博碩士論文 103323054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:3.148.117.62
姓名 徐晧修(Hao-Hsiu Hsu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 氨SOFC之實驗研究:陽極支撐與電解質支撐電池性能之比較
相關論文
★ 蚶線形滑轉板轉子引擎設計與實作★ 實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式
★ 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅★ 預混火焰與尾流交相干涉之實驗研究
★ 自由傳播預混焰與紊流尾流交互作用﹔火焰拉伸率和燃燒速率之量測★ 重粒子於泰勒庫頁提流場之偏好濃度與下沈速度實驗研究
★ 潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測★ 預混焰與紊流尾流交互作用時非定常應變率、曲率和膨脹率之定量量測
★ 實驗方式產生之均勻等向性紊流場及其於兩相流之應用★ 液態紊流噴流動能消散率場與微尺度間歇性 之定量量測
★ 預混焰和紊流尾流交互作用:拉伸率與輻射熱損失效應量測★ 四維質點影像測速技術與微尺度紊流定量量測
★ 潔淨能源:超焓燃燒器研發★ 小型熱再循環觸媒燃燒器之實驗研究及應用
★ 預混紊流燃燒:碎形特性、當量比 和輻射熱損失效應★ 預混甲烷紊焰拉伸量測,應用高速PIV
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究實驗量測氨SOFC之電池性能與電化學阻抗頻譜。我們使用自製鈕扣型全電池測試載具於實驗室已建立之雙腔體高壓高溫SOFC實驗平台,分別針對陽極支撐全電池(anode-supported cell, ASC)和電解質支撐全電池(electrolyte-supported cell, ESC),量測以氨為燃料之ASC和ESC的電池性能曲線(I-V curve)及其電化學阻抗頻譜(electrochemical impedance spectra, EIS),探討溫度、壓力和加濕效應對ASC和ESC之影響。ASC和ESC使用相同之實驗條件: (1)固定氣體流率,陰極: 100 sccm O2,陽極: 60 sccm H2 + 40 sccm N2或40 sccm NH3 + 20 sccm N2 (為了作H2和NH3之電池性能比較); (2)三個不同操作溫度: 750oC, 800oC, 850oC (溫度效應研究); (3)在每個操作溫度,陽極分別使用乾和加濕(2% H2O)之氨燃料(加濕效應研究); (4) ASC使用氨燃料在800oC和850oC下,分別進行1 atm和3 atm之實驗(加壓效應研究)。結果顯示,在750~850oC條件下,不管是ASC和ESC,使用氨為燃料之電池性能僅略小於使用氫燃料之電池性能,這是因為氨氣於750oC或以上即會先裂解為氫和氮,隨後氫和氧反應成水。因氨於常溫加壓到10大氣壓即為液態,故比氫燃料更具實用性。另外,ASC電池性能明顯優於ESC,氨ASC之功率密度(在0.7V和1 atm)從約370 mW/cm2增加到約700 mW/cm2,當溫度從750oC增加到850oC,相對應之氨ESC則從約175 mW/cm2增加到485 mW/cm2,顯示溫度效應(溫度愈高,性能愈好)。以上電池性能,可由EIS結果來解釋。ASC無論是使用氫氣或氨氣,主要是由低頻之濃度極化所主導,而ESC則由高頻之活化極化所主導,提高溫度可減少活化極化。再者,我們發現加濕,反而會使氨ASC和ESC之電池性能在高負載時下降,溫度越高,下降幅度越多,此乃因過多水分子可能使燃氣在三相邊界中之擴散受到阻礙。最後,無論在800或850oC,3大氣壓之氨ASC電池性能比1大氣壓有明顯地提升,顯示加壓效應會有效地提升電池性能。以上結果,顯示氨SOFC極具應用之價值。
摘要(英) In this study, we experimentally measure the cell performance and electrochemical impedance spectra (EIS) of ammonia solid oxide fuel cells (SOFCs) using a homemade button-type full cell in an already-established dual-chamber high-pressure and high-temperature SOFC testing platform. Measurements of both anode-supported cell (ASC) and electrolyte-supported cell (ESC) using ammonia as a fuel are carried out to investigate various effects of temperature, pressure, and humidification on the cell performance of ASC and ESC. Both ASC and Esc apply the same experimental conditions: (1) Constant gas flow rates, cathode: 100 sccm O2, anode: 60 sccm H2 + 40 sccm N2 or 40 sccm NH3 + 20 sccm N2 (for cell performance comparison purpose between H2 and NH3); (2) three different operating temperatures: 750oC, 800oC, 850oC (temperature effect); (3) at each operating temperature, both dry and humidified (2% H2O) ammonia fuels are separately used in anode (humidified effect); (4) for the pressure effect, 1 atm and 3 atm of ammonia ASC at both 800oC and 850oC are conducted and compared. Results show that at 750~850oC, both ASC and ESC using ammonia as a fuel have slightly smaller cell performance than that of hydrogen-fuelled ASC and ESC. This is because ammonia decomposes first into H2 and N2 at 750oC or above, then following by H2 oxidation reaction to form H2O. The ammonia fuel gas can be easily become liquid at room temperature and at a pressure equal to 10 atm and it can be easily stored in a pressurized stainless-steel bottle. Therefore, ammonia is much more practical than hydrogen fuel. Further, the cell performance of ASC is obviously better than ESC. When the temperature increases from 750oC to 850oC, the ammonia ASC power densities increase from 370 mW/cm2 to 700 mW/cm2, while the ammonia ESC power densities increase from 175 mW/cm2 to 485 mW/cm2, showing the importance of the temperature effect. The aforesaid cell performance characteristics can be explained by EIS results. Either using hydrogen or ammonia, the dominated polarization of ASC is the low-frequency concentration polarization in the Nyquist plot of EIS data, while ESC is dominated by the high-frequency activation polarization. The latter decreases with increasing temperature. Moreover, it is found that the humidification decreases the cell performance of ammonia ASC and ESC at higher loadings. The higher the temperature, the more decrease of cell performance at higher loads. This is attributed to excess water molecules in the triple-phase boundary making diffusion more difficult to go through. Finally, at 800oC and 850oC conditions, the cell performance of ammonia ASC at 3 atm is clearly higher than that at 1 atm, showing the effect of pressurization on the enhancement of cell performance. These results reveal that pressurized ammonia SOFC has great potential for practical applications deserving further studies.
關鍵字(中) ★ 固態氧化物燃料電池(SOFC)
★ 鈕扣型陽極支撐與電解質支撐全電池
★ 氨氣
★ 溫度效應
★ 加濕效應
★ 加壓效應
關鍵字(英) ★ SOFC
★ anode-supported and electrolyte-supported button full cell
★ ammonia
★ temperature
★ humidification
★ pressurization
論文目次 摘要 i
Abstract iii
致謝 iv
目錄 v
圖目錄 vii
符號說明 ix
第一章 前言 1
1.1 研究動機 1
1.2 問題所在 2
1.3 解決方法 5
1.4 論文綱要 5
第二章 文獻回顧 7
2.1 SOFC基本介紹 7
2.2 SOFC運作原理與極化現象 10
2.3 電化學阻抗頻譜與等效電路模組 15
2.4 SOFC使用氨氣之文獻回顧 17
2.4.1 改變陽極材料 19
2.4.2 改變電池片的操作溫度 24
2.4.3 改變陽極燃氣的組成比例 25
第三章 實驗設備與量測方法 29
3.1 高壓SOFC實驗平台 29
3.2 實驗流程與量測操作參數設定 32
第四章 結果與討論 39
4.1 氫氣與氨氣於溫度效應之量測與分析 39
4.2 分別使用氫與氨燃氣於ASC和ESC之電池性能比較 41
4.3 加濕效應對使用氨氣於ASC和ESC之影響 45
4.4 加壓效應對氨ASC和ESC之影響 46
第五章 結論與未來工作 57
5.1 結論 57
5.2 未來工作 58
參考文獻 60
參考文獻 [1] Gregor, H., Fuel cell technology hand book, CRC Press, Germany, 2003.
[2] Ronald M. Dell, Patrick T. Moseley, David A.J. Rand, Towards Sustainable Road Transport, 1st Edition, “Chapter 8 - Hydrogen, Fuel Cells and Fuel Cell Vehicles”, Academic Press, pp.288, 2014.
[3] S. Farhad, F. Hamdullahpur, “Conceptual design of a novel ammonia-fuelled portable solid oxide fuel cell system”, Journal of Power Sources, Vol. 195, pp. 3084-3090, 2010.
[4] N. Maffei, L. Pelletier, A. McFarlan, “A high performance direct ammonia fuel cell using a mixing ionic and electronic conducting anode”, Journal of Power Sources, Vol. 175, pp. 221-225, 2008.
[5] R. Yokochi, M. Hashinokuchi, T. Doi, M. Inaba, “Effects of nitride formation on anode catalytic activity in ammonia-fueled SOFCs”, ECS Transactions, Vol. 68, pp. 2745-2750, 2015.
[6] M. Hashinokuchi, R. Yokochi, W. Akimoto, T. Doi, M. Inaba, J. Kugai, “Mechanism and activity of Ni-based (Ni-M: M = Fe, Mo, W, Ta) cermet anodes for ammonia oxidation in SOFCs”, ECS Transactions, Vol. 68, pp. 2739-2744, 2015.
[7] J. Yang, T. Akagi, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, “Catalytic influence of oxide component in Ni-Based cermet anodes for ammonia-fueled Solid Oxide Fuel Cells”, Fuel Cells, Vol. 15, pp. 390-397, 2015.
[8] A. F. S. Molouk, J. Yang, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, “Comparative study on ammonia oxidation over Ni-based cermet anodes for solid oxide fuel cells”, Journal of Power Sources, Vol. 305, pp.72-79, 2016.
[9] L. Liu, K. Sun, X. Wu, X. Li, M. Zhang, N. Zhang, X. Zhou, “Improved performance of ammonia-fueled solid oxide fuel cell with SSZ thin film electrolyte and Ni-SSZ anode functional layer”, International Journal of Hydrogen Energy, Vol. 37, pp. 10857-10865, 2012.
[10] W. Akimoto, T. Fujimoto, M. Saito, M. Inaba, H. Yoshida, T. Inagaki, “Ni–Fe/Sm-doped CeO2 anode for ammonia-fueled solid oxide fuel cells”, Solid State Ionics, Vol. 256, pp. 1-4, 2014.
[11] J. Yang, A. F. S. Molouk, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, “Electrochemical and catalytic properties of Ni/BaCe0.75Y0.25O3−δ anode for direct ammonia-fueled Solid Oxide Fuel Cells”, ACS Applied Materials Interfaces, Vol. 7, pp. 7406–7412, 2015.
[12] J. Yang, A. F. S. Molouk, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, “A stability study of Ni/Yttria-Stabilized Zirconia anode for direct ammonia Solid Oxide Fuel Cells”, ACS Applied Materials Interfaces, Vol. 7, pp. 28701–28707, 2015.
[13] Q. Ma, R. Peng, L. Tian, G. Meng, “Direct utilization of ammonia in intermediate-temperature solid oxide fuel cells”, Electrochemistry Communications, Vol. 8, pp. 1791-1795, 2006.
[14] G. Meng, C. Jiang, J. Ma, Q. Ma, X. Liu, “Comparative study on the performance of a SDC-based SOFC fueled by ammonia and hydrogen”, Journal of Power Sources, Vol. 173, pp. 189-193, 2007.
[15] Q. Ma, J. Ma, S. Zhou, R. Yan, J. Gao, G. Meng, “A high-performance ammonia-fueled SOFC based on a YSZ thin-film electrolyte”, Journal of Power Sources, Vol. 164, pp. 86-89, 2007.
[16] Q. Ma, R. Peng, Y. Lin, J. Gao, G. Meng, “A high-performance ammonia-fueled solid oxide fuel cell”, Journal of Power Sources, Vol. 161, pp. 95-98, 2006.
[17] A. F. S. Molouk, J. Yang, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, “Electrochemical and catalytic behaviors of Ni–YSZ Anode for the Direct Utilization of Ammonia Fuel in Solid Oxide Fuel Cells”, Journal of The Electrochemical Society, Vol. 162, pp. 1268-1274, 2015.
[18] A. Fuertea, R.X. Valenzuelaa, M.J. Escuderoa, L. Daza, “Ammonia as efficient fuel for SOFC”, Journal of Power Sources, Vol. 192, pp. 170–174, 2009.
[19] A. F. S. Molouk, J. Yang, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, “Electrochemical and catalytic behavior of Ni-based cermet anode for ammonia-fueled SOFCs”, ECS Transactions, Vol. 68(1), pp. 2751-2762, 2015.
[20] N. Dekker, B. Rietveld, “Highly efficient conversion of ammonia in electricity by Solid Oxide Fuel Cells”, 6th European Solid Oxide Fuel Cell Forum, pp. 1524, 2004.
[21] J. D. Liang, L. H. Hong, P. C. Wu, S. S. Shy, “A simple pressurized SOFC test rig for measurements of cell performance, impedance and various overvoltages”, ECS Transactions, Vol. 68(1), pp. 2179-2188, 2015.
[22] 謝易達,加壓型SOFC陽極支撐與電解質支撐單電池堆量測與分析,碩士論文,國立中央大學,2013。
[23] 吳佩真,加壓鈕扣型陽極支撐SOFC實驗量測與活化和濃度過電位分析計算,碩士論文,國立中央大學,2013
[24] 李雪茹,加壓SOFC陰極半電池實驗研究,碩士論文,國立中央大學,2013
[25] 詹彥信,固態氧化物燃料電池使用甲烷燃氣之性能和電化學阻抗頻譜實驗研究,碩士論文,國立中央大學,2014。
[26] 梁俊德,加壓型SOFC碳沉積之實驗研究,碩士論文,國立中央大學,2015。
[27] 洪立翰,合成氣於加壓型SOFC之性能量測及其微氣渦輪機複合系統之模擬分析,碩士論文,國立中央大學,2015。
[28] S. S. Shy, Y. D. Hsieh, C. M. Huang, Y. H. Chan, “Comparison of Electrochemical Impedance Measurements between Pressurized Anode-Supported and Electrolyte-Supported Planar Solid Oxide Fuel Cells”, Journal of The Electrochemical Society, Vol. 162(1), F172-F177, 2015.
[29] Y. D. Hsieh, Y. H. Chan, S. S. Shy, “Effects of pressurization and temperature on power generating characteristics and impedances of anode-supported and electrolyte-supported planar Solid Oxide Fuel Cells”, Journal of Power Sources, Vol. 299, pp. 1-10, 2015.
[30] P. C. Wu, H. S. Jheng, S. S. Shy, “Electrochemical Impedance Measurement and Analysis of Anodic Concentration Polarization for Pressurized Solid Oxide Fuel Cells”, Journal of The Electrochemical Society, Vol. 161(4), F513-F517, 2014.
[31] S. S. Shy, Y. D. Hsieh, J. D. Liang, “The impact of Pressurization on Anode-Supported and Electrolyte-Supported Planar Solid Oxide Fuel Cells at 750℃~850℃”, ECS Transactions, Vol. 68(1), pp. 2169-2178, 2015.
[32] B. C. H. Steele, A. Heinzel, “Materials for fuel-cell technologies”, Nature, Vol. 414, pp. 345–352, 2001.
[33] M. S. Khan, S. B. Lee, R. H. Song, J. W. Lee, T. H. Lim, S. J. Park, “Fundamental mechanisms involved in the degradation of nickel-yttria stabilized zirconia(Ni-YSZ) anode during solid oxide fuel cells operation:A review”, Ceramics International, Vol. 42, pp. 35-48, 2016.
[34] B. W. Chung, C. N. Chervin, J. J. Haslam, Ai-Quoc Pham, R. S. Glass, “Development and characterization of a high performance thin-film planar SOFC stack”, Journal of Electrochemical Society, Vol. 152(2), A265-A269, 2005.
[35] R.O’hayre, Suk-Won Cha, W. Colella, F. B. Prinz, Fuel Cell Fundamental, 2nd Edition, John Wiley & Sons, Inc., USA, 2009.
[36] J. Larminie, A. Dicks, Fuel Cell Systems Explained, 2nd Edition, John Wiley & Sons. Ltd., England, 2003.
[37] B. de Boer, M. Gonzalez, H. J. M. Bouwmeester and H. Verweij, “The effect of the presence of fine YSZ particles on the performance of porous nickel electrodes”, Solid State Ionics, Vol. 127, pp. 269-276, 2000.
[38] M. Mogensen, K. V. Jensen, M. J. Jørgensen and S. Primdahl, “Progress in understanding SOFC electrodes”, Solid State Ionics,Vol. 150, pp. 123-129, 2002.
[39] M. Mogensen, K.V. Jensen, M. J. Jørgensen, S. Primdahl, Progress in understanding SOFC electrodes, Solid State Ionics, Vol. 150, pp. 123-129, 2003.
[40] R. O’Hayre, D. M. Barnett, F. B. Prinz, “The triple phase boundary-A mathematical model and experimental investigations for fuel cells”, Journal of The Electrochemical Society, Vol. 152 (2), pp. A439-A444, 2005.
[41] G. A. O. Villalba, “Design & development of planar Solid Oxide Fuel Cell stack”, Ph.D. Thesis, pp.19-21, 2013.
[42] Larminie, L. & Dicks, A. Fuel cell systems explained, 2nd Edition, John Wiely & Sons. Ltd., England, 2003.
[43] S. Yang, T. Chen, Y. Wang, Z. Peng, W. G. Wang, “Electrochemical analysis of an anode-supported SOFC”, International Journal of Electrochemical Science, Vol. 8, pp. 2330-2344, 2013.
[44] D. A. Noren, M. A. Hoffman, “Clarifying the Butler–Volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models”, Journal of Power Source, Vol. 152, pp. 175-181, 2005.
[45] S. H. Chan, Z. T. Xia, “Anode micro model of Solid Oxide Fuel Cell”, Journal of Electrochemical Society, Vol. 148, pp. A388-A394, 2001.
[46] M. Ni, M.K.H. Leung, D.Y.C. Leung, “Parametric study of solid oxide fuel cell performance”, Energy Conversion and Management, Vol. 48, pp. 1525-1535, 2007.
[47] S. H. Chan, X. J. Chen, K. A. Khor, “Cathode Micromodel of Solid Oxide Fuel Cell”, Journal of Electrochemical Society, Vol. 151, pp. A164-A172, 2004.
[48] J. H. Nam, D. H. Jeon, “A comprehensive micro-scale model for transport and reaction in intermediate temperature solid oxide fuel cells”, Electrochimica Acta, Vol. 51, pp. 3446-3460, 2006.
[49] R. Kikuchi, T. Yano, T. Takeguchi, K. Eguchi, Characteristics of anodic polarization of solid oxide fuel cells under pressurized conditions, Solid State Ionics, Vol. 174, pp. 111-117, 2004.
[50] W. G. Bessler, S. Gewies, “Gas concentration impedance of solid oxide fuel cell anodes II. Channel geometry”, Journal of The Electrochemical Society, Vol. 154, pp. B548-B559, 2007.
[51] C. X. Li, Z. Z. Wang, S. Liu, C. J. Li, “Effect of gas pressure on polarization of SOFC cathode prepared by plasma spray”, Journal of Thermal Spray Technology, Vol. 22(5), pp. 640-645, 2013.
[52] J. B. Jorcin, M. E. Orazem, N. Pébére, B. Tribollet, CPE analysis by local electrochemical impedance spectroscopy, Electrochemica Acta, Vol. 51, pp. 1473-1479, 2006.
[53] A. Leonide, V. Sonn, A. Weber, E. Ivers-Tiffée, Evaluation and modeling of the cell resistance in anode-supported solid oxide fuel cells, Journal of The Electrochemical Society, Vol. 155, pp. B36-B41, 2008.
[54] S.C.Singhal, K.Kendal, High temperature Solid Oxide Fuels: Fundamentals design and applications, pp.197, Elsevier, Kidlington, UK (2003).
[55] A. Thaker, M. Mathew, N. Hasib, N. Herringer, “A review of ammonia fuel cells”, CHE598 Topic: Fuel Cells & Biofuel Cells, pp. 1-6, 2013.
[56] 張軒維,加壓型固態氧化物燃料電池性能與阻抗之定量量測與分析,碩士論文,國立中央大學,2011.
[57] V. A. C. Haanappel, M. J. Smith, “A review of standardising SOFC measurement and quality assurance at FZJ”, Journal of Power Sources, Vol. 171, pp. 169-178, 2007.
[58] J. Milewski, A. Miller, “Influences of the type and thickness of electrolyte on Solid Oxide Fuel Cell Hybrid System performance”, Journal of Fuel Cell Science and Technology, Vol. 3(4), pp. 396-402, 2006.
[59] M. Henke, J. Kallo, K.A. Friedrich, W.G. Bessler, “Influence of pressurisation on SOFC performance and durability : A theoretical study”, Fuel cell, Vol. 11, pp. 581-591, 2011.
[60] Nielsen, J., Mogensen, M., SOFC LSM:YSZ cathode degradation induced by moisture: An impedance spectroscopy study, Solid State Ionics, Vol. 189, pp. 74-81, 2011.
[61] Liu, B., Muroyama, H., Matsui, T., Tomida, K., Kabata, T., Eguchi, K., Analysis of impedance spectra for segmented-in-series tubular solid oxide fuel cells, J. Electrochem. Soc., Vol. 157, pp. B1858-1864, 2010.
[62] Liu, B., Muroyama, H., Matsui, T., Tomida, K., Kabata, T., Eguchi, K., Gas transport impedance in segmented-in-series tubular solid oxide fuel cell, J. Electrochem. Soc., Vol. 158, pp. B215-224, 2011.
[63] Primdahl, S., Mogensen, M., Gas conversion impedance: A test geometry effect in characterization of solid oxide fuel cell anodes, J. Electrochem. Soc., Vol. 145, pp. 2431-2438, 1998.
指導教授 施聖洋 審核日期 2016-11-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明