博碩士論文 100383009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:78 、訪客IP:3.143.0.18
姓名 邱永傑(Yong-Jie Ciou)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 即時影像導引局部電化學沉積系統製作立 體微結構物之研究
(Research on Real-time Image Processing Guided Micro-Anode Electroplating for fabrication of three-dimensional microstructure)
相關論文
★ 應用於車身號碼打刻機之號碼辨識★ 複合式掌紋識別系統
★ 圓形偵測在OLED Panel 檢測上的應用★ MLCC薄膜厚度即時線上影像檢測技術之研發
★ 全自動微鑽針影像檢測系統之研究★ 應用類神經網路預測COG製程對於中小尺寸TFT-LCD產生之應力狀態
★ 應用機器視覺系統檢測高滲透壓刀輪切割 TFT-LCD 玻璃後斷面之研究★ 低成本輕量化機械手臂之研究
★ 應用在同軸電纜加工之雷射光斑導引機構設計與分析★ 表面電漿波共振-非旋轉方式的新機構設計理論
★ 網路協同式機械設計系統研發★ 軟膠囊自動辨識系統
★ 心電訊號之擷取與分析★ 盲人圖樣感知輔助裝置之研發設計
★ 非旋轉式表面電漿共振儀之改良與實現★ 可攜式無線心電訊號擷取器之設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 微米級立體結構物的應用,在近幾年內蓬勃且廣泛發展相關的應用產品,例如:3D IC、生物檢測領域、醫療器材、感測器與微型陀螺儀等各種重要的領域。在微米級立體結構物的相關技術中,局部電化學沉積能夠輕易地製作高深寬比之結構物,並使用多種不同材質製作微結構物。目前曾被應用於氣體感測器等應用領域。
本研究延續即時影像導引局部電化學電鍍的概念,發展一套局部電化學與影像導引控制系統,運用此系統製作出表面更平滑、結構紮實、形貌可控且更高複雜性的二維與三微結構物,並利用電化學模擬電場分布探討實驗結果,以此建立模擬數據分析方法,以利微電鍍製程後續之相關應用。
本研究主要有三個研究方向,首先是探討應用即時影像於製作多維度微結構物之可行性,建立2 D微結構形貌控制法;研究結果顯示使用兩極相對位置控制法能使2D微結構物之沉積角度在±51.9˚之間。並且進一步探討製作參數與沉積角度之關聯性,如工作電壓、陰極面積、陽極形貌等參數,並將實驗結果比對模擬結果,建立沉積角度之模擬預測方法。
第二個研究方向為沉積出複雜度更高之微結構物,研究目標為增進2D微結構物之傾斜角度與降低3D為螺旋之螺距,研究方法是利用五軸移動平台、不同之陽極形貌等進一步改良局部電化學沉積系統。關於增進2D微結構物之傾斜角度的研究中,非對稱式尖頭陽極之實驗沉積結果證實,此種陽極能增進最小沉積角度,微結構物之沉積角度範圍為12˚ ~ -107.9˚,而此微陽極之特性與模擬推測結果相符。基於此類陽極,本研究建立五軸即時影像間距控制系統,以此製作之3D微結構物證實,控制系統能進一步製作結構更複雜之沉積物:低螺旋傾角之螺旋彈簧與倒三角架。
第三個研究方向是結合電化學模擬分析與影像監控之實驗結果,經由比對實驗及模擬結果進行,能進一步探討局部電化學沉積理論與特性。由於相關的研究顯示,使用非對稱式尖頭陽極所製作之螺旋曲線,螺旋外貌會有線徑漸粗的狀況,而非對稱平頭陽極則無此現象。因此我們由電場分布模擬結果探討差異性,我們認為主要有兩個因素,首先為尖頭電極模擬結果中,第一峰值差距較大且影響區域較廣;第二個因素為模擬結果中的第二峰值強度差異。
摘要(英) The localized electrochemical deposition (LECD) process has been used to fabricate 3D microproducts. The purpose of this research is to develop a LECD process with a real-time 3D image feedback distance control system to improve the quality and conformational design complexity of 3D microproducts.
In 2D microstructure, the deposition direction of the microstructures is found to be closely related to the relative orientations and positions of the micro-anode and the microstructure stip. By controlling the anode position and orientation, microstructures with different geometries can be fabricated and their properties can be improved.
We also discussed the relationship between the deposition orientations of 2D microstructures and working voltage by experiment and electro field strength simulation. According to the experimental results, the deposition orientations don’t be significant changed when the experiments was applied with different working voltage in same microelectrode-structure distance.
For predicting the deposition orientation of 2D microstructures, we proposed three methods to analyze the distribution of electro field strength by using characteristic directions calculated from the maximum electric field strength, weighted average, and mid-point (over a certain threshold value) methods. Compared with the experimental results, the mid-point method with a 50% threshold value provides the best prediction for the deposition orientation.
For fabricated complex 3D microproducts, analyses of microproducts show that the main factor is the deposition direction angle that can be controlled in a 2D fabrication method. The deposition direction angle was the angle between the normal direction of the substrate surface and deposition direction. The normal direction of the substrate surface was determined 0"°" .We investigate two methods to improve the deposition direction angle in this study. The first method makes use of a new type of micro anode with asymmetric tip. By using this asymmetric micro anode, the deposition direction angle is found to range between −12.0° and 107.9°. This range is only to display the performance of the anode that proposed in this study. The second method is to redesign the moving mechanism and increase actuators and axes. By employing these two methods, we demonstrate high quality fabrication of two types of microstructures: helical springs with low pitch angle and inverted tripods.
關鍵字(中) ★ 局部電化學沉積
★ 即時影像處理
★ 微電場模擬
★ 五軸運動控制
關鍵字(英) ★ Localized electrochemical deposition (LECD)
★ Real-time image processing
★ electro field simulation,
★ five-axis machine
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vi
圖目錄 viii
表目錄 xiii
符號表 xiv
第一章 緒論 1
1-1 研究動機及文獻回顧 1
1-2 研究目的 5
1-3 論文貢獻 5
1-4 論文架構 6
第二章 局部電化學與影像導引控制系統 7
2-1 系統架構 7
2-2 局部電化學沉積系統 9
2-3 影像定位系統 15
2-4 移動平台及運動路徑控制 25
第三章 即時影像間距控制系統 31
3-1 三軸即時影像間距控制系統 31
3-2 五軸即時影像間距控制系統 33
3-3 形貌控制方法 35
第四章 電化學模擬分析方法 37
4-1 2D模擬邊界條件及數據分析方法 37
4-2 3D模擬邊界條件及數據分析方法 42
第五章 實驗結果與討論 45
5-1 實驗流程規劃 45
5-2 1D形貌控制及系統驗證 47
5-2-1 系統驗證 47
5-2-2 1D微結構物沉積探討 48
5-3 2D形貌控制 53
5-3-1 兩極相對位置控制法 53
5-3-2 電壓不同對沉積形貌之影響 56
5-3-3 電場強度分布模擬與沉積形貌 59
5-3-4 陽極形貌探討 63
5-3-5 非對稱式尖頭陽極實驗沉積結果 70
5-3-6 微結構旋轉控制法 71
5-4 3D形貌控制 72
5-4-1 三軸即時影像間距控制系統應用於製作3D微結構物 72
5-4-2 五軸即時影像間距控制系統應用於製作3D微結構物 75
5-4-3 立體彈簧電場探討 79
第六章 結論與未來展望 93
6-1 結論 93
6-2 未來展望 95
第七章 參考文獻 96
參考文獻 1. Vaezi, M., H. Seitz, and S. Yang, A review on 3D micro-additive manufacturing technologies. The International Journal of Advanced Manufacturing Technology, 2012. 67(5-8): p. 1721-1754.
2. Guckel, H., et al., A first functional current excited planar rotational magnetic micromotor. 1993: p. 7-11.
3. Sun, C., et al., Projection micro-stereolithography using digital micro-mirror dynamic mask. Sensors and Actuators A: Physical, 2005. 121(1): p. 113-120.
4. Madden, J.D. and I.W. Hunter, Three-dimensional microfabrication by localized electrochemical deposition. Journal of Microelectromechanical Systems, 1996. 5(1): p. 24-32.
5. Hu, J. and M.F. Yu, Meniscus-confined three-dimensional electrodeposition for direct writing of wire bonds. Science, 2010. 329(5989): p. 313-6.
6. Farahani, R.D., K. Chizari, and D. Therriault, Three-dimensional printing of freeform helical microstructures: a review. Nanoscale, 2014. 6(18): p. 10470-85.
7. Habib, M.A., S.W. Gan, and M. Rahman, Fabrication of complex shape electrodes by localized electrochemical deposition. Journal of Materials Processing Technology, 2009. 209(9): p. 4453-4458.
8. Tseng, Y.T., et al., Fabrication of a novel microsensor consisting of electrodeposited ZnO nanorod-coated crossed Cu micropillars and the effects of nanorod coating morphology on the gas sensing. ACS Appl Mater Interfaces, 2014. 6(14): p. 11424-38.
9. Seol, S.K., et al., Electrodeposition-based 3D Printing of Metallic Microarchitectures with Controlled Internal Structures. Small, 2015. 11(32): p. 3896-902.
10. Yeo, S.H. and J.H. Choo, Effects of rotor electrode in the fabrication of high aspect ratio microstructures by localized electrochemical deposition. Journal of Micromechanics and Microengineering, 2001. 11(5): p. 435-442.
11. Said, R.A., Shape Formation of Microstructures Fabricated by Localized Electrochemical Deposition. Journal of The Electrochemical Society, 2003. 150(8): p. C549.
12. Lin, C.S., et al., Improved copper microcolumn fabricated by localized electrochemical deposition. Electrochemical and Solid State Letters, 2005. 8(9): p. C125-C129.
13. Yang, J.H., et al., Assessing the degree of localization in localized electrochemical deposition of copper. Journal of Micromechanics and Microengineering, 2008. 18(5).
14. Lee, C.Y., C.S. Lin, and B.R. Lin, Localized electrochemical deposition process improvement by using different anodes and deposition directions. Journal of Micromechanics and Microengineering, 2008. 18(10).
15. Lin, J.C., et al., Mechanical Properties of Copper Micrometer Pillars Fabricated by Intermittent MAGE Process. International Journal of Electrochemical Science, 2011. 6(8): p. 3536-3549.
16. Seol, S.K., et al., Coherent microradiology directly observes a critical cathode-anode distance effect in localized electrochemical deposition. Electrochemical and Solid State Letters, 2004. 7(9): p. C95-C97.
17. Seol, S.K., et al., Localized electrochemical deposition of copper monitored using real-time X-ray microradiography. Advanced Functional Materials, 2005. 15(6): p. 934-937.
18. Ting-Chao Chen, Y.-R.H., Jing-Chie Lin, Yong-Jie Ciou, The Development of a Real-Time Image Guided Micro Electroplating System. International Journal of Electrochemical Science, 2010. 5: p. 10.
19. Yean-Ren Hwang, J.-C.L., Ting-Chao Chen, The Analysis of the Deposition Rate for Continuous Micro-Anode Guided Electroplating Process. Int. J. Electrochem. Sci.,, 2012. 7: p. 1359 - 1370.
20. Yean-Ren Hwang, Y.-J.C., Jing-Chie Lin, Ting-Chao Chen, Yao-Tien Tseng, Research on Real-Time Image Processing Guided Micro-Anode Electroplating for Fabrication of Three-Dimensional Microstructure. World Academy of Science, Engineering and Technology, 2013. 77: p. 1615-1619.
指導教授 黃衍任(Yean-ren Hwang) 審核日期 2016-10-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明