博碩士論文 103323093 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:58 、訪客IP:18.191.81.127
姓名 魏千竣(Cian-Jyun Wei)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 鑄/鍛鋁合金的微結構對機械性質的影響
相關論文
★ 7005與AZ61A拉伸、壓縮之機械性質研究★ 雷射去除矽晶圓表面分子機載污染參數的最佳化分析
★ 球墨鑄鐵的超音波檢測★ 模具溫度對TV前框高亮光澤產品研討
★ 高強度7075-T4鋁合金之溫間成形研究★ 鎂合金燃燒、鑽削加工與表面處理之研究
★ 純鈦陽極處理技術之研發★ 鋁鎂合金陽極處理技術之研發
★ 電化學拋光處理、陽極處理中硫酸流速與封孔處理對陽極皮膜品質之影響★ 電解液溫度與鋁金屬板表面粗糙度對陽極處理後外觀的影響
★ 製程參數對A356鋁合金品質的影響及可靠度的評估★ 噴砂與前處理對鋁合金陽極皮膜品質的影響
★ 鎂合金回收重溶之品質與疲勞性質分析★ 鋁合金熱合氧化膜與陽極氧化膜成長行為之研究
★ 潤滑劑與製程參數對Al-0.8Mg-0.5Si鋁合金擠壓鑄件的影響★ 摩擦攪拌製程對AA5052鋁合金之微觀組織及對陽極皮膜的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究應用鑄/鍛製程生產不同等級機械性質的鋁合金(高強度與中強度高韌性兩組),主要合金成份分別為Al-1.2Mg-1.0Si-1.0Cu-0.1Zr合金及Al-8Zn-2.5Mg-1.5Cu-xZr(x=0或0.4)合金。實驗的材料利用高週波爐融煉並澆鑄在Y型金屬膜及圓形冷激模,將Y型鑄件冒口切除得到長型試塊(50 mm×40 mm×102 mm),將試塊進行均質化退火、鍛造變形(冷鍛或熱鍛)、固溶、淬火及時效處理(T6或T73),熱處理完成後的試塊車成Gage diameter為9 mm的拉伸試棒做拉伸試驗,分析材料微結構對機械性質的影響。
本研究實驗內容包括: (1)利用超音波振盪機震盪出材料的氧化膜,分析氧化膜含量對機械性質的影響。(2)利用影像軟體分析材料基地上的二次相顆粒數及顆粒大小對機械性質的影響。(3)利用背向散射電子(EBSD)分析材料晶粒晶界的高低角度向差。(4)利用掃描式電子顯微鏡(SEM)分析析出相顆粒的成份。(5)利用穿透式電子顯微鏡(TEM)觀察材料的微結構與析出相的型態,並藉由X光繞射儀(XRD)分析析出相的組成元素。
實驗結果顯示,材料中的介在物顆粒大於40μm或有介在物團聚會影響材料的延伸率。當Al-Mg-Zn-Cu合金中添加高Zr含量,固溶後AlZr相在基地的冷卻速度慢,會形成固液相共存的包晶反應。最後本實驗利用TEM觀察並分析兩組鑄鍛鋁合金時效處理後基地上析出相的型態,並且探討不同析出相對材料機械性質的影響。
摘要(英) In this study, different grades of mechanical properties of Aluminum alloys were produced by the cast/forging process, which is mainly composed of Al-1.2Mg-1.0Si-1.0Cu-0.1Zr alloy and Al-8Zn-2.5Mg-1.5Cu-xZr(x=0 or 0.4%) alloy.The material of the experiment was melted using a high-frequency furnace and pouring solution to the Y-block mold and circular chill mold. Remove the Y-Blocks casting riser to obtain long test blocks (50 mm×40 mm×102 mm). Long test blocks were then subject to homogenization annealing、forging、solid solution、quench and aging(T6 or T73). Then, long test blocks turn into the tensile bars of 9mm gage diameter to do the tensile test. Finally, the microstructure of the materials on the mechanical properties were analyzed.
The purpose of the study includes: (1) Observation the oxide film area fraction of the chill was conducted by ultrasonic cleaner. (2) The number of particles and the particle size on the base were calculated from the image analysis software. (3) Using EBSD to analyze the material grain angle different of the grain boundary. (4) Using SEM to analyze the composition of the precipitated particles. (5) Using X-ray to observe the microstructure of the materials and the precipitations morphology, then analyzed of the composition of precipitations phase elemant.
The result of experiment showed that if the interphase particles in the material are greater than 40μm or the interphase is reunited will influence the elongation rate of the material. In the study, when a high level of Zr element is added to the high-strength alloy group, it will decrease the cooling rate of AlZr phase after the solid solution and the the peritectic reaction of solid-liquid phase coexist. Finally, analysis the form of precipitations from two alloy groups in different aging treatment, and then probe into the influence of the precipitations on the mechanical properties of the materials.
關鍵字(中) ★ 鑄/鍛
★ 微結構
★ 析出相
★ 機械性質
關鍵字(英) ★ cast/forge
★ microstructure
★ precipitations
★ mechanical properties
論文目次 摘要 I
Abstract II
目錄 III
圖目錄 VI
第一章 前言 1
第二章 文獻回顧 2
2-1 鑄鍛鋁合金的強化機制 2
2-2 Al-Mg-Si-Cu合金析出強化機制與熱處理程序 6
2-2-1 Al-Mg-Si簡介 6
2-2-2 Al-Mg-Si-Cu簡介 12
2-2-3 Al-Mg-Si-Cu合金之析出硬化熱處理 16
2-3 Al-Zn-Mg-Cu鋁合金析出強化機制及熱處理程序 18
2-3-1 Al-Zn-Mg簡介 18
2-3-2 Al-Zn-Mg-Cu簡介 22
2-3-3 Al-Zn-Mg-Cu合金之析出硬化熱處理 24
2-4 拉伸試驗 34
2-4-1破裂(fracture) 34
2-4-2萬能試驗機(Universal Testing Machine) 35
2-4-3拉伸試驗應力分析 36
2-4-4真應力-真應變曲線 37
2-5 鋁合金電化學分析 39
2-5-1 鋁合金電化學簡述 39
2-5-2 腐蝕電位及電流 42
第三章 實驗步驟 43
3-1 實驗材料 43
3-2 實驗設備 44
3-3 試棒尺寸與模具 46
3-4 實驗步驟 48
第四章 結果與討論 56
4-1 中強度高延性測試組實驗結果與討論 56
4-1-1 中強度高延性測試組機械性質 56
4-1-2 微結構分析 58
4-1-3 氫含量分析 59
4-2 中強度高延性(MST6)鑄/鍛鋁合金 62
4-2-1 成分分析及機械性質 62
4-2-2 氧化膜分析 63
4-2-3 氫含量分析 65
4-2-4 微結構分析 66
4-2-5 拉伸破斷分析 70
4-2-6 冷鍛後晶界高低角度分析 72
4-2-7 MST6析出相分析 74
4-3 高強度鑄/鍛鋁合金(LZrT6、HZrT6和HZrT73) 77
4-3-1 Al-8Zn-2.5Mg-1.5Cu頂時效 (LZrT6) 77
4-3-2 Al-8Zn-2.5Mg-1.5Cu-0.4Zr頂時效(HZrT6) 81
4-3-3 Al-8Zn-2.5Mg-1.5Cu-0.4Zr過時效(HZrT73) 86
4-3-4 高強度組微結構對機械性質的影響 91
4-3-5 高強度鋁合金晶界角度的變化 98
4-3-6 高強度鋁合金析出物對機械性質的影響 102
4-3-7 Al-Zn-Mg-Cu的時效舉動 107
4-3-8 Al3Zr 109
4-3-9 添加Zr元素與不同時效對抗腐蝕能力的影響 110
第五章 綜論 112
第六章 結論 114
參考文獻 116
附錄 128
I Al-8Zn-2.5Mg-1.5Cu-0.4Zr (HZrT6_NA30) 128
II 元素在鋁合金中的擴散係數 131
參考文獻 參考文獻
1. Shinichiro Fujikawa, Yukiyoshi Kitamura, Saburo Shimamura, “Application of numerical methods for the aluminum casting/forging process”, Journal of Materials processing Technology, Vol.27, pp.93-110, (1991).
2. 日本輕金屬學會委員,”鋁合金之組織與性質”,日本輕金屬學會,pp.278-279,(1991)。
3. L. Zhen, W. D. Fei, S. B. Kang, H. W. Kim, “Precipitation behaviour of Al-Mg-Si alloys with high silicon content”, Journal of Materials Science, pp.1895-1902, (1997).
4. Mahoto Takeda, Fumiyoshi Ohkubo, Tomohisa Shirai, Kouichiro Fukui, “Precipitation behaviour of Al-Mg-Si ternary alloys”, Materials Science Forum, Vol.217-222, pp.815-820, (1996).
5. D. Apelian, S. Shivkumar, G. Sigworth, “Fundamental Aspects of Heat Treatment of cast Al-Si-Mg alloys”, AFS Transactions, pp.727-741.
6. M. Cabibbo, E. Evangelista, and M. Vedani, “Influence of Severe Plastic Deformations on Secondary Phase Precipitation in a 6082 Al-Mg-Si Alloy”, Metallurgical and Materials Transactions A, Vol.36A, pp1353-1364, (2005).
7. A. K. Gupta, D. J. Lloyd, S. A. Court, “Precipitation hardening in Al–Mg–Si alloys with and without excess Si”, Materials Science and Engineering A, Vol.316, PP.11-17, (2001).
8. G. A. Edwards, K. Stiller, G. L. Dunlop and M. J. Couper, “THE PRECIPITATION SEQUENCE IN Al-Mg-Si ALLOYS”, Acta Mater, Vol.46, No.11, pp3893-3904, (1998).
9. A. Falahati, M. R. Ahmadi, P. Warczok, P. Lang, E. Povoden-Karadeniz, E. Kozeschnik, “Thermo-kinetic computer simulation of precipitation and age-hardening effect in Al-Mg-Si alloys with arbitrary heat treatment”, Materials Science and technology, (2011).
10. Reza S. Yassar, David P. Field, and Hasso Weiland, “The Effect of Cold Deformation on the Kinetics of the β” Precipitates in an Al-Mg-Si Alloy”, Metallurgical and Materials Transactions A, Vol.36A, pp2059-2065, (2005).
11. Takeshi Saito, Shinji Muraishi, Calin D. Marioara, Sigmund J. Andersen, Jostein Royset, and Randi Holmestad, “The Effects of Low Cu Additions and Predeformation on the Precipitation in a 6060 Al-Mg-Si Alloy”, Metallurgical and Materials Transactions A, Vol.44A, pp4124-4135, (2013).
12. D. J. Chakrabarti, David E. Laughlin, “Phase relations and precipitation in Al-Mg-Si alloys with Cu additions”, Progress in Materials Science, Vol.49, pp389-410, (2004).
13. C. Ravi, C. Wolverton, “First-principles study of crystal structure and stability of Al–Mg–Si–(Cu) precipitates”, Acta Materialia, Vol.52, pp.4213-4227, (2004).
14. M. A. van Huis, J. H Chen, H. W. Zandbergen, M. H. F. Sluiter, “Phase stability and structural relations of nanometer-sized, matrix-embedded precipitate phases in Al–Mg–Si alloys in the late stages of evolution”, Acta Materialia, Vol.54, pp2945-2955, (2006).
15. Yong Du, Y. A. Chang, Baiyun Huang, Weiping Gong, Zhanpeng Jin, Honghui Xu, Zhaohui Yuan, Yong Liu, Yuehui He, F. –Y. Xie, “Diffusion coefficients of some solutes in fcc and liquid Al: critical evaluation and correlation”, Materials Science and Engineering, Vol.A363, pp.140-151, (2003).
16. Myriam Nicolas, “Precipitation evolution in an Al-Zn-Mg alloy during non-isothermal heat treatments and in the heat-affected zone of welded joints”, Institut National Polytechnique de Grenoble, pp.144-148, (2002).
17. Barin Ihsan, “Thermochemical data of pure substances”, Weinheim, (1995).
18. Takahiro Yabe, Masanori Enoki and Hiroshi Ohtani, “Thermodynamic analysis of phase separation in the Al-Cu binary fcc phase”, J. Japan Inst. Met. Mater., Vol.80, pp.370-378, (2016).
19. Kenji Matsuda, Daisuke Teguri, Tatsuo, Yasuhiro Uetari and Susumu Ikeno, “Cu Segregation around Metastable Phase in Al-Mg-Si Alloy with Cu”, Materials Transactions, Vol.48, pp. 967-974, (2007).
20. Kenji Matsuda, Daisuke Teguri, Yasuhiro Uetani, Tatsuo Sato, Susumu Ikeno, “Cu-segregation at the Q’/α-Al interface in Al–Mg–Si–Cu alloy”, Scripta Materialia, Vol.47, pp833-837, (2002).
21. Goroh Itoh, Takehiko Eto, Yoshimitsu Miyagi and Motohiro Kanno, “Al-Zn-Mg alloys”, Jstage, Vol.38, No.12, pp.818-839, (1988).
22. Yutaka S.Sato, Seung Hwan C. Park, Masato Michiuchi, Hiroyuki Kokawa, “Constitutional liquation during dissimilar friction stir welding of Al and Mg alloys”, Scripta Materialia, Vol.50, pp.1233-1236, (2004).
23. M. J. Starink, S. C. Wang, “A model for the yield strength of overaged Al-Zn-Mg-Cu alloys”, Acta Materialia, Vol.51, pp.5131-5150, (2003).
24. Mahmoud Chemingui, Mohamed Khitouni, Karol Jozwiak, Gerard Mesmacque, Abdelwaheb Kolsi, “Characterization of the mechanical properties changes in an Al-Zn-Mg alloy after a two-step ageing treatment at 70℃ and 135℃”, Materials and Design, Vol.31, pp.3134-3139, (2010).
25. C.Wolverton, “Crystal structure and stability of complex precipitate phases in Al-Cu-Mg-(Si) and Al-Zn-Mg alloys”, Acta mater., Vol.49, pp.3129-3142, (2001).
26. G. Waterloo, V. Hansen, J. Gjonnes, S. R. Skjervold, “Effect of predeformation and presaging at room temperature in Al-Zn-Mg-(Cu,Zr) alloys”, Materials Science and Engineering, Vol.303, pp.226-233, (2001).
27. L. K. Berg, J. Gjonnes, V. Hansen, X. Z. Li, M. Knutson-Wedel, G. Waterloo, D. Schryvers and L. R. Wallenberg, “GP-zones in Al-Zn-Mg alloys and their role in artificial aging”, Acta mater., Vol.49, pp.3443-3451, (2001).
28. X. Z. Li, V. Hansen, J. Gjonnes and L. R. Wallenberg, “HREM study and structure modeling of the η’ phase, the hardening precipitates in commercial Al-Zn-Mg alloys”, Acta mater., Vol.47, pp.2651-2659, (1999).
29. S. P. Ringer and K. Hono, “Microstructural evolution and age hardening in aluminium alloys: Atom probe field-ion Microscopy and transmission electron microscopy studies”, Materials Characterization, Vol.44, pp.101-131, (2000).
30. J. J. Thompsom, E. S. Tankins, V. S. Agarwala, “A heat treatment for reducing corrosion and stress corrosion cracking susceptibilities in 7xxx aluminum alloys”, Materials Performance, Vol.26, pp.45-52, (1987).
31. T. Engdahl, V. Hansen, P. J. Warren, K. stiller, “Investigation of fine scale precipitates in Al-Zn-Mg alloys after various heat treatments”, Materials Science and Engineering:A, Vol.327, pp59-64, (2002).
32. K. Stiller, P. J. Warren, V. Hansen, J. Angenete, J. Gjonnes, “Investigation of precipitation in an Al–Zn–Mg alloy after two-step ageing treatment at 100° and 150°C”, Materials Science and Engineering A, Vol.270, pp.53-63, (1999).
33. Qingjiang Meng and G. S. Frankel, “Effect of Cu Content on Corrosion Behavior of 7xxx Series Aluminum Alloys”, Journal of The Electrochemical Society, Vol.151, pp.271-283, (2004).
34. I. S. Kim and M. C. Chaturvedi, “Serrated Flow in Al-5wt.% Mg Alloy”, Materials Science and Engineering, Vol.37, pp 165-172, (1979).
35. E. A. Brandes and G. B (Editors), Smithells Metals Reference Book, 7th edition, Butter worth-Heinemann, Oxford, (1992).
36. D. Altenpohl, “Aluminum”, Vol.37, pp.401-411, (1961).
37. John E. Hatch, “Aluminum: properties and Physical Metallurgy”, American Society for Metals, USA, pp145-148, (1984).
38. I. J. Polmear, “Light Alloys Metallurgy of the Light Metals”, 2nd ed, Edward Arnold, London, England, pp.18-143, (1989).
39. Kanghua Chen, Hongwei Liu, Zhuo Zhang, Song Li, Richard I. Todd, “The improvement of constituent dissolution and mechanical properties of 7055 aluminum alloy by stepped heat treatments”, Journal of Materials Processing Technology, Vol.142, pp.190–196 (2003).
40. Yi Meng, Jianzhong Cui, Zhihao Zhao, Lizi He, “Effect of Zr on microstructures and mechanical properties of an Al-Mg-Si-Cu-Cr alloy prepared by low frequency electromagnetic casting", Materials Characterization, Vol.92, pp.138-148 (2014).
41. Yi Meng, Jianzhong Cui, Zhihao Zhao, Yubo Zuo, ”Effect of vanadium on the microstructures and mechanical properties of an Al–Mg–Si–Cu–Cr–Ti alloy of 6XXX series”, Journal of Alloys and Compounds, Vol.573, pp.102–111 (2013).
42. Yi Meng, Zhi-hao Zhao, Jian-zhong Cui, “Effect of minor Zr and Sc on microstructures and mechanical properties of Al−Mg−Si−Cu−Cr−V alloys”, Trans. Nonferrous Met. Soc. China, Vol.23, pp.1882−1889 (2013).
43. J. R. Davis, ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM International, (1993).
44. Tang Jian-guo, Chen Hui, Zhang Xin-ming, Liu Sheng-dan, Liu Wen-jun, Ouyang Hui, Li Hong-ping, “Influence of quench-induced precipitation on aging behavior of Al-Zn-Mg-Cu alloy”, Trans. Nonferrous Met. Soc. China, Vol.22, pp1255-1263, (2012).
45. Liu Sheng-dan, Zhang Xin-ming, Chen Ming-an, You Jiang-hai, Zhang Xian-yan, “Effect of Zr content on quench sensitivity of AlZnMgCu alloys’, Trans. Nonferrous Met. Soc.China, Vol.17, pp.787-792, (2007).
46. D. Wang, D. R. Ni, Z. Y. Ma, “Effect of pre-Strain and two-step aging on microstructure and stress corrosion cracking of 7050 alloy”, Materials Science and Engineering A, Vol.494, pp.360-366, (2008).
47. P. N. Alder, R. Delasi, G. Geschwind, “Influence of Microstructure on the Mechanical Properties and Stress Corrosion Susceptibility of 7050 Aluminum Alloy”, Metallurgical and Materials Transaction B, Vol.3, pp.3191-3200, (1972).
48. L. B. Ber, “Accelerated artificial ageing regimes of commercial aluminium alloys. Ⅱ: Al-Cu, Al-Zn-Mg-(Cu), Al-Mg-Si-(Cu), alloys”, Materials Science and Engineering A, Vol.280, pp.91-96, (2000).
49. F. Viana, A. M. P. Pinto, H. M. C. Santos and A. B. Lopez, “Retrogression and re-ageing of 7075 aluminium alloy: microstructure characterization”, Journal of Materials Processing Technology, Vol.92-93, pp.54-59, (1999).
50. W. Feng, X. Baiqing, Z. Yongan, L. Hongwei, Li. Zhihui, L. Qiang, “Microstructure and mechanical properties of spary-deposited Al-Zn-Mg-Cu alloy processed through hot rolling and heat treatment”, Materials science and Engineering A, Vol.518, pp.144-149, (2009).
51. J. Wloka, S. Virtanen, “Detection of nanoscale η-MgZn2 phase dissolution from an Al-Zn-Mg-Cu alloy by electrochemical micro transients”, Surface and Interface Analysis, pp.1219-1225, (2008).
52. Y. H. Zhao, X. Z. Liao, S. Cheng, E. Ma, Yuntian T. Zhu, “Simultaneously increasing the Ductility and strength of Nanostructures Alloys”, Advanced Material, Vol.18, pp.2280-2283, (2006).
53. 黃清添,「析出製程參數對AA7005鋁擠型合金的機械性質與抗應力腐蝕性之影響」,國立台灣科技大學,碩士論文,民國91年。
54. George E. Dieter, Mechanical Metallurgy, Mcgraw-Hill Book Company , London, pp.275-288, (1988).
55. ASM, “Aluminum Alloys”, Metals Handbook, Vol.8, 8th, 1976, pp.259.
56. ASM, “Aluminum Alloys”, Metals Handbook, Vol.8, 8th, 1976, pp.263.
57. D. R. Lide, Handbook of Chemistry and Physics, 71st ed.:CRC Press, (1991).
58. M. Pourbaix, Atlas of Electrochemical Equilibriain Aqueous Solutions: National Association of Corrosion Engineers, (1974).
59. 柯賢文, 腐蝕及其防治: 全華科技圖書股份有限公司, 民國92年。
60. M. G. Fontana, 3rd ed., 1986.
61 . Ziyong Chen, Yuanke Mo and Zuoren Nie, “Effect of Zn Content on the Microstructure and Properties of Super-High Strength Al-Zn-Mg-Cu Alloys”, Metallurgical and Materials Transactions A, Vol.44A, pp.3910-3921, (2013).
62. A. Janghorban, A. Antoni-Zdziobek, M. Lomello-Tafin, C. Antion, Th. Mazingue, A. Pisch, “Phase equilibria in the aluminium-rich side of the Al-Zr system”, J Therm Anal Calorim, Vol.114, pp1015-1020 (2013).
63. C. Gupta, H. Toda, T. Fujika, M. Kobayashi, H. Hoshino, K. Uesugi, A. Takeuchi, Y. Suzuki, “Quantitative tomography of hydrogen precharged and uncharged Al-Zn-Mg-Cu alloy after tensile fracture”, Materials Science & Engineering A, Vol.670, pp300-313 (2016).
64. D. Nguyen, A. W. Thompson and I. M. Bernstein, “Microstructure Effects on Hydrogen Embrittlement in High Purity 7075 Aluminum alloy”, Acta metall., Vol.35, pp.2417-2425, (1987).
65. R. G. Song, W. Dietzel, B. J. Zhang, W. J. Liu, M. K. Tseng, A. Atrens, “Stress corrosion cracking and hydrogen embrittlement of an Al–Zn–Mg–Cu alloy”, Acta Materialia, Vol. 52, pp.4727-4743, (2004).
66. George A. Young Jr. and John R. Scully, “The Effects of Test Temperature, Temper, and Alloyed Copper on the Hydrogen-Controlled Crack Growth Rate of an Al-Zn-Mg-(Cu) Alloy”, Metallurgical and Materials Transactions A, Vol.33A, pp.1167-1181, (2002).
67. H. Kamoutsi, G. N. Haidenmenopoulos, V. Bontozoglou, S. Pantelakis, “Corrosion-induced hydrogen embrittlement in aluminum alloy 2024”, Corrosion Science, Vol.48, pp.1209-1224. (2006).
68. Shigeru Kuramoto, Jun Okahana and Motohiro Kanno, “Hydrogen assisted intergranular crack propagation during environmental embrittlement in an Al-Zn-Mg-Cu alloy”, Materials Transactions, Vol.42, pp.2140-2143, (2001).
69. G. M. Scamans, R. Alani and P. R. Swann, “Pre-exposure embrittlement and stress corrosion failure in al-Zn-Mg alloys”, Corrosion Science, Vol.16, pp.443-459, (1976).
70. 林祿淵,”製成參數對A356鋁合金品質的影響及可靠度的評估”,國立中央大學碩士班畢業論文,民國94年七月。
71. P. S. De, R. S. Mishra, “Microstructural evolution during fatigue of ultrafine grained aluminum alloy”, Materials Science and Engineering:A, Vol.527, pp.7719-7730, (2010).
72. T. C. Schulthess, P. E. A. Turchi, A. Gonis and T.-G. Nieh, “Systematic study of stacking fault energies of ramdom Al-based alloys”, Acta mater., Vol.46, pp.2215-2221, (1998).
73. J. P. Lin, T. C. Lei, X. Y. An, “Dynamic recrystallization during hot compression in AlMg Alloy”, Scripta Metallurgica et Materiala, Vol.26, pp.1869-1874, (1992).
74. Sushanta Kumar Panigrahi, R. Jayaganthan, Vivek Pancholi, “Effect of plastic deformation conditions on microstructural characteristics and mechanical properties of Al 6063 alloy”, Materials and Design, Vol.30, pp.1894-1901, (2009).
75. Teng-Shih Shih, Hwa-Sheng Yong and Wen-Nong Hsu, “Effects of Cryogenic Forging and Anodization on the Mechanical Properties and Corrosion Resistance of AA6066–T6 Aluminum Alloys”, Metals, (2016).
76. Liu Hong, Zhao Gang, Liu Chun-ming, Zuo Liang, “Effects of magnesium content on phase constituents of Al-Mg-Si-Cu alloys”, Transactions of Nonferrous Metals Society of China, Vol.16, pp.376-381, (2006).
77. Sushanta Kumar Panigrahi, R. Jayaganthan, Vivek Pancholi, “Effect of plastic deformation conditions on microstructural characteristics and mechanical properties of Al 6063 alloy”, Materials and Design, Vol.30, pp.194-1901, (2009).
78. Grazyna Mrowka-Nowotnik, “Intermetallic Phases Examination in Cast AlSi5Cu1Mg and AlCu4Ni2Mg2 Aluminium Alloys in As-Cast and T6 Condition”, Recent Trends in Processing and Degradation of Aluminium Alloys, pp.516, (2011).
79. Musa Yildirm, Dursun Ozyurek, “The effects of Mg amount on the microstructure and mechanical properties of Al–Si–Mg alloys”, Materials and Design, Vol.51, pp.767-774, (2013).
80. L. P. Troeger, E. A. Starke Jr, “Particle-stimulated nucleation of recrystallization for grain-size control and superplasticity in an Al–Mg–Si–Cu alloy”, Materials Science and Engineering A, Vol.293, pp.19-29, (2000).
81. Crystopher Brito, Guillaume Reinhart, Henri Nguyen-Thi, Nathalie Mangelinck-Noel, Noe Cheung, Jose E. Spinelli, Amauri Garcia, “High cooling rate cells, dendrites, Microstructural spacings and microhardness in a directionally solidified Al-Mg-Si alloy”, Journal of Alloys and Compounds, Vol.636, pp.145-149, (2015).
82. K. Li, M. Song, Y. Du, X. Fang, “Effect of minor Cu addition on the precipitation sequence of an as-cast Al-Mg-Si 6005 alloy”, Archives of Metallurgy and Materials, Vol.57, pp.457-467, (2012).
83. Gaute Svenningsen, Magnus Hurlen Larsen, John Charles Walmsley, Jan Halvor Nordlien, Kemal Nisancioglu, “Effect of artificial aging on intergranular corrosion of extruded AlMgSi alloy with small Cu content”, Corrosion Science, Vol.48, pp.1528-1543, (2006).
84. Gaute Svenningsen, Magnus Hurlen Larsen, Jan Halvor Nordlien, Kemal Nisancioglu, “Effect of high temperature heat treatment on intergranular corrosion of AlMgSi(Cu) model alloy”, Corrosion Science, Vol.48, pp.258-272, (2006).
85. Gaute Svenningsen, JohnErik Lein, Astrid Bjorgum, Jan Halvor Nordlien, Yingda Yu, Kemal Nisancioglu, “Effect of low copper content and heat treatment on intergranular corrosion of model AlMgSi alloys”, Corrosion Science, Vol.48, pp.226-242, (2006).
86. Gaute Svenningsen, Magnus Hurlen Larsen, Jan Halvor Nordlien, Kemal Nisancioglu, “Effect of thermomechanical history on intergranular corrosion of extruded AlMgSi(Cu) model alloy”, Corrosion Science, Vol.48, pp.3969-3987, (2006).
87. S. S. Su, I. T. H. Chang, W. C. H. Kuo, “Effects of processing conditions on the sintering response of hypereutectic Al-Si-Cu-Mg P/M alloys”, Materials Chemistry and Physics, Vol.139, pp.775-782, (2013).
88. Yanni Wei, Jinglong Li, Jiangtao Xiong, Fusheng Zhang, “Investigation of interdiffusion and intermetallic compounds in Al–Cu joint produced by continuous drive friction welding”, Engneering Science and Technology, an International Journal, Vol.19, pp.90-95, (2016).
89. J. R. Davis, “Aluminum and Aluminum Alloys”, ASM International, pp.351-416, (2001).
90. Feng Wang, Dong Qiu, Zhi-Lin Liu, John A. Taylor, Mark A. Easton, Ming-Xing Zhang, “The grain refinement mechanism of cast aluminium by zirconium”, Acta Materialia, Vol.66, pp.5636-5645, (2013).
91. Y. H. Zhao, X. Z. Liao, Z. Jin, R. Z. Valiev, Y. T. Zhu, “Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing”, Acta Materialia, Vol.52, pp.4589-4599, (2004).
92. T. Ramgopal, P. I. Gouma and G. S. Frankel, “Role of Grain-Boundary Precipitates and Solute-Depleted Zone on the Intergranular Corrosion of Aluminum Alloy 7150”, Corrosion, Vol.58, pp.687-697, (2002).
93. Chandan Mondal, A. K. Mukhopadhyay, “On the nature of T(Al_2 Mg_3 Zn_3) and S(Al_2 CuMg) phases present in as-cast and annealed 7055 aluminum alloy”, Materials Science and Engineering A, Vol.391, pp.367-376, (2005).
94. Fan Xi-Gang, Jiang Da-Ming, Meng Qing-Chang, Zhang Bao-You, Wang Tao, “Evolution of eutectic structures in Al-Zn-Mg-Cu alloys during heat treatment”, Transactions of Nonferrous Metals Society of China, Vol.16, pp.577-581, (2006).
95. Keith E. Knipling, David C. Dunand, David N. Seidman, “Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during aging at 450–600℃”, Acta Materialia, Vol.56, pp.1182-1195, (2008).
96. Feng Wang, Dong Qiu, Zhi-Lin Liu, John A. Taylor, Mark A. Easton, Ming-Xing Zhang, “The grain refinement mechanism of cast aluminium by zirconium”, Acta Materialia, Vol.61, pp.5626-5645, (2013).
97. Lei Li, Yudong Zhang, Claude Esing, Huixue Jiang, Zhihao Zhao, Yubo Zuo, Jianzhong Cui, “Crystallographic features of the primary Al_3Zr phase in as-cast Al-1.36wt% Zr alloy”, Journal of Crystal Growth, Vol.316, pp.172-176, (2011).
98. K. D. Ralston and N. Birbills, “Effect of Grain Size on Corrosion: A Review”, Corrosion, Vol.66, (2010).
99. K. D. Ralston, N. Birbills and C. H. J. Davis, “Revealing the relationship between grain size and corrosion rate of metals”, Scripta Materialia, Vol.63, pp.1201-1204, (2010).
100. Qingqing Sun, Kanghua Chen, Huachan Fang, Jie Xu, Pengxuan Dong, Guiyun Hu, Qiyuan Chen, “Effect of Grain Refinement on Electrochemical Behavior of Al-Zn-Mg-Cu Alloys”, International Journal of Electrochemical Science, Vol.11, pp.5855-5869, (2016).
101. J. F. Chen, G. S. Frankel, J. T. Jiang, W. Z. Shao and L. Zhen, "Effect of age-forming on corrosion properties of an Al-Zn-Mg-Cu alloy”, Materials and Corrosion, Vol.65, pp.670-677, (2014).
102. M. B. Kannan, V.S. Raja,” Enhancing stress corrosion cracking resistance in Al–Zn–Mg–Cu–Zr alloy through inhibiting recrystallization”, Engineering Fracture Mechanics, Vol.77, pp.249-256, (2010).
103. Ying Deng, Zhimin Yin, Kai Zhao, Jiaqi Duan, Jian Hu, Zhenbo He, “Effects of Sc and Zr Microalloying additions and aging time at 120℃ on the corrosion behavior of an Al-Zn-Mg alloy”, Corrosion Science, Vol.65, pp.288-298, (2012).
104. D. K. Xu, N. Birbilis, P. A. Rometsch,” The effect of pre-ageing temperature and retrogression heating rate on the strength and corrosion behaviour of AA7150”, Corrosion Science, Vol.54, pp.17-25, (2012).
105. Li Jin-Feng, Peng Zhuo-Wei, Li Chao-Xing, Jia Zhi-Qiang, Chen Wen-Jing, Zheng Zi-Qiao, “Mechanical properties, corrosion behaviors and microstructures of 7075 aluminium.
106. Li Jin-Feng, Peng Zhuo-Wei, Li Chao-Xing, Jia Zhi-Qiang, Chen Wen-Jing, Zheng Zi-Qiao, “Mechanical properties, corrosion behaviors and microstructures of 7075 aluminium alloy with various aging treatments”, Transactions of Nonferrous Metals Society of China, Vol.18, pp.755-762, (2008).
107. Keith E. Kinpling, David C. Dunand, David N. Seidman, “Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during aging at 450–600℃”, Acta Materialia, Vol.56, pp1182-1195, (2008).
指導教授 施登士(Teng-Shih Shih) 審核日期 2016-10-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明