博碩士論文 88242007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:3.146.255.27
姓名 謝立青(Li-Ching Hsieh)  查詢紙本館藏   畢業系所 物理學系
論文名稱 細菌基因體的普適長度與基因體生長模型
(Universal Lengths of Bacterial Genomes and Model for Genome Growth)
相關論文
★ 人類陰道滴蟲之Myb2蛋白質動態性質研究★ 分析原核生物基因體複製起點與終點的反向對偶對稱現象
★ 分析基因體拷貝數變異所使用的兩種方法比較:隱藏馬可夫模型與成對高斯合併法★ 使用兩種方法偵測基因體拷貝數變異:成對高斯合併法與隱藏馬可夫模型
★ 以整體晶片數據為母體應用於分析基因差異表達的z檢定方法★ GSLHC - 運用基因組及層次類聚以生物功能群將有生物活性的複合物定性的方法
★ 一個檢定測量微晶片基因表達數據靈敏度的全統計計算法★ 運用嶄新抗體固著策略發展及驗證新式抗體微晶片平台
★ Drug-resistant colon cancer cells produce high carcinoembryonic antigen and might not be cancer-initiating cells★ 創傷性關節炎軟骨之退化進程- 大鼠模型基因體圖譜研究
★ 基因體功能統合分析在阿茲海默症和大腦老化-近年阿茲海默症研發藥物失敗的理論問題探討★ 以Z曲線分析法探索人類基因體之辨識
★ 以個人電腦叢集平行運算模擬蛋白質結構★ 各類演算法對DNA序列的辨讀與ORF之搜尋
★ 細菌基因體隨機性的統計分析★ DNA序列的不同相位上辨識與搜尋基因
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們說明了頻率分佈的相對頻譜寬度(relative spectral width)和Shannon資訊(Shannon information)之間是有簡單關聯的. 從計算 108個細菌全基因體序列的2到10長的核甘酸 (k-字串, k從2到10) 頻率分佈的相對頻譜寬度, 揭露出了一組由全部細菌基因體所共有的"根序列長度(root-sequence length)"; 它與細菌基因體的長度及鹼基成分無關, 但和k成指數關係, 隨著k的增加而變大. 若給定一個k, 細菌基因體序列與長度恰為根序列長度的隨機序列擁有相同的相對頻譜寬度(relative spectral length). 由此概念我們由電腦模擬了一條原長大約為200鹼基(base)長的隨機序列, 經由高度隨機的短片段自我複製的過程後, 其長成的"準複製體(qusairelpicas)" 序列也擁有一些與細菌基因體序列相類似的特性. 準複製體序列是條自我組織的、複雜的且無週期的序列, 它是個儲存大量資訊的理想地方. 由小尺度觀之, 它是一條短隨機序列的高倍複製體, 由大尺度觀之, 它僅像是一條隨機序列. 從這些發現之中, 我們推斷出當遠祖基因體的長度大約為200鹼基長且已有初步的複製機制時, 基因體開始藉由複製而生長, 而那時候的遺傳世界是個只有去氧核醣核酸(DNA)與核醣核酸(RNA)而沒有蛋白質的世界.
摘要(英) Spectral width and Shannon information of a frequency distribution are shown to be simply related. Measurements of spectral widths of distributions of frequencies of words two to ten nucleotides long (k-mers, k=2 to 10) in 108 bacterial complete genomes reveal the existence of a set of universal "root-sequence lengths" shared by all bacterial genomes independent of sequence length and base composition but grow exponentially with k. For a given k the relative spectral widths of all bacterial genomes are the same as that of a random sequence whose length is the root-sequence length for k-mers. We use computer modelling to show that such properties of bacterial genomes are reproduced by "quasireplicas" -sequences "grown" by maximally stochastic short-segmental duplications from initial random root sequences about 200 bases long. Ideal of storing large amounts of information, quasireplicas are self-organized, complex, aperiodic sequences appearing in the short scale as high-multiple replicas of random sequences and in the large scale as random sequences. From our findings we infer that growth by duplication in a world with only DNA/RNA and devoid of proteins, when the ancestral genomes were about 200 bases long and had acquired a rudimentary duplication machinery.
關鍵字(中) ★ 核醣核酸世界
★ 準複製體
★ Shannon資訊
★ 根序列長度
★ 相對頻譜寬度
★ 基因體
★ 生長模型
關鍵字(英) ★ genome
★ growth model
★ Shannon information
★ root-sequence length
★ relative spectral length
★ qusairelpicas
★ RNA world
論文目次 1 緒論 1
1.1 研究背景 1
1.2 研究知識概論 2
1.2.1 DNA簡介 2
1.2.2 核醣核酸簡介 4
1.2.3 蛋白質簡介 4
1.2.4 遺傳訊息的傳遞 4
1.2.5 「RNA 世界」的假說 5
1.2.6 基因體的簡介 5
1.3 序列分析 6
1.3.1 序列聯配簡介 6
1.3.2 寡核甘酸頻率法及其應用 7
2 細菌基因體是個具有小系統統計性質的大系統 10
2.1 系統大小, 隨機系統與m倍重複系統 10
2.2 Shannon 熵與資訊量 11
2.3 m 倍複製體與根-序列長度 12
2.4 細菌全基因體序列 12
2.5 細菌基因體的普適根序列長度 16
3 細菌基因體的成長模型 20
3.1 基因體成長模型-準複製過程 20
3.2 k-分佈的比較 20
3.3 根序列長度的比較 26
4 結論與討論 28
4.1 細菌基因體是準複製體 28
4.2 一個全新的主要演變 28
4.3 蛋白質的出現 29
4.4 長字串的頻率 29
4.5 總結 30
參考文獻 31
參考文獻 [1] Avery OT, et al. (1944) Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types. J. Exp. Med. 79: 137.
[2] Watson JD, Crick FHC (1953) A Structure for Deoxyribose Nucleic Acid. Nature 171: 737-738.
[3] Watson JD, Crick FHC (1953) Genetical Implications of the structure of Deoxyribonucleic Acid. Nature 171: 964-967.
[4] Blattner FR, et al. (1997) The complete genome sequence of Escherichia coli K-12. Science 277: 1453-1474.
[5] Goffeau A, et al. (1996) Life with 6000 genes. Science 274: 546, 563-567.
[6] Ainscough R, et al. (1998) Genome sequence of the nematode C-elegans: A platform for investigating biology. Science 282: 2012-2018.
[7] Mark DA, et al. (1998) The Genome Sequence of Drosophila melanogaster. Science 287: 2185-2195.
[8] Watson JD (1990) The human genome project: past, present, and future. Science 248: 44-49.
[9] Collins FS, et al. (1993) A new five-year plan for the U.S. Human Genome Project. Science 262: 43-46.
[10] Collins FS, et al. (1998) New Goals for the U.S. Human Genome Project: 1998-2003. Science 282: 682-689.
[11] Fleischmann RD, et al. (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496-512.
[12] Venter JC, et al. (2001) The Sequence of the Human Genome. Science 291: 1304-1351.
[13] NHGRI News, April 14, 2003. International Consortium Completes Human Genome Project. http://www.genome.gov/11006929.
[14] Marshall E (2001) Bermuda Rules: Community Spirit, With Teeth. Science 291: 1192.
[15] Benson DA (2003) GenBank. Nucl. Acids Res. 31: 23-27.
[16] The GenBank, http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html (Version February 07, 2003).
[17] Karp G, Cell and Molecular Biology, 3nd Edition, (Wiley, 2002).
[18] Alberts B, et al., Molecular Biology of the Cell, 4th Edition, (Garland Publishing, 2002).
[19] Stryer L, et al., Biochemistry, 5th Edition, (W.H. Freeman, 2002).
[20] Joyce GF (2002) The antiquity of RNA-based evolution. Nature 418: 214-221.
[21] Gilbert W (1986) The RNA world. Nature 319: 618.
[22] Cech TR, Brehm SL. (1981) Replication of the extrachromosomal ribosomal RNA genes of Tetrahymena thermophilia. Nucl. Acids Res. 24: 3531-3543.
[23] Guerrier-Takada C, et al. (1983) The RNA moiety of RNase P is the catalytic subunit of the enzyme. Cell 35: 849-857.
[24] The Database of Genome Sizes, http://www.cbs.dtu.dk/databases/DOGS/abbr_table.bysize.txt Version January 13, 2001).
[25] Li WH, Molecular Evolution, (Sinauer Associates, Inc.,1997).
[26] Waterman MS, Introduction to Computational Biology, p67, (Chapman & Hall, 1995).
[27] Durbin R, et al., Biological Sequence Analysis, p248, (Cambridge Univ. Press, 1998).
[28] Setubal J and Meidanis J, Introduction to Computational Molecular Biology, p40, (PWS Publishing, 1997).
[29] Dayhoff MO, et al. (1965) Atlas of Protein Sequence and Structure. National Biomedical Research Foundation, Silver Spring MD.
[30] Ellis RE, et al. (1986) The rDNA of C. elegans: sequence and structure. Nucl. Acids Res. 14: 2345-2364.
[31] Tautz D, et al. (1988) Complete sequences of the rRNA genes of Drosophila melanogaster. Mol. Biol. Evol. 5: 366-376.
[32] Schurr T (1984) Comparison of the nucleotide sequence of soybean 18S rRNA with the sequences of other small-subunit rRNAs. J. Mol. Evol. 21: 259-269.
[33] Torczynski RM, et al. (1985) Cloning and sequencing of a human 18S ribosomal RNA gene. DNA 4: 283-291.
[34] Raynal F, et al. (1984) Complete nucleotide sequence of mouse 18S rRNA gene: comparison with other available homologs. FEBS Lett. 167: 263-268.
[35] Mankin AS, et al. (1986) Identification of ten additional nucleotides in the primary structure of yeast 18S rRNA. Gene 44:143-145.
[36] Borisjuk NV (09-JUL-1992) Direct Submission. Submitted N.V. Borisjuk, University of Tuebingen, Dept of Genetics, Auf der Morgenstelle 28, 7400 Tuebingen, FRG.
[37] Karlin S, et al. (1995) Dinucleotide Relative Abundance Extremes: A Genomic Signature, Trends in Genetics 11: 283-290.
[38] Karlin S, et al. (1992) Statistical Analyses of Counts and Distributions of Restriction Sites in DNA Sequences, Nucl. Acids Res. 20: 1363-1370.
[39] Colbert T, et al. (1998) Genomics, Chi Sites and Codons: ‘Islands of Preferred DNA Pairing’ Are Oceans of ORFs. Trends in Genetics 14: 485-488.
[40] Smith HO, et al. (1995) Frequency and Distribution of DNA Uptake Signal Sequences in the Haemophilus in Fluenzae Rd genome. Science 269: 538-540.
[41] Karlin SJ, et al. (1996) Frequent Oligonucleotides and Peptides of the Haemophilus in Fluenzae Genome. Nucl. Acid Res. 24: 4263-4272.
[42] Smith HO, et al. (1999) DNA Uptake Signal Sequence in Naturally Transformable Bacteria, Res. Microbiol. 150: 603-616.
[43] Woese, CR (1987) Bacterial evolution. Microbiol. Rev. 51: 221-271.
[44] Woese, CR and Fox G.E (1977) Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proc. Natl. Acad. 74: 5088-5090.
[45] Woese, CR, et al., Evolution at Molecular Level , Chap.1, The use of ribosomal RNA in reconstructing evolutionary relationships among bacteria, (Sinauer Associates, 1991).
[46] Achenbach-Richter L (1987) Were the original eubacteria thermophiles? Syst. Appl. Microbial. 9: 34-39 .
[47] Margulis L, et al., Five Kingdoms, (W. H. Freeman, 1998).
[48] D. Higgins, et al. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22: 4673-80. For the software package CLUSTAL W see the website ftp://ftp.ebi.ac.uk/pub/software.
[49] Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.
[50] Felsenstein J (1998) Phylogenies from molecular sequences: Inference and reliability. Annu. Rev. Genet. 22: 521-565. For the software package PHYLIP see the website http://evolution.genetics.washington.edu/phylip/software.pars.html#PHYLP.
[51] Deckert G., et al. (1998) The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392: 335-358 .
[52] Nelson KE, et al. (1999) Evidence for horizontal gene transfer between archaea and bacteria from genome sequence of T. maritima. Science 399: 323-329
[53] Lake JA, et al. (1998) Mix and match in the tree of life. Science 280: 2027-2028.
[54] Stover CK, et al. (2000) Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406: 959-964.
[55] Shannon CE (1948) A mathematical theory of communication. Bell Sys. Techn. J. 27: 379-423; 623-656.
[56] The GenBank, http://www.ncbi.nlm.nih.gov/PMGifs/Genomes/micr.html (Version January 26, 2003).
[57] Ohno S, Evolution by Gene Duplication, (Springer Verlag, New York, 1970).
[58] Hughes AL, et al. Ancient genome duplications did not structure the Human Hox-bearing chromosomes. Genome Res. 11 (2001) 771-780.
[59] Hsieh LC, Lee HC (2002) Model for the growth of bacterial genomes. Mod. Phys. Lett. B 22:821-827.
[60] Hsieh LC, et al. (2003) Minimal model for genome evolution and growth. Phys. Rev. Lett. 90: 018101-018104.
[61] Hsieh LC, et al. ( preprint archive: http://arXiv.org/physics/0302031).
[62] Smith JM and Szarthmary E, The Major Transition in Evolution, (Oxford Univ. Press, London, 1997).
[63] Forster AC, Symons RH (1987) Self-cleavage of plus and minus RNAs of a virusoid and a structural model for the active sites. Cell 49: 211-220.
[64] Hayes JM (1996) The earliest memories of life on Earth. Nature 384: 21-22.
[65] Yanai I, et al. (2000) Predictions of Gene Family Distributions in Microbial Genomes: Evolution by Gene Duplication and Modification. Phys. Rev. Lett. 85: 2641-2644.
[66] Qian J, et al. (2001) Protein family and fold. J. Mol. Biol. 313:673-681.
指導教授 李弘謙(Hoong-Chien Lee) 審核日期 2003-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明