以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:41 、訪客IP:18.220.242.160
姓名 魏建豪(Chien-Hao Wei) 查詢紙本館藏 畢業系所 物理學系 論文名稱 物理系統之能量與焓分佈之統計力學研究
(Statistical mechanical study of the energy and enthalpy distribution functions of some physical systems)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 極大熵計算理論(Maximum entropy theory)成功的被運用在連結熱容量的實驗數據與能量(焓)的機率分佈後,我們可以輕易的從單純的物理實驗數據,去了解一個物理系統的相狀態。這一套理論,將會有很大的發展空間,而同樣若我們運用在體積分佈,密度分佈更是有很大的發展性及潛在價值。
我們這篇論文貢獻,是發展出高次係數的規則,才有辦法更詳盡的描述難以分辨的共存狀態,並以幾個實驗數據證實高次的重要性。摘要(英) In statistical mechanics the canonical ensemble theory has been widely used to study the thermodynamic properties of a physical system. Central to this kind of theory is the canonical partition function. Experience shows that an analytical evaluation of the partition function is by no means easy especially for complex systems. An alternative approach within the same theoretical framework is to start with the inverse Laplace transform of partition function. For although this approach to the statistical thermodynamics is no less simpler, the method has the salient traits of resorting to experimental data to extract useful physical quantities. In this work, we re-visit this so-called energy or enthalpy distribution theory. The main advantage in this kind of theory is that, in conjunction with the maximum entropy theory, the energy or enthalpy distribution function can be obtained by resorting only to experimental thermal data. The calculated distribution function can provide insight into the physical system under studied. We illustrate the power of the distribution theory by studying a few selected physical systems. 關鍵字(中) ★ 物理系統
★ 能量
★ 焓
★ 機率分佈
★ 統計力學
★ 熵關鍵字(英) ★ Maimum entropy theory
★論文目次 誌謝i
摘要ii
壹﹑研究動機iv
貳﹑研究工作簡介iv
一﹑極大熵計算理論(Maximum entropy theory)
與其應用
二﹑高次的疊代規則
參﹑未來研究計畫viii
肆﹑英文論文
Abstract 2
I. Introduction 2
II. Distribution theory 5
A. Energy and enthalpy distribution functions
B. Maximum entropy theory 8
III. Numerical results 9
A. Ideal gas: P(E) and P(ε) functions
B. Two-level system: P(E) and P(ε) functions 10
C. Argon: P(H) and P(H) functions 11
D. Na2K system: P(H) function 12
E. Protein: P(H) function 13
IV. Summary and Comments 16
REFERENCES參考文獻 1. R.K. Pathria, in Statistical Mechanics, First Edition, (Pergamon Press, Oxford, 1972), p.65.
2. T.L. Hill, An Introduction to Statistical Thermodynamics (Dover, New York, 1986).
3. P. Labastie and R.L. Whetten, Phys. Rev. Lett. 65, 1567 (1990).
4. A. Bulgac and D. Kusnezov, Phys. Rev. Lett. 68, 1335 (1992); N. Ju and A. Bulgac, Phys. Rev. B 48, 2721 (1993).
5. C.A. Krier, R.S. Craig and W.E. Wallace, J. Phys. Chem. 61, 522 (1957).
6. G.I. Makhatadze and P.L. Privalov, Adv. Protein Chem. 47, 307 (1995).
7. D. Poland, J. Chem. Phys. 112, 6554 (2000); ibid 113, 4774 (2000).
8. L.R. Mead and N. Papanicolaou, J. Math. Phys. 25, 2404 (1993).
9. Ch. Tegeler, R. Span and W. Wagner, J. Phys. Chem. Ref. Data 28(3), 779 (1999).
10. P.E. Potter and M.H. Rand, in Handbook of Thermodynamic and Transport Properties of Alkali Metals, edited R.W. Ohse (Blackwell Scientific Publications, Oxford,1985), Chap. 9.1.
11. D.C. Ginnings, T.B. Douglas and A.F. Ball, J. Research Natl. Bur. Standards 45, 23 (1950).
12. Y. Griko, G.I. Makhatadze, P.L. Privalov and R.W. Hartley, Protein Sci. 3, 669 (1994).指導教授 賴山強(San-Kiong Lai) 審核日期 2003-7-15 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare