博碩士論文 103223021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:103 、訪客IP:13.58.220.44
姓名 涂勝富(Sheng-Fu Tu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 有機太陽能電池元件的優化探討
相關論文
★ 導電高分子應用於鋁質電解電容器之研究★ 異参茚并苯衍生物合成與性質之研究
★ 含雙吡啶或二氮雜啡衍生物配位 基之釕金屬錯合物的合成與其在 染料敏化太陽能電池之應用★ 新型噻吩環戊烷有機染料於染料敏化太陽能電池之應用
★ 應用於染料敏化太陽能電池之新型釕金屬錯合物的合成與性質探討★ 釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用
★ 染敏電池用之非對稱釕錯合物之輔助配位基的設計與合成★ 含雙噻吩環戊烷之電變色高分子的研究
★ 含噻吩衍生物非對稱方酸染料應用於染料敏化 太陽能電池★ 高品質導電聚苯胺薄膜的合成及應用
★ 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討★ 具多功能性之非對稱型釕錯合物的設計與合成並應用於染料敏化太陽能電池
★ 含乙烯噻吩固著配位基之非對稱型釕金屬錯合物應用於染料敏化太陽能電池★ 染料敏化太陽能電池用二茂鐵系統電解質的探討
★ 合成含喹啉衍生物非對稱方酸染料應用於染料敏化太陽能電池★ 合成新穎輔助配位基於無硫氰酸釕金屬光敏劑在染料敏化太陽能電池上的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 有機太陽能電池(Organic Photovoltaics, OPV)因具有可撓曲性、重量輕且低成本等優點,而備受學術界與工業界矚目。增加OPV光電轉換效率的方法之一是在活性層材料溶液中加入添加劑,或使用第三種有機固體材料製備活性層來增加元件的光電轉換效率。本論文利用本實驗室所合成的兩系列化合物(小分子與高分子)作為OPV的P-型材料或固體有機添加劑來組裝元件,尋找最佳元件組裝條件。在以二酮吡咯並吡咯結構為主的小分子SM系列中,SM2/PC61BM混合的活性層分別加入1,8-diiodooctane (DIO)與1-chloronaphthalene (1-CN)添加劑,所組裝之反式元件光電轉換效率可達0.71%及0.29%。以SM2:P3HT:PC61BM(重量比0.1:0.9:1)的三元組成為活性層之電池的光電轉換效率可達到3.30%。以苯並二噻吩結構為主體的高分子(P8、P10、P11),在P8/PC61BM及P11/PC61BM活性層中加入1 vol%的 DIO添加劑與在P10/PC61BM加入7 vol% 1-CN添加劑,所組裝之反式元件光電轉換效率最高分別可達1.85% (P8)、1.10% (P10)、3.48% (P11)。此外,不管是小分子或高分子材料,最佳轉速約在1000 rpm附近,小分子與高分子所製作之活性層熱退火條件顯著不同,而最佳P/N型材料混合比例與活性層起始溶液濃度則無規則可循。有趣的是以DIO作為添加劑時,最佳濃度為1 vol%但最佳1-CN添加劑濃度則隨化合物不同而有異。
摘要(英) Organic Photovoltaics (OPVs) have been attracted lots of attention because of the flexibility, lightweight and low fabrication cost. There are two main approaches used to improve the power conversion efficiency (PCE) of OPVs: adding additive in the active layers or adding third component in the active layer to fabricate ternary solar cell.In this thesis, the two series of compounds (small molecules and polymers), which were synthesized in our group, were used in OPVs as the donor or additive. For the diketopyrrolopyrrole based small molecule (SM), the highest PCE of the inverted SM2:PCBM based photovltaics with an additive of the 1,8-diiocooctane (1-chloronaphathalene) was 0.71% (0.29%). In the SM2:P3HT:PCBM (0.1:0.9:1 wt%) based ternary solar cells, a moderate PCE of 3.30% can be achieved. For the benzodithiophene based polymers (P8, P10, P11), the optimal PCE of the inverted P11/PC61BM based solar cells is 3.48%. The PCE of the P11/PC61BM based solar cells is 3.48% when the 1,8-diiocooctane (1 vol%) is added as the additive.There is a universal spin rate (~ 1000 rpm) for the fabrications of the active layer for SM molecules and polymers. The optimal thermal annealing conditions for the active layer based on SM molecules and polymers are not tha same. There is no a rule that can be obeyed to find out the optimized donor/acceptor ratio and concentration of the active layers. It is notice that the optimal PCE of the all solar cells can be achieved when the 1,8-diiocooctane (1 vol%) is used as the additive but no optimal concentration for the 1-chloronaphathalene additive.
關鍵字(中) ★ 有機太陽能電池
★ 添加劑
關鍵字(英) ★ Organic Photovoltaics
★ additive
論文目次 第一章、緒論..............................................1
1.1前言..................................................1
1.2 太陽能電池的種類介紹..................................1
1.3 有機太陽能電池 (Organic Photovoltaic)................ 2
1.4 有機太陽能電池元件的架構..............................4
1.5 太陽能電池工作原理...................................7
1.6 太陽能電池的光電參數.................................9
1.7太陽能電池的研究相關文獻探討..........................13
1.8 研究動機............................................23
第二章、實驗部分.........................................25
2.1 實驗所需藥品、器材與儀器..............................25
2.1.1 實驗藥品...........................................25
2.1.2 實驗器材...........................................28
2.1.3 實驗儀器...........................................28
2.2 氧化鋅前驅物溶液製備與活性層溶液製備...................29
2.2.1 氧化鋅前驅物溶液製備................................29
2.2.2 活性層溶液製備......................................29
2.3 有機太陽能電池元件製作................................30
2.3.1 一般式有機太陽能電池元件的製作.......................30
2.3.2 反式有機太陽能電池元件的製作.........................31
2.4 儀器分析與測量樣品製備................................33
2.4.1太陽光模擬器與光電轉換效率測量........................33
2.4.2紫外光-可見光-近紅外光吸收光譜儀......................34
第三章、結果與討論........................................36
3.1含Diketopyrrolopyrrole結構的小分子(SM系列分子)之活性層優化 ........................................................36
3.1.1 SM1、SM2、SM3、SM6材料前置軌域能階、可見光吸收光譜及組裝成元件時的光伏表現..........................................36
3.1.2以SM2為P-型材料,在不同轉速下製備活性層,組裝成一般式太陽能電池元件時的光伏表現........................................41
3.1.3不同活性層起始溶液濃度所組裝之一般式太陽能電池元件的光伏表現 .........................................................42
3.1.4以SM2為P-型材料組裝成反式太陽能電池元件時,在活性層起始溶液中加入不同添加劑對元件的影響 .................................44
3.1.5活性層起始溶液中加入不同量之添加劑所組裝之反式太陽能電池的光伏表現...................................................45
3.1.6以SM1/P3HT/PC61BM組裝成三元有機光伏電池的探討.........47
3.1.7以SM2/P3HT/PC61BM組裝成三元有機光伏電池的光伏表現.....50
3.1.8以SM2/P3HT/PC61BM在加入溶劑添加劑所組裝之三元有機光伏電池的光伏表現.................................................53
3.1.9以SM3/P3HT/PC61BM所組裝成三元有機光伏電池的光伏表現...55
3.1.10以SM6/P3HT/PC61BM組裝成三元有機光伏電池的光伏表現....58
3.2以含Benzodithiophene結構的共聚高分子為P-型材料之有機太陽能電池的元件組裝優化............................................61
3.2.1以P8為P-型材料,在不同轉速下製備成活性層所組裝之一般式有機太陽能電池的光伏表現........................................61
3.2.2 P8組裝成一般式有機太陽能電池元件時,在不同退火溫度處理活性層時的光伏表現.............................................63
3.2.3 P8為吸光材料在不同P-型與N-型材料混摻比例下所組裝之一般式有機太陽能電池的光伏表現....................................64
3.2.4以P8為P-型材料,用不同活性層起始溶液濃度製膜所組裝之一般式太陽能電池元件的光伏表現....................................66
3.2.5以P8為P-型材料時,加入不同添加劑時所組裝之反式太陽能電池的光伏表現...................................................67
3.2.6 P10在不同轉速下所組裝之一般式有機太陽能電池時,元件的光伏表現.......................................................69
3.2.7 P10在不同退火溫度下所組裝之一般式有機太陽能電池元件的光伏表現.......................................................71
3.2.8以P10為P-型材料,在不同P-型與N-型材料混摻重量比例下所組裝之一般式有機太陽能電池元件的光伏表現..........................72
3.2.9含P10之不同活性層起始溶液濃度所組裝之一般式太陽能電池元件的光伏表現...................................................74
3.2.10 P10組裝成反式太陽能電池元件時,加入不同添加劑時元件的光伏表現.......................................................75
3.2.11 P11在不同轉速下所組裝之有機太陽能電池元件時,元件的光伏表現 .........................................................77
3.2.12 P11在不同退火溫度下所組裝之反式有機太陽能電池元件的光伏表現 .........................................................79
3.2.13在不同P11與PC61BM混摻重量比例下所組裝之反式有機太陽能電池元件的光伏表現..............................................80
3.2.14含P11之不同活性層濃度所組裝之反式太陽能電池元件的光伏表現 .........................................................82
3.2.15 P11組裝成反式太陽能電池元件時,加入不同添加劑時元件的光伏表現.......................................................83
3.2.16 P11組裝成反式太陽能電池元件時,活性層材料所使用之溶劑及添加劑對元件光伏性質的影響.....................................85
3.2.17 P11組裝成反式太陽能電池元件時,活性層溶液的濃度與轉速對元件光伏表現的影響............................................87
3.3小分子(SM系列)與高分子(P系列)元件優化條件之異同..........88
3.3.1小分子與高分子最佳元件組裝條件之比較..................88
第四章、結論.............................................94
參考資料................................................96
參考文獻 [1] 世界各國每年用電量統計資料。2016年10月11日,取自:The U.S. Energy Information Administration Website, http://www.eia.gov/beta/international/
[2] Kearns, D.; Calvin, M., “Photovoltaic Effect and Photo-conductivity in Laminated Organic Systems”, J. Chem. Phys., 1958, 29, 950-951.
[3] Onsager, L., “Initial Recombination of Ions”, Phys. Rev., 1938, 54, 554-557.
[4] Tang, C. W., “Two-layer organic photovoltaic cell”, Appl. Phys. Lett.,1986, 48, 183-185.
[5] Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F., “Photoinduced  Electron Transfer from a Conducting Polymer to Buckminster-fullerene”, Science, 1992,258,1474-1476.
[6] Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J., “Polymer Photo- voltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions”, Science, 1995, 270,1789-1791.
[7] Liu, Z. ; Tian, M. ; Wang N., “Influences of Alq3 as Electron Extraction Layer Instead of Ca on the Photo-stability of Organic Solar Cells”, J. of Power Sources, 2014, 250,105-109.
[8] Germack, D. S.; Chan, C. K.; Hamadani, B. H.; Richter, L. J.; Fischer, D. A.; Gundlach, D. J.; DeLongchamp, D. M., “Substrate-Dependent Interface Composition and Charge Transport in Films for Organic Photovoltaics”, Appl. Phys. Lett. 2009, 94, 233303-1~233303-3.
[9] Xu, Z.; Chen, L. M.; Yang, G.; Huang, C. H.; Hou, J.; Wu, Y.; Li, G.; Hsu, C. S.; Yang, Y., “Vertical Phase Separation in Poly(3-hexylthiophene):Fullerene Derivative Blends and its Advantage for Inverted Structure Solar Cells”, Adv. Funct. Mater., 2009, 19, 1227-1234.
[10] Yao, Y.; Hou, J.; Xu, Z.; Li, G.; Yang, Y., “Effects of Solvent Mixtures on the Nanoscale Phase Separation in Polymer Solar Cells”, Adv. Funct. Mater., 2008, 18, 1783-1789.
[11] Hau, S. K.; Yip, H. L.; Baek, N. S.; Zou, J.; O’Malley, K.; Jen, A. K.-Y., “Air-Stable Inverted Flexible Polymer Solar Cells Using Zinc Oxide Nanoparticles as an Electron Selective Layer”, Appl. Phys. Lett., 2008, 92, 253301-1~253301-3.
[12] Lee, T. W.; Noh, T.; Choi, B. K.; Kim, M. S.; Shin, D. W.; Kido, J., “High-Efficiency Stacked White Organic Light-Emitting Diodes”, J. Appl. Phys. Lett., 2008, 92, 043301-1~043301-3.
[13] Siddiki, M. K.; Li, J.; Galipeau, D.; Qiao, Q., “A Review of Polymer Multijunction Solar Cells”, Energy Environ. Sci., 2010, 3, 867-883.
[14] Li, G.; Zhu, R.; Yang, Y., “Polymer Solar Cells”, Nature Photonics, 2012, 6, 153-161.
[15] Blaesser, G.; Rossi, E., “Extrapolation of Outdoor Measurements of PV Array I─V Characteristics to Standard Test Conditions”, Solar Cells, 1988, 25, 91-96.
[16] Scharber, M. C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J., “Design Rules for Donors in Bulk-Hetero-junction Solar Cells─Towards 10% Energy-Conversion Efficiency”, Adv. Mater., 2006, 18, 789-794.
[17] Cheng, Y.; Yang, S.; Hsu, C., “Synthesis of Conjugated Polymers for Organic Solar Cell Applications”, Chem. Rev., 2009, 109, 5868-5923.
[18] Peet, J.; Kim, J. Y.;Coates, N. E.; Ma, W. L.; Moses, D.; Heeger, A. J.; Bazan, G. C., “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols”, Nature Materials, 2007, 6, 497-500.
[19] Lee, J. W.; Ma, W. L.; Brabec, C. J.; Yuen, J.; Moon, J. S.; Kim, J. Y.; Lee, K.; Bazan, G. C.;Heeger, A. J., “Processing Additives for Improved Efficiency from Bulk Hetero-junction Solar Cells”, J. Am. Chem. Soc., 2008, 130, 3619-3623.
[20] Woo, C. H.; Beaujuge, P. M.; Holcombe, T. W.; Lee, O. P.; Frechet, J. M. J., “Incorporation of Furan into Low Band-Gap Polymers for Efficient Solar Cell”, J. Am. Chem. Soc., 2010, 132, 15547-15549.
[21] Koppe, M.; Egelhaaf, H.-J.; Dennler, G.; Scharber, M. C.; Brabec, C. J.; Schilinsky, P.; Hoth, C. N., “Near IR Sensitization of Organic Bulk Heterojunction Solar Cells: Towards Optimization of the Spectral Response of Organic Solar Cells”, Adv. Funct. Mater., 2010, 20, 338-346.
[22] Zhang, J.; Zhang, Y.; Fang, J.; Lu, K.; Wang, Z.; Ma, W.; Wei, Z., “Conjugated Polymer−Small Molecule Alloy Leads to High Efficient Ternary Organic Solar Cells”, J. Am. Chem. Soc., 2015, 137, 8176-8183.
[23] Wu, J. S.; Cheng, S. W.; Cheng, Y. J.; Hsu, C. S. “Donor–Acceptor Conjugated Polymers Based on Multifused Ladder-Type Arenes for Organic Solar Cells”, Chem. Soc. Rev. 2015, 44, 1113-1154.
[24] He, Z.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y., “Enhanced Power-Conversion Efficiency in Polymer Solar Cells Using an Inverted Device Structure”, Nature Photonics, 2012, 190, 591-595.
[25] Etxebarria, I.; Guerrero, A.; Albero, J.; Garcia-Belmonte, G.; Palomares, E.; Pacios, R., “Inverted vs Standard PTB7:PC70BM Organic Photovoltaic Devices. The Benefit of Highly Selective and Extracting Contacts in Device Performance”, Organic Electronics, 2014, 15, 2756-2762.
[26] Liao, H. C.; Ho, C. C.; Chang, C. Y.; Jao, M. H.;, Darling, S. B.; Su, W. F., “Additives for Morphology Control in High-Efficiency Organic Solar Cells”, Materials Today, 2013, 16, 326-336.
[27] Huang, Y.; Kramer, E. J.; Heeger, A. J.; Bazan, G. C., “Bulk Heterojunction Solar Cells: Morphology and Performance Relationships”, Chem. Rev., 2014, 114, 7006-7043.
[28] Zhang, S.; Ye, L.; Zhao, W.; Yang, B.; Wang, Q.; Hou, J., “Realizing Over 10% Efficiency in Polymer Solar Cell by Device Optimization”, Sci. China Chem., 2015, 58, 248-256.
[29] Wu, Y. Q.; Chen, H. C.; Yang, Y. S.; Chang, S. H.; Wu, P. J.; Chu, Y. Y.; Wu, C.-G., “Comprehensive Study of Pyrido[3,4-b]pyrazine-Based D––a Copolymer for Efficient Polymer Solar Cells”, J. Polym. Sci., Part A: Polym. Chem., 2016, 54, 1822-1833.
指導教授 吳春桂(Chun-Guey Wu) 審核日期 2016-11-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明