bartha, R., " Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment ". Applied and Environmental Microbiology 50 (2), 498-502. (1985)
[ 23 ] Driscoll, C.T., Mason, R.P., Chan, H.M., Jacob, D.J., Pirrone, N., " Mercury as a Global Pollutant: Sources, Pathways, and Effects ". Environmental Science & Technology 47 (10), 4967-4983. (2013)
[ 24 ] Fitzgerald, W.F., Engstrom, D.R., Mason, R.P., Nater, E.A., " The case for atmospheric mercury contamination in remote areas ". Environmental Science & Technology 32 (1), 1-7. (1998)
[ 25 ] Fitzgerald, W.F., Lamborg, C.H., " Geochemistry of Mercury in the Environment ". Treatise on Geochemistry 9, 107-148. (2003)
[ 26 ] Foster, S.S.D., " The Ninth Ineson Lecture: Assessing and Controlling the Impacts of Agriculture on Groundwater--from Barley Barons to Beef Bans ". Quarterly Journal of Engineering Geology and Hydrogeology 33 (4), 263-280. (2000)
[ 27 ] Gai, K., Hoelen, T.P., Hsu-Kim, H., Lowry, G.V., " Mobility of Four Common Mercury Species in Model and Natural Unsaturated Soils ". Environmental Science & Technology 50 (7), 3342-51. (2016)
[ 28 ] Gilmour, C.C., Podar, M., Bullock, A.L., Graham, A.M., Brown, S.D., Somenahally, A.C., Johs, A., Hurt, R.A., Jr., Bailey, K.L., Elias, D.A., " Mercury methylation by novel microorganisms from new environments ". Environmental Science & Technology 47 (20), 11810-20. (2013)
[ 29 ] Golding, G.R., Kelly, C.A., Sparling, R., Loewen, P.C., Rudd, J.W.M., Barkay, T., " Evidence for facilitated uptake of Hg(II) byVibrio anguillarumandEscherichia coliunder anaerobic and aerobic conditions ". Limnology and Oceanography 47 (4), 967-975. (2002)
[ 30 ] Grassi, S., Netti, R., " Sea water intrusion and mercury pollution of some coastal aquifers in the province of Grosseto (Southern Tuscany — Italy) ". Journal of Hydrology 237 (3-4), 198-211. (2000)
[ 31 ] Gray, J.E., Hines, M.E., " Mercury: Distribution, transport, and geochemical and microbial transformations from natural and anthropogenic sources ". Applied Geochemistry 21 (11), 1819-1820. (2006)
[ 32 ] Green, S.J., Prakash, O., Gihring, T.M., Akob, D.M., Jasrotia, P., Jardine, P.M., Watson, D.B., Brown, S.D., Palumbo, A.V., Kostka, J.E., " Denitrifying bacteria isolated from terrestrial subsurface sediments exposed to mixed-waste contamination ". Applied and Environmental Microbiology 76 (10), 3244-54. (2010)
[ 33 ] Gu, B., Bian, Y., Miller, C.L., Dong, W., Jiang, X., Liang, L., " Mercury reduction and complexation by natural organic matter in anoxic environments ". Proceedings of the National Academy of Sciences of the United States of America 108 (4), 1479-83. (2011)
[ 34 ] Hamelin, S., Amyot, M., Barkay, T., Wang, Y., Planas, D., " Methanogens: principal methylators of mercury in lake periphyton ". Environmental Science & Technology 45 (18), 7693-700. (2011)
[ 35 ] Harada, M., " Minamata disease: methylmercury poisoning in Japan caused by environmental pollution ". Critical Reviews in Toxicology 25 (1), 1-24. (1995)
[ 36 ] Harris, R.C., Rudd, J.W., Amyot, M., Babiarz, C.L., Beaty, K.G., Blanchfield, P.J., Bodaly, R.A., Branfireun, B.A., Gilmour, C.C., Graydon, J.A., Heyes, A., Hintelmann, H., Hurley, J.P., Kelly, C.A., Krabbenhoft, D.P., Lindberg, S.E., Mason, R.P., Paterson, M.J., Podemski, C.L., Robinson, A., Sandilands, K.A., Southworth, G.R., St Louis, V.L., Tate, M.T., " Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition ". Proceedings of the National Academy of Sciences of the United States of America 104 (42), 16586-91. (2007)
[ 37 ] Holm, H.W., Cox, M.F., " Transformation of elemental mercury by bacteria ". Applied Microbiology 29 (4), 491-4. (1975)
[ 38 ] Hsu-Kim, H., Kucharzyk, K.H., Zhang, T., Deshusses, M.A., " Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: a critical review ". Environmental Science & Technology 47 (6), 2441-56. (2013)
[ 39 ] Hu, H.Y., Lin, H., Zheng, W., Tomanicek, S.J., Johs, A., Feng, X.B., Elias, D.A., Liang, L.Y., Gu, B.H., " Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria ". Nature Geoscience 6 (9), 751-754. (2013)
[ 40 ] Kerin, E.J., Gilmour, C.C., Roden, E., Suzuki, M.T., Coates, J.D., Mason, R.P., " Mercury methylation by dissimilatory iron-reducing bacteria ". Applied and Environmental Microbiology 72 (12), 7919-21. (2006)
[ 41 ] Kim, K.H., Kabir, E., Jahan, S.A., " A review on the distribution of Hg in the environment and its human health impacts ". Journal of Hazardous Materials 306, 376-85. (2016)
[ 42 ] Krabbenhoft, D.P., Sunderland, E.M., " Global Change and Mercury ". Science 341 (6153), 1457-1458. (2013)
[ 43 ] Lalonde, J.D., Amyot, M., Kraepiel, A.M., Morel, F.M., " Photooxidation of Hg(0) in artificial and natural waters ". Environmental Science & Technology 35 (7), 1367-72. (2001)
[ 44 ] Lalonde, J.D., Amyot, M., Orvoine, J., Morel, F.M., Auclair, J.C., Ariya, P.A., " Photoinduced oxidation of Hg0(aq) in the waters from the St. Lawrence estuary ". Environmental Science & Technology 38 (2), 508-14. (2004)
[ 45 ] Lane, D.J., " 16S/23S rRNA sequencing. ". In Nucleic acid techniques in bacterial systematics, pp 115-175. (1991)
[ 46 ] Lin, C.-C., Yee, N., Barkay, T.," Microbial Transformations in the Mercury Cycle ". Environmental Chemistry and Toxicology of Mercury. pp. 155-191. (2012)
[ 47 ] Lin, C.-J., Pehkonen, S.O., " The chemistry of atmospheric mercury: a review ". Atmospheric Environment 33 (13), 2067-2079. (1999)
[ 48 ] Lin, H., Morrell-Falvey, J.L., Rao, B., Liang, L., Gu, B., " Coupled mercury-cell sorption, reduction, and oxidation on methylmercury production by Geobacter sulfurreducens PCA ". Environmental Science & Technology 48 (20), 11969-76. (2014)
[ 49 ] Liu, G., Cai, Y., O′driscoll, N., Feng, X., Jiang, G.," Overview of Mercury in the Environment ". Environmental Chemistry and Toxicology of Mercury. pp. 1-12. (2012)
[ 50 ] Magos, L., Clarkson, T.W., " Overview of the clinical toxicity of mercury ". Annals of Clinical Biochemistry 43 (4), 257-68. (2006)
[ 51 ] Mason, R.P.," Mercury emissions from natural processes and their importance in the global mercury cycle ". Mercury Fate and Transport in the Global Atmosphere. pp. 173-191. (2009)
[ 52 ] Mason, R.P., Fitzgerald, W.F., Morel, F.M.M., " The Biogeochemical Cycling of Elemental Mercury - Anthropogenic Influences ". Geochimica et Cosmochimica Acta 58 (15), 3191-3198. (1994)
[ 53 ] Mergeay, M., Nies, D., Schlegel, H.G., Gerits, J., Charles, P., Van Gijsegem, F., " Alcaligenes eutrophus CH34 Is a Facultative Chemolithotroph with Plasmid-Bound Resistance to Heavy Metals ". Journal of Bacteriology 162 (1), 328-334. (1985)
[ 54 ] Monchy, S., Benotmane, M.A., Janssen, P., Vallaeys, T., Taghavi, S., Van Der Lelie, D., Mergeay, M., " Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals ". Journal of Bacteriology 189 (20), 7417-25. (2007)
[ 55 ] Morel, F.M.M., Kraepiel, A.M.L., Amyot, M., " The Chemical Cycle and Bioaccumulation of Mercury ". Annual Review of Ecology and Systematics 29 (1), 543-566. (1998)
[ 56 ] Murphy, E.A., Dooley, J., Windom, H.L., Smith, R.G., " Mercury Species in Potable Ground-Water in Southern New-Jersey ". Water Air & Soil Pollution 78 (1-2), 61-72. (1994)
[ 57 ] Muskal, N., Mandler, D., " Thiol self-assembled monolayers on mercury surfaces: the adsorption and electrochemistry of omega-mercaptoalkanoic acids ". Electrochimica Acta 45 (4-5), 537-548. (1999)
[ 58 ] Muskal, N., Turyan, I., Mandler, D., " Self-assembled monolayers on mercury surfaces ". Electroanalytical Chemistry 409 (1-2), 131-136. (1996)
[ 59 ] Najera, I., Lin, C.C., Kohbodi, G.A., Jay, J.A., " Effect of chemical speciation on toxicity of mercury to Escherichia coli biofilms and planktonic cells ". Environmental Science & Technology 39 (9), 3116-20. (2005)
[ 60 ] Ni Chadhain, S.M., Schaefer, J.K., Crane, S., Zylstra, G.J., Barkay, T., " Analysis of mercuric reductase (merA) gene diversity in an anaerobic mercury-contaminated sediment enrichment ". Environmental Microbiology 8 (10), 1746-52. (2006)
[ 61 ] Nocker, A., Burr, M., Camper, A.K., " Genotypic microbial community profiling: a critical technical review ". Microbial Ecology 54 (2), 276-89. (2007)
[ 62 ] Nriagu, J.O., " Mechanistic Steps in the Photoreduction of Mercury in Natural-Waters ". Science of the Total Environment 154 (1), 1-8. (1994)
[ 63 ] Pacyna, E.G., Pacyna, J.M., Steenhuisen, F., Wilson, S., " Global anthropogenic mercury emission inventory for 2000 ". Atmospheric Environment 40 (22), 4048-4063. (2006)
[ 64 ] Pacyna, E.G., Pacyna, J.M., Sundseth, K., Munthe, J., Kindbom, K., Wilson, S., Steenhuisen, F., Maxson, P., " Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020 ". Atmospheric Environment 44 (20), 2487-2499. (2010)
[ 65 ] Parks, J.M., Johs, A., Podar, M., Bridou, R., Hurt, R.A., Jr., Smith, S.D., Tomanicek, S.J., Qian, Y., Brown, S.D., Brandt, C.C., Palumbo, A.V., Smith, J.C., Wall, J.D., Elias, D.A., Liang, L., " The genetic basis for bacterial mercury methylation ". Science 339 (6125), 1332-5. (2013)
[ 66 ] Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R.B., Friedli, H.R., Leaner, J., Mason, R., Mukherjee, A.B., Stracher, G.B., Streets, D.G., Telmer, K., " Global mercury emissions to the atmosphere from anthropogenic and natural sources ". Atmospheric Chemistry and Physics 10 (13), 5951-5964. (2010)
[ 67 ] Protano, G., Riccobono, F., Sabatini, G., " Does salt water intrusion constitute a mercury contamination risk for coastal fresh water aquifers? ". Environmental Pollution 110 (3), 451-458. (2000)
[ 68 ] Ratasuk, N., Nanny, M.A., " Characterization and quantification of reversible redox sites in humic substances ". Environmental Science & Technology 41 (22), 7844-50. (2007)
[ 69 ] Rittmann, B.E., Mccarty, P.L.," Environmental Biotechnology: Principles and Applications. ". McGraw-Hill. (2001)
[ 70 ] Rivett, M.O., Buss, S.R., Morgan, P., Smith, J.W., Bemment, C.D., " Nitrate attenuation in groundwater: a review of biogeochemical controlling processes ". Water Research 42 (16), 4215-32. (2008)
[ 71 ] Rudrik, J.T., Bawdon, R.E., Guss, S.P., " Determination of mercury and organomercurial resistance in obligate anaerobic bacteria ". Microbiology 31 (3), 276-81. (1985)
[ 72 ] Schaefer, J.K., Letowski, J., Barkay, T., " mer-mediated resistance and Volatilization of Hg(II) under anaerobic conditions ". Geomicrobiology Journal 19 (1), 87-102. (2002)
[ 73 ] Schaefer, J.K., Yagi, J., Reinfelder, J.R., Cardona, T., Ellickson, K.M., Tel-Or, S., Barkay, T., " Role of the Bacterial Organomercury Lyase (MerB) in Controlling Methylmercury Accumulation in Mercury-Contaminated Natural Waters ". Environmental Science & Technology 38 (16), 4304-4311. (2004)
[ 74 ] Schluter, K., " Review: evaporation of mercury from soils. An integration and synthesis of current knowledge ". Environmental Geology 39 (3-4), 249-271. (2000)
[ 75 ] Selin, N.E., " Global Biogeochemical Cycling of Mercury: A Review ". Annual Review of Environment and Resources 34 (1), 43-63. (2009)
[ 76 ] Senko, J.M., Istok, J.D., Suflita, J.M., Krumholz, L.R., " In-situ evidence for uranium immobilization and remobilization ". Environmental Science & Technology 36 (7), 1491-6. (2002)
[ 77 ] Siciliano, S.D., O′driscoll, N.J., Lean, D.R., " Microbial reduction and oxidation of mercury in freshwater lakes ". Environmental Science & Technology 36 (14), 3064-8. (2002)
[ 78 ] Silver, S., Phung Le, T., " A bacterial view of the periodic table: genes and proteins for toxic inorganic ions ". Industrial Microbiology & Biotechnology 32 (11-12), 587-605. (2005)
[ 79 ] Skogerboe, R.K., Wilson, S.A., " Reduction of ionic species by fulvic acid ". Analytical Chemistry 53 (2), 228-232. (1981)
[ 80 ] Skyllberg, U., " Chemical Speciation of Mercury in Soil and Sediment ". Environmental Chemistry and Toxicology of Mercury, 219-258. (2012)
[ 81 ] Smith, T., Pitts, K., Mcgarvey, J.A., Summers, A.O., " Bacterial oxidation of mercury metal vapor, Hg(0) ". Applied and Environmental Microbiology 64 (4), 1328-32. (1998)
[ 82 ] St. Louis, V.L., Rudd, J.W.M., Kelly, C.A., Beaty, K.G., Flett, R.J., Roulet, N.T., " Production and Loss of Methylmercury and Loss of Total Mercury from Boreal Forest Catchments Containing Different Types of Wetlands† ". Environmental Science & Technology 30 (9), 2719-2729. (1996)
[ 83 ] Stein, E.D., Cohen, Y., Winer, A.M., " Environmental distribution and transformation of mercury compounds ". Critical Reviews in Environmental Science and Technology 26 (1), 1-43. (2009)
[ 84 ] Unep, " U.N. Environment Programme DTI/1636/GE ". (2013)
[ 85 ] Usepa, " Mercury: Laws and Regulations ". (2012)
[ 86 ] Wakida, F.T., Lerner, D.N., " Non-agricultural sources of groundwater nitrate: a review and case study ". Water Research 39 (1), 3-16. (2005)
[ 87 ] Wang, Q., Kim, D., Dionysiou, D.D., Sorial, G.A., Timberlake, D., " Sources and remediation for mercury contamination in aquatic systems--a literature review ". Environmental Pollution 131 (2), 323-36. (2004)
[ 88 ] Wang, Y., Boyd, E., Crane, S., Lu-Irving, P., Krabbenhoft, D., King, S., Dighton, J., Geesey, G., Barkay, T., " Environmental conditions constrain the distribution and diversity of archaeal merA in Yellowstone National Park, Wyoming, U.S.A ". Microbial Ecology 62 (4), 739-52. (2011)
[ 89 ] Wang, Y., Wiatrowski, H.A., John, R., Lin, C.C., Young, L.Y., Kerkhof, L.J., Yee, N., Barkay, T., " Impact of mercury on denitrification and denitrifying microbial communities in nitrate enrichments of subsurface sediments ". Biodegradation 24 (1), 33-46. (2013)
[ 90 ] Who, Future Use of Materials for Dental Restoration. (2011)
[ 91 ] Who, " Mercury and health ". (2012)
[ 92 ] Wiatrowski, H.A., Das, S., Kukkadapu, R., Ilton, E.S., Barkay, T., Yee, N., " Reduction of Hg(II) to Hg(0) by Magnetite ". Environmental Science & Technology 43 (14), 5307-5313. (2009)
[ 93 ] Wiatrowski, H.A., Ward, P.M., Barkay, T., " Novel reduction of mercury (II) by mercury-sensitive dissimilatory metal reducing bacteria ". Environmental Science & Technology 40 (21), 6690-6. (2006)
[ 94 ] Yu, Q., Szymanowski, J., Myneni, S.C.B., Fein, J.B., " Characterization of sulfhydryl sites within bacterial cell envelopes using selective site-blocking and potentiometric titrations ". Chemical Geology 373, 50-58. (2014)
[ 95 ] Zheng, W., Liang, L., Gu, B., " Mercury reduction and oxidation by reduced natural organic matter in anoxic environments ". Environmental Science & Technology 46 (1), 292-9. (2012)
[ 96 ] Zheng, W., Lin, H., Mann, B.F., Liang, L., Gu, B., " Oxidation of dissolved elemental mercury by thiol compounds under anoxic conditions ". Environmental Science & Technology 47 (22), 12827-34. (2013)
[ 97 ] 廖炳傑, " 異化性鐵還原狀態下非生物性汞氧化還原作用及其對地下水水質之影響 ". 國立中央大學碩士論文. (2014)
指導教授 林居慶(Chu-Ching Lin) 審核日期 2016-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明