博碩士論文 103826009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:18.220.63.52
姓名 蔡仁傑(Jen-Chieh Tsai)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 利用MAPK訊息傳導路徑相關的miRNAs來治療BRAF抑制劑的抗藥性在黑色素瘤細胞中之研究
(Study of MAPK signaling pathway-related miRNAs in resistance to BRAF inhibitor in melanoma cells)
相關論文
★ 探討牛樟芝CCM111對細胞訊息傳遞之影響★ Tyloxapol 在大腸癌細胞中的特異性及作用機制之研究
★ MAPK傳導路徑相關微型RNA在黑色素瘤細胞中功能之研究★ 探討miR-567在黑色素細胞瘤中的調控機制
★ 探索微型核糖核酸與慢性腎臟病及血液透析病人泌尿道上皮癌生物標記的相關性★ 以miRNA為基礎開發偵測放射線治療抗性及預後的生物標記
★ 偵測微型核糖核酸 miR-524-5p表現量利用原位雜交染色法來作為輔助診斷惡性黑色素瘤的生物標記之研究★ 研究牛樟芝萃取物 CCM111 的作用機制
★ 探討黑色素腫瘤中p53調控miR-524-5p及miR-596表現之機制★ 泌尿道上皮癌相關的miRNAs在膀胱癌之研究
★ 探討BRAF抑制劑透過細胞間訊息誘導腫瘤形成之研究★ 微型核糖核酸成為放射線治療的預後生物標記之研究
★ 發展以血中微型 RNA 作為冠心症(CAD)的非侵入性疾病指標★ microRNAs作為放射治療預後之生物標誌物與miR-148a-3p於頭頸癌放射敏感度之研究
★ 研究miR-524-5p和miR-567治療在黑色素瘤與BRAF抑製劑的抗藥性黑色素瘤★ 包覆性腹膜硬化症相關miRNAs在腹膜纖維化之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) MAPK/ERK訊息傳導路徑的活化在黑色素瘤中扮演了很重要的角色,在之前的研究中大約有50%的黑色素瘤包含BRAF基因突變,其中80%是BRAFV600E的取代突變,這個突變持續性地誘導MAPK/ERK訊息傳導路徑的活化也造成癌症的惡性表現型。標靶藥物PLX4032是一個強效的小分子抑制劑,抑制BRAFV600E突變蛋白質來治療黑色素瘤,在第三期的病人中,經過PLX4032治療後至少有48%的人有效,然而這個治療受限於有些病人在治療七個月後迅速產生抗藥性。我們建立了對PLX4032產生抗藥性的細胞株,我們發現黑色素瘤對PLX4032產生抗藥性是透過過度活化MAPK/ERK跟PI3K/AKT訊息傳導路徑,微型RNA是一個很有潛力的治療藥物,因為它可以一次抑制多個訊息RNA跟抑制多個致癌相關訊息傳導路徑。我們利用先前微陣列晶片實驗的結果和GEO資料庫篩選出與MAPK相關的微型RNA,實驗結果顯示出分別的過度表現4個微型RNA可以有效的抑制細胞增生跟細胞爬行,以上證據說明了微型RNA可能是個很有潛力的治療用來對抗產生PLX4032抗藥性的黑色素瘤。
摘要(英) The activity of mitogen-activated protein kinase (MAPK/ERK) signaling plays an essential role in melanoma. It has been reported that approximately 50% of melanoma harbors activating BRAF mutations (over 80% BRAFV600E). The mutation constitutively induces high activity in MAPK/ERK signaling pathway and causes malignant phenotypes of cancers. PLX4032 is a selective and potent small molecule inhibitor of the V600E mutant form the BRAF protein used in the treatment of melanoma. In a phase III trial in patients, PLX4032 treatment resulted in a 48% response. However, this therapeutic success is limited by the rapid emergence of drug resistance after an average 7 months. We constructed a cell model of resistance to PLX4032 progressed by treatment of BRAFV600E melanoma cells with the BRAF inhibitor PLX4032. We demonstrated that MAPK/ERK and PI3K/AKT signaling pathways activity were reactivate in PLX4032-resistant melanoma cells. miRNA are excellent therapeutic candidates because of their ability to repress several mRNA or multiple oncogenic pathways at once. We screen out MAPK-related candidate miRNAs from the prior microarray results and GEO data analysis. Our data showed that overexpression of four miRNAs individually could decrease cell proliferation, anchorage-independent growth and migration. These results suggest that miRNAs could be a potent therapeutic candidate for counteracting treatment resistance of PLX4032 in melanoma.
關鍵字(中) ★ MAPK訊息傳導路徑
★ 微型RNA
★ 抗藥性黑色素瘤
關鍵字(英)
論文目次 目錄
摘要 i
Abstract ii
致謝 iii
目錄 v
List of figures vii
List of tables vii
Abbreviation list viii
I. Introduction 1
1. Melanoma 1
1.1 Genetics of Melanoma 1
1.2 Dysregulation pathway in Melanoma 2
1.3 Melanoma therapy 4
2. Drug resistance in Melanoma 5
2.1 Mechanism of resistance to BRAF inhibitor in Melanoma 5
3. miRNA 6
3.1 Biogenesis and mechanism of miRNA 6
3.2 miRNA dysregulation in cancer 7
3.3 miRNA application in cancer 8
4. Purpose and significance 9
4.1 To investigate the mechanism of miRNAs involved in overcoming the PLX4032-resistant melanoma 9
II. Materials and Methods 10
1. Materials 10
1.1 Cell lines 10
1.2 microRNA mimics 10
1.3 Drugs and Reagents 10
1.4 Antibodies 11
2. Methods 11
2.1 microRNA transfection 11
2.2 Preparation of protein extraction 11
2.3 Western blot analysis 12
2.4 Cell proliferation assay (Alamar blue assay) 12
2.5 Cell proliferation assay (Colony formation assay) 13
2.6 Soft agar assay 13
2.7 Transwell assay 14
2.8 Wound healing assay 14
2.9 Caspase3/7 assay 14
2.10 GEO database 15
2.11 Statistical analysis 15
III. Result 16
1. Expression of miR-524-5p, miR-596, miR-567, miR-518f-5p and miR-518d-5p is decrease in melanoma 16
2. Establishment of PLX4032-resistant Melanoma cell lines 16
3. PLX4032 acquired resistance display differential MAPK signaling pathway reactivation 17
4. MAPK signaling pathway-related miRNAs decrease cell proliferation and increase cell apoptosis in PLX4032-resistant SK-Mel-19 cells 18
5. MAPK signaling pathway-related miRNAs repress cell anchorage-independent growth in PLX4032-resistant SK-Mel-19 cells 19
6. MAPK signaling pathway-related miRNAs inhibit cell migration in PLX4032-resistant SK-Mel-19 cells 19
7. MAPK signaling pathway-related miRNAs down-regulate MAPK signaling pathway activity 20
8. MAPK signaling pathway-related miRNAs decrease PI3K/AKT signaling pathway activity 20
IV. Conclusion and discussion 22
1. Candidate miRNAs suppress MAPK or PI3K/AKT signaling pathway in PLX4032-resistant melanoma cells 22
2. Study of miRNAs involved in melanoma resistant to target therapy 23
3. Future aspect 23
V. References 25
參考文獻 V. References
1. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2015. CA Cancer J Clin, 2015. 65(1): p. 5-29.
2. Chang, J.W., et al., Malignant melanoma in Taiwan: a prognostic study of 181 cases. Melanoma Res, 2004. 14(6): p. 537-41.
3. Ishihara, K., T. Saida, and A. Yamamoto, Updated statistical data for malignant melanoma in Japan. Int J Clin Oncol, 2001. 6(3): p. 109-16.
4. Wu, C.E., et al., Prognostic factors for Taiwanese patients with cutaneous melanoma undergoing sentinel lymph node biopsy. J Formos Med Assoc, 2015. 114(5): p. 415-21.
5. Davies, H., et al., Mutations of the BRAF gene in human cancer. Nature, 2002. 417(6892): p. 949-54.
6. Maldonado, J.L., et al., Determinants of BRAF Mutations in Primary Melanomas. JNCI Journal of the National Cancer Institute, 2003. 95(24): p. 1878-1890.
7. Cheng, Y., G. Zhang, and G. Li, Targeting MAPK pathway in melanoma therapy. Cancer Metastasis Rev, 2013. 32(3-4): p. 567-84.
8. Montagut, C. and J. Settleman, Targeting the RAF-MEK-ERK pathway in cancer therapy. Cancer Lett, 2009. 283(2): p. 125-34.
9. Roberts, P.J. and C.J. Der, Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene, 2007. 26(22): p. 3291-310.
10. Wangari-Talbot, J. and S. Chen, Genetics of melanoma. Front Genet, 2012. 3: p. 330.
11. Sreeraman Kumar, R., et al., Pediatric Melanoma and Atypical Melanocytic Neoplasms. Cancer Treat Res, 2016. 167: p. 331-69.
12. Munoz-Couselo, E., et al., Recent advances in the treatment of melanoma with BRAF and MEK inhibitors. Ann Transl Med, 2015. 3(15): p. 207.
13. Davies, M.A., et al., Integrated Molecular and Clinical Analysis of AKT Activation in Metastatic Melanoma. Clin Cancer Res, 2009. 15(24): p. 7538-7546.
14. Aguissa-Toure, A.H. and G. Li, Genetic alterations of PTEN in human melanoma. Cell Mol Life Sci, 2012. 69(9): p. 1475-91.
15. Inamdar, G.S., S.V. Madhunapantula, and G.P. Robertson, Targeting the MAPK pathway in melanoma: why some approaches succeed and other fail. Biochem Pharmacol, 2010. 80(5): p. 624-37.
16. Balch, C.M., et al., Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol, 2009. 27(36): p. 6199-206.
17. Bollag, G., et al., Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature, 2010. 467(7315): p. 596-9.
18. Bollag, G., et al., Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat Rev Drug Discov, 2012. 11(11): p. 873-86.
19. Yang, H., et al., RG7204 (PLX4032), a selective BRAFV600E inhibitor, displays potent antitumor activity in preclinical melanoma models. Cancer Res, 2010. 70(13): p. 5518-27.
20. Joseph, E.W., et al., The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc Natl Acad Sci U S A, 2010. 107(33): p. 14903-8.
21. Chapman, P.B., et al., Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med, 2011. 364(26): p. 2507-16.
22. Nazarian, R., et al., Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature, 2010. 468(7326): p. 973-7.
23. Shi, H., et al., Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov, 2014. 4(1): p. 80-93.
24. Dumaz, N., et al., In melanoma, RAS mutations are accompanied by switching signaling from BRAF to CRAF and disrupted cyclic AMP signaling. Cancer Res, 2006. 66(19): p. 9483-91.
25. Shi, H., et al., Melanoma whole-exome sequencing identifies (V600E)B-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nat Commun, 2012. 3: p. 724.
26. Poulikakos, P.I., et al., RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature, 2011. 480(7377): p. 387-90.
27. Shi, H., et al., Preexisting MEK1 exon 3 mutations in V600E/KBRAF melanomas do not confer resistance to BRAF inhibitors. Cancer Discov, 2012. 2(5): p. 414-24.
28. Wagle, N., et al., Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol, 2011. 29(22): p. 3085-96.
29. Johannessen, C.M., et al., COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature, 2010. 468(7326): p. 968-72.
30. Poulikakos, P.I. and N. Rosen, Mutant BRAF melanomas--dependence and resistance. Cancer Cell, 2011. 19(1): p. 11-5.
31. Villanueva, J., et al., Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell, 2010. 18(6): p. 683-95.
32. Van Allen, E.M., et al., The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov, 2014. 4(1): p. 94-109.
33. Lee, R.C., R.L. Feinbaum, and V. Ambros, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993. 75(5): p. 843-54.
34. Han, J., et al., The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev, 2004. 18(24): p. 3016-27.
35. Yi, R., et al., Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev, 2003. 17(24): p. 3011-6.
36. Bernstein, E., et al., Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 2001. 409(6818): p. 363-6.
37. Hammond, S.M., et al., An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature, 2000. 404(6775): p. 293-6.
38. Doench, J.G. and P.A. Sharp, Specificity of microRNA target selection in translational repression. Genes Dev, 2004. 18(5): p. 504-11.
39. Lewis, B.P., C.B. Burge, and D.P. Bartel, Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005. 120(1): p. 15-20.
40. He, L. and G.J. Hannon, MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet, 2004. 5(7): p. 522-31.
41. Garzon, R., G.A. Calin, and C.M. Croce, MicroRNAs in Cancer. Annu Rev Med, 2009. 60: p. 167-79.
42. Zhang, Y., P. Yang, and X.F. Wang, Microenvironmental regulation of cancer metastasis by miRNAs. Trends Cell Biol, 2014. 24(3): p. 153-60.
43. Kosaka, N., H. Iguchi, and T. Ochiya, Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci, 2010. 101(10): p. 2087-92.
44. Lanford, R.E., et al., Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science, 2010. 327(5962): p. 198-201.
45. Janssen, H.L., et al., Treatment of HCV infection by targeting microRNA. N Engl J Med, 2013. 368(18): p. 1685-94.
46. Wong, M.Y., et al., microRNA-34 family and treatment of cancers with mutant or wild-type p53 (Review). Int J Oncol, 2011. 38(5): p. 1189-95.
47. Shibata, C., et al., Current status of miRNA-targeting therapeutics and preclinical studies against gastroenterological carcinoma. Mol Cell Ther, 2013. 1: p. 5.
48. Smalley, K.S. and V.K. Sondak, Melanoma--an unlikely poster child for personalized cancer therapy. N Engl J Med, 2010. 363(9): p. 876-8.
49. Liu, S.M., et al., miR-524-5p suppresses the growth of oncogenic BRAF melanoma by targeting BRAF and ERK2. Oncotarget, 2014. 5(19): p. 9444-59.
50. Kim, M.H., et al., Actin remodeling confers BRAF inhibitor resistance to melanoma cells through YAP/TAZ activation. EMBO J, 2016. 35(5): p. 462-78.
51. Hayes, J., P.P. Peruzzi, and S. Lawler, MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med, 2014. 20(8): p. 460-9.
52. Vergani, E., et al., Overcoming melanoma resistance to vemurafenib by targeting CCL2-induced miR-34a, miR-100 and miR-125b. Oncotarget, 2016. 7(4): p. 4428-41.
53. Fattore, L., et al., miR-579-3p controls melanoma progression and resistance to target therapy. Proc Natl Acad Sci U S A, 2016. 113(34): p. E5005-13.
54. van Zijl, F., G. Krupitza, and W. Mikulits, Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat Res, 2011. 728(1-2): p. 23-34.
指導教授 馬念涵(Nian-Han Ma) 審核日期 2016-11-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明