參考文獻 |
V. References
1. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2015. CA Cancer J Clin, 2015. 65(1): p. 5-29.
2. Chang, J.W., et al., Malignant melanoma in Taiwan: a prognostic study of 181 cases. Melanoma Res, 2004. 14(6): p. 537-41.
3. Ishihara, K., T. Saida, and A. Yamamoto, Updated statistical data for malignant melanoma in Japan. Int J Clin Oncol, 2001. 6(3): p. 109-16.
4. Wu, C.E., et al., Prognostic factors for Taiwanese patients with cutaneous melanoma undergoing sentinel lymph node biopsy. J Formos Med Assoc, 2015. 114(5): p. 415-21.
5. Davies, H., et al., Mutations of the BRAF gene in human cancer. Nature, 2002. 417(6892): p. 949-54.
6. Maldonado, J.L., et al., Determinants of BRAF Mutations in Primary Melanomas. JNCI Journal of the National Cancer Institute, 2003. 95(24): p. 1878-1890.
7. Cheng, Y., G. Zhang, and G. Li, Targeting MAPK pathway in melanoma therapy. Cancer Metastasis Rev, 2013. 32(3-4): p. 567-84.
8. Montagut, C. and J. Settleman, Targeting the RAF-MEK-ERK pathway in cancer therapy. Cancer Lett, 2009. 283(2): p. 125-34.
9. Roberts, P.J. and C.J. Der, Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene, 2007. 26(22): p. 3291-310.
10. Wangari-Talbot, J. and S. Chen, Genetics of melanoma. Front Genet, 2012. 3: p. 330.
11. Sreeraman Kumar, R., et al., Pediatric Melanoma and Atypical Melanocytic Neoplasms. Cancer Treat Res, 2016. 167: p. 331-69.
12. Munoz-Couselo, E., et al., Recent advances in the treatment of melanoma with BRAF and MEK inhibitors. Ann Transl Med, 2015. 3(15): p. 207.
13. Davies, M.A., et al., Integrated Molecular and Clinical Analysis of AKT Activation in Metastatic Melanoma. Clin Cancer Res, 2009. 15(24): p. 7538-7546.
14. Aguissa-Toure, A.H. and G. Li, Genetic alterations of PTEN in human melanoma. Cell Mol Life Sci, 2012. 69(9): p. 1475-91.
15. Inamdar, G.S., S.V. Madhunapantula, and G.P. Robertson, Targeting the MAPK pathway in melanoma: why some approaches succeed and other fail. Biochem Pharmacol, 2010. 80(5): p. 624-37.
16. Balch, C.M., et al., Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol, 2009. 27(36): p. 6199-206.
17. Bollag, G., et al., Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature, 2010. 467(7315): p. 596-9.
18. Bollag, G., et al., Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat Rev Drug Discov, 2012. 11(11): p. 873-86.
19. Yang, H., et al., RG7204 (PLX4032), a selective BRAFV600E inhibitor, displays potent antitumor activity in preclinical melanoma models. Cancer Res, 2010. 70(13): p. 5518-27.
20. Joseph, E.W., et al., The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc Natl Acad Sci U S A, 2010. 107(33): p. 14903-8.
21. Chapman, P.B., et al., Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med, 2011. 364(26): p. 2507-16.
22. Nazarian, R., et al., Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature, 2010. 468(7326): p. 973-7.
23. Shi, H., et al., Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov, 2014. 4(1): p. 80-93.
24. Dumaz, N., et al., In melanoma, RAS mutations are accompanied by switching signaling from BRAF to CRAF and disrupted cyclic AMP signaling. Cancer Res, 2006. 66(19): p. 9483-91.
25. Shi, H., et al., Melanoma whole-exome sequencing identifies (V600E)B-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nat Commun, 2012. 3: p. 724.
26. Poulikakos, P.I., et al., RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature, 2011. 480(7377): p. 387-90.
27. Shi, H., et al., Preexisting MEK1 exon 3 mutations in V600E/KBRAF melanomas do not confer resistance to BRAF inhibitors. Cancer Discov, 2012. 2(5): p. 414-24.
28. Wagle, N., et al., Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol, 2011. 29(22): p. 3085-96.
29. Johannessen, C.M., et al., COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature, 2010. 468(7326): p. 968-72.
30. Poulikakos, P.I. and N. Rosen, Mutant BRAF melanomas--dependence and resistance. Cancer Cell, 2011. 19(1): p. 11-5.
31. Villanueva, J., et al., Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell, 2010. 18(6): p. 683-95.
32. Van Allen, E.M., et al., The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov, 2014. 4(1): p. 94-109.
33. Lee, R.C., R.L. Feinbaum, and V. Ambros, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993. 75(5): p. 843-54.
34. Han, J., et al., The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev, 2004. 18(24): p. 3016-27.
35. Yi, R., et al., Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev, 2003. 17(24): p. 3011-6.
36. Bernstein, E., et al., Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 2001. 409(6818): p. 363-6.
37. Hammond, S.M., et al., An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature, 2000. 404(6775): p. 293-6.
38. Doench, J.G. and P.A. Sharp, Specificity of microRNA target selection in translational repression. Genes Dev, 2004. 18(5): p. 504-11.
39. Lewis, B.P., C.B. Burge, and D.P. Bartel, Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005. 120(1): p. 15-20.
40. He, L. and G.J. Hannon, MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet, 2004. 5(7): p. 522-31.
41. Garzon, R., G.A. Calin, and C.M. Croce, MicroRNAs in Cancer. Annu Rev Med, 2009. 60: p. 167-79.
42. Zhang, Y., P. Yang, and X.F. Wang, Microenvironmental regulation of cancer metastasis by miRNAs. Trends Cell Biol, 2014. 24(3): p. 153-60.
43. Kosaka, N., H. Iguchi, and T. Ochiya, Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci, 2010. 101(10): p. 2087-92.
44. Lanford, R.E., et al., Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science, 2010. 327(5962): p. 198-201.
45. Janssen, H.L., et al., Treatment of HCV infection by targeting microRNA. N Engl J Med, 2013. 368(18): p. 1685-94.
46. Wong, M.Y., et al., microRNA-34 family and treatment of cancers with mutant or wild-type p53 (Review). Int J Oncol, 2011. 38(5): p. 1189-95.
47. Shibata, C., et al., Current status of miRNA-targeting therapeutics and preclinical studies against gastroenterological carcinoma. Mol Cell Ther, 2013. 1: p. 5.
48. Smalley, K.S. and V.K. Sondak, Melanoma--an unlikely poster child for personalized cancer therapy. N Engl J Med, 2010. 363(9): p. 876-8.
49. Liu, S.M., et al., miR-524-5p suppresses the growth of oncogenic BRAF melanoma by targeting BRAF and ERK2. Oncotarget, 2014. 5(19): p. 9444-59.
50. Kim, M.H., et al., Actin remodeling confers BRAF inhibitor resistance to melanoma cells through YAP/TAZ activation. EMBO J, 2016. 35(5): p. 462-78.
51. Hayes, J., P.P. Peruzzi, and S. Lawler, MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med, 2014. 20(8): p. 460-9.
52. Vergani, E., et al., Overcoming melanoma resistance to vemurafenib by targeting CCL2-induced miR-34a, miR-100 and miR-125b. Oncotarget, 2016. 7(4): p. 4428-41.
53. Fattore, L., et al., miR-579-3p controls melanoma progression and resistance to target therapy. Proc Natl Acad Sci U S A, 2016. 113(34): p. E5005-13.
54. van Zijl, F., G. Krupitza, and W. Mikulits, Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat Res, 2011. 728(1-2): p. 23-34. |