博碩士論文 103323089 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:70 、訪客IP:18.117.145.133
姓名 洪建宇(Jein-Yu Hong)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 合成氣SOFC實驗:電解質支撐與陽極支撐全電池之比較
相關論文
★ 蚶線形滑轉板轉子引擎設計與實作★ 實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式
★ 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅★ 預混火焰與尾流交相干涉之實驗研究
★ 自由傳播預混焰與紊流尾流交互作用﹔火焰拉伸率和燃燒速率之量測★ 重粒子於泰勒庫頁提流場之偏好濃度與下沈速度實驗研究
★ 潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測★ 預混焰與紊流尾流交互作用時非定常應變率、曲率和膨脹率之定量量測
★ 實驗方式產生之均勻等向性紊流場及其於兩相流之應用★ 液態紊流噴流動能消散率場與微尺度間歇性 之定量量測
★ 預混焰和紊流尾流交互作用:拉伸率與輻射熱損失效應量測★ 四維質點影像測速技術與微尺度紊流定量量測
★ 潔淨能源:超焓燃燒器研發★ 小型熱再循環觸媒燃燒器之實驗研究及應用
★ 預混紊流燃燒:碎形特性、當量比 和輻射熱損失效應★ 預混甲烷紊焰拉伸量測,應用高速PIV
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究使用加壓型SOFC實驗平台,搭配鈕扣型實驗載具,針對陽極支撐型全電池(anode supported cell, ASC)與電解質支撐型全電池(electrolyte supported cell, ESC),量測以合成氣及氫氣為燃料之電池性能曲線(I-V curve)與電化學阻抗頻譜(electrochemical impedance spectra, EIS),並作性能穩定性測試。實驗條件為固定氣體流率(陰極:200 sccm air;陽極:氫氣燃料:200 sccm H2或合成氣燃料:70 sccm H2+130 sccm CO),本論文包含兩大部分:(1)量測電解質支撐型電池(ESC)使用氫與合成氣燃料之溫度(850℃、800℃、750℃)、壓力(1、3atm)及加濕(3%)效應,並針對ESC使用合成氣燃料進行定性測試;(2)比較常壓下電解質支撐型(ESC)與陽極支撐型(ASC)使用氫氣與合成氣燃料之電池性能曲線與電化學阻抗頻譜,並比較ESC與ASC使用合成氣燃料之加壓效應(1、3atm)。第一部份之結果顯示,無論使用氫燃料或合成氣燃料,升溫與加壓均可有效改善電池性能,原因為升溫與加壓可改善電池之極化阻抗,使電池性能上升。而加濕3%對於合成氣的性能影響較氫氣的性能影響不顯著。有關使用合成氣於ESC之性能穩定性測試,在固定溫度750℃和定電壓0.8V下進行,我們發現電池片性能於1atm時,至少90分鐘後沒有任何衰退。但加壓至3atm時,電池性能於45分鐘時衰退至初始值的64%。
第二部份實驗條件為固定操作溫度在750℃。結果顯示,使用合成氣燃料之ASC或ESC的電池性能比使用氫燃料來得較低,其中ASC使用合成氣與氫燃料間的功率密度差異較ESC不明顯。從電化學阻抗頻譜來看,當ASC使用氫燃料時的低頻弧,乃由氣體擴散(特徵頻率10~100 Hz)所主導;但使用合成氣時,ASC之低頻弧則由氣體轉移阻抗(特徵頻率<1 Hz)所主導。另外,ASC電池性能的壓力效應較ESC顯著;從電化學阻抗頻譜來看,比較ESC與ASC加壓前後(1atm比3atm)代表活化極化之高頻弧(特徵頻率為100~1000 Hz)的降幅,ESC比ASC有較大之降幅。而對比ESC與ASC加壓前後低頻弧(特徵頻率<1 Hz,氣體轉移阻抗所主導)之降幅,ASC受到較大的壓力影響(ESC:60%;ASC:88%)。本研究成果對於未來開發以ESC電池片為主的電力系統有所助益。
摘要(英) This study applies an established high-pressure and high-temperature SOFC testing platform combined with a full button cell test carrier to measure the cell performance and electrochemical impedance spectra (EIS) of both anode-supported cell (ASC) and electrolyte-supported cell (ESC) fueled with syngas and/or hydrogen. The flow rates are fixed for all experiments, in which the anode: 200 sccm H2 and/or syngas: 70 sccm H2 + 130 sccm CO (syngas) and the cathode: 200 sccm air. This study has two parts can be discussed. The first part is measuring the pressurized effect and humidified effect and the stability test of ESC. Results show that ESC use either hydrogen or syngas as fuel, pressurized can increase the cell performance. In humidified test, the performance of the cell which uses humidified syngas fuel decreased more slightly than the cell which used humidified hydrogen fuel. The stability test of ESC is executed under 750℃ at both 1 and 3 atm and at 0.8V. Results show that at 1 atm, the performance of the cell is stable without any cell degradation for at least 90 minutes. But at 3 atm, the power density is found to decrease noticeably with time from 220 mw cm-2 to 140 mw cm-2 after 45 minutes, suggesting that ESC using syngas is difficult to operate at 3 atm and at 750℃ having a server cell degradation.
The second part is comparing the performance and EIS between ESC and ASC. Results show that for both ESC and ASC, the performance of the cell fueled with hydrogen is better than that fueled with syngas. The performance of both ESC and ASC increases with pressurization. The pressurized effect on the power density of ASC at 0.8V (1 atm→3 atm, 206.59 mw cm-2→252.46 mw cm-2) is more pronounced than that of ESC (1 atm→3 atm, 98.36 mw cm-2 →126.64 mw cm-2). Compared ESC with ASC, pressurization influences the high frequency arc representing the activation polarization of ESC more significantly than that of ASC. In contrast, the low frequency arc representing the concentration polarization of ASC has a more distinct effect due to pressurization than ESC.
關鍵字(中) ★ 不同支撐型
★ 合成氣
★ 碳沉積測試
關鍵字(英) ★ electrolyte supported cell
★ anode supported cell
★ Syngas
★ carbon deposition
論文目次 摘要 i
Abstract iii
致謝 iv
目錄 v
圖表目錄 vii
第一章 前言 1
1.1 研究動機 1
1.2 欲探討之問題 2
1.3 研究方法 3
1.4 論文綱要 4
第二章 文獻回顧 5
2.1 SOFC基本介紹 5
2.1.1 簡介 5
2.1.2 SOFC之基本運作原理 6
2.1.3 SOFC之極化現象 8
2.2 SOFC使用合成氣燃料之溫度和加濕效應 9
2.3 合成氣SOFC有關ASC與ESC之文獻整理 12
2.4 使用合成氣燃料之碳沉積和穩定性文獻整理 13
第三章 實驗設備與量測方法 19
3.1 SOFC高壓測試實驗平台 19
3.2 電池性能和阻抗頻譜量測 21
3.3 實驗流程與參數設定 22
第四章 結果討論 27
4.1 電解質支撐型電池片之實驗 27
4.1.1電解質支撐型電池使用氫/合成氣燃料之溫度效應 27
4.1.2電解質支撐型電池使用氫/合成氣燃料之加濕效應 27
4.1.3電解質支撐型電池使用氫/合成氣燃料之壓力效應 28
4.1.4 電解質支撐型電池使用合成氣燃料之碳沉積研究 28
4.2 電解質支撐型電池與陽極支撐型電池之比較 31
4.2.1分別使用氫氣和合成氣電池性能之比較 31
4.2.2加壓效應對不同支撐型電池之影響及比較 32
第五章 結論與未來工作 51
5.1 結論 51
5.2 未來工作 52
參考文獻 53
參考文獻 [1] C. Willich, C. Westner, M. Henke, F. Leucht, J. Kallo, K.A. Friedrich, Pressurized Solid Oxide Fuel Cells with Reformate as Fuel, Journal of The Electrochemical Society, Vol. 159, pp. F711-F716, 2012.
[2] J. Larminie, A. Dicks, Fuel Cell Systems Explained, 2nd ed., Wiley, New York,
2003.
[3] S.C. Singhal, K. Kendall, High Temperature Solid Oxide Fuel Cells, Elsevier, 2003.
[4] X. Zhang, S.H. Chan, G. Li, H.K. Ho, J. Li, Z. Feng, A review of integration strategies for solid oxide fuel cells, Journal of Power Sources, Vol. 195, pp. 685–702, 2010.
[5] S.E. Veyo, L.A. Shockling, J.T. Dederer, J.E. Gillet, W.L. Lundberg, Tubular solid oxide fuel cell/gas turbine hybrid cycle power system: Status, Journal of Engineering for Gas Turbines and Power, Vol. 124, pp. 845-849, 2002.
[6] Greentech Media, GE Threatens to Enter Fuel Cell Market, Compete With Bloom, July 24, 2014
[7] C. Li, Y. Shi, N. Caia, Elementary reaction kinetic model of an anode-supported solid oxide fuel cell fueled with syngas, Journal of Power Sources, Vol. 195, pp. 2266-2282, 2012.
[8] M.A. Buccheri, A. Singh, J.M. Hill, Anode- versus electrolyte-supported Ni-YSZ/YSZ/Pt SOFCs: Effect of cell design on OCV, performace and carbon formation for the direct utilization of dry methane, Journal of Power Sources, Vol. 193, pp. 968-976, 2011.
[9] M.D. Gross, J.M. Vohs, R.J. Gorte, Recent progress in SOFC anodes for direct utilization of hydrocarbons, Journal of Materials Chemistry, Vol. 17, pp. 3070-3077, 2007.
[10] 洪立翰,合成氣於加壓型SOFC之性能量測及其微氣渦輪機複合系統之模擬分析,碩士論文,國立中央大學,2015。
[11] P.C. Wu, H.S. Jheng, S.S. Shy, Electrochemical Impedance Measurement and Analysis of Anodic Concentration Polarization for Pressurized Solid Oxide Fuel Cells, Journal of The Electrochemical Society, Vol. 161(4), F513-F517, 2014.
[12] S.S. Shy, Y.D. Hsieh, C.M. Huang, Y.H. Chan, Comparison of Electrochemical Impedance Measurements between Pressurized Anode-Supported and Electrolyte Planar Solid Oxide Fuel Cells, Journal of The Electrochemical Society, Vol. 162(3), F172-F177, 2015.
[13] 鄭浩昇,加壓型固態氧化物燃料電池量測與分析:壓力、溫度與質量流率效應,碩士論文,國立中央大學,2012。
[14] 謝易達,加壓型SOFC陽極支撐與電解質支撐單電池堆量測與分析,碩士論文,國立中央大學,2013。
[15] 吳佩真,加壓鈕扣型陽極支撐SOFC實驗量測與活化和濃度過電位分析計算,碩士論文,國立中央大學,2013。
[16] 李雪茹,加壓SOFC陰極半電池實驗研究,碩士論文,國立中央大學,2013。
[17] 詹彥信,固態氧化物燃料電池使用甲烷燃氣之性能和電化學阻抗頻譜實驗研究,碩士論文,國立中央大學,2014。
[18] S.C. Singal, Solid oxide fuel cell for stationary, mobile, and military applications, Solid State Ionics, Vol. 152 pp. 405-410, 2002.
[19] University of Cambridge, TLP Libriary, http://www.doitpoms.ac.uk/tlplib/fuel-cells/sofc_electrolyte.php
[20] J. Larminie, A. Dicks, Fuel Cell Systems Explained, 2nd Edition, John Wiley & Sons. Ltd., England, 2003.
[21] J. Fleig, SOLID OXIDE FUEL CELL CATHODES: Polarization Mechanisms and Modeling of the Electrochemical Performance, Annual Review of Materials Research, Vol. 33, pp. 361-382, 2003.
[22] S.K. Dong, W.N. Jung, K. Rashid, A. Kashimoto, Design and numerical analysis of a planar anode-supported SOFC stack, Renewable Energy, Vol. 94, pp. 637-650, 2016.
[23] J.G. Park, J.M. Bae, J.Y. Kim, The current density and temperature distributions of anode-supported flat-tube solid oxide fuel cells affected by various channel designs, Journal of Hydrogen Energy, Vol. 36, pp. 9936-9944, 2011.
[24] J.G. Park, J.M. Bae, Characterization of electrochemical reaction and thermos-fluid flow in metal-supported solid oxide fuel cell stacks with various manifold designs, Journal of Hydrogen Energy, Vol. 37, pp. 1717-1730, 2012.
[25] D. Sarantaridis, A. Atkinson, Redox Cycling of Ni-Based Solid Oxide Fuel Cell Anodes: A Review, Fuel Cell, Vol. 7, pp. 246-258, 2007.
[26] M. Stelter, A. Reinert, B.E. Mai, M. Kuznecov, Engineering aspects and hardware verification of a volume producible solid oxide fuel cell stack design for diesel auxiliary power units, Journal of Power Sources, Vol. 154, pp. 448-455, 2006.
[27] N. Mahato, A. Banerjee, A. Gupta, S. Omar, K. Balani, Progress in material selection for solid oxide fuel cell technology: A review, Progress in Materials Science, Vol. 72, pp. 141-337, 2015.
[28] A. Kumar, A. Jaiswal, M. Sanbui, S. Omar, Scandia stabilized zirconia-ceria solid electrolyte (xSc1CeSZ, 5< x<11) for IT-SOFCs: Structure and conductivity studies, Scripta Materialia, Vol. 121, pp. 10-13, 2016.
[29] J. Nielsen, P. Hjalmarsson, M.H. Hansen, P. Blennow, Effect of low temperature in-situ sintering on the impedance and the performance of intermediate temperature solid oxide fuel cell cathodes, Journal of Power Sources, Vol. 245, pp. 418-428, 2014.
[30] S. Campanari, L. Mastropasqua, M. Gazzani, P. Chiesa, M.C. Romano, Predicting the ultimate potential of natural gas SOFC power cycles with CO2 capture e Part A: Methodology and reference cases, Journal of Power Sources, Vol. 324, pp. 598-614, 2016.
[31] R. O’Hayre, D.M. Barnett, F.B. Prinz, The Triple Phase Boundary A Mathematical Model and Experimental Investigations for Fuel Cells, Journal of The Electrochemical Society, Vol. 152, pp. A439-A444, 2005.
[32] S.S. Shy, Y.D. Hsieh, C.M. Huang, Y.H. Chan, Comparison of Electrochemical Impedance Measurements between Pressurized Anode-Supported and Electrolyte Planar Solid Oxide Fuel Cells, Journal of The Electrochemical Society, Vol. 162(3), F1-F6, 2015.
[33] 李信宏,棋盤式雙極板尺寸流道效應對固態氧化物燃料電池性能之影響,碩士論文,國立中央大學,2010。
[34] J.C. Njodzefon, D. Klotz, A. Kromp, A. Weber, E. Ivers-Tiff´ee, Electrochemical Modeling of the Current-Voltage Characteristics of an SOFC in Fuel Cell and Electrolyzer Operation Modes, Journal of The Electrochemical Society, Vol. 160, pp. F313-F323, 2013.
[35] M. Ni, M.K.H. Leung, D.Y.C. Leung, Parametric study of solid oxide fuel cell performance, Energy Conversion and Management, Vol. 48, pp. 1525-1535, 2007.
[36] M. Cooper, K. Channa, R.D Silva, D.J. Bayless, Comparison of LSV/YSZ and LSV/GDC SOFC Anode Performance in Coal Syngas Containing H2S, Journal of The Electrochemical Society, Vol. 157, pp. B1713-1718, 2010.
[37] M. Riegraf, G¨. Schiller, R´emi Costa, K. A. Friedrich, A. Latz, V. Yurkiv, Elementary Kinetic Numerical Simulation of Ni/YSZ SOFC Anode Performance Considering Sulfur Poisoning, Journal of The Electrochemical Society, Vol. 162, pp. F65-F75, 2015.
[38] T. Aloui, K. Halouani, H.W. Nie, T.L. Wen, Analytical modeling of polarizations in a solid oxide fuel cell using biomass syngas product as fuel, Applied Thermal Engineering, Vol. 27, pp. 731-737, 2007.
[39] C. Li, Y. Shi, N. Cai, Elementary reaction kinetic model of an anode-supported solid oxide fuel cell fueled with syngas, Journal of Power Sources, Vol. 195, pp. 2266-2282, 2010.
[40] Z.R. Xu, X.Z. Fu, J.L. Luo, K.T. Chuang, Carbon Deposition on Vanadium-Based Anode Catalyst for SOFC Using Syngas as Fuel, Journal of The Electrochemical Society, Vol. 157, pp. B1556-B1560, 2010.
[41] K. Sasaki, Y. Hori, R. Kikuchi, K. Eguchi, A. Ueno, H. Takeuchi, M. Aizawa, K. Tsujimoto, H. Tajiri, H. Nishikawa, Y. Uchida, Current-Voltage Characteristics and Impedance Analysis of Solid Oxide Fuel Cells for Mixed H2 and CO Gases, Journal of The Electrochemical Society, Vol. 149, pp. A227-A233, 2002.
[42] H. Miao, W.G. Wang, T.S. Li, T. Chen, S.S. Sun, C. Xu, Effects of coal syngas major compositions on Ni/YSZ anode-supported solid oxide fuel cells, Journal of Power Sources, Vol. 161, pp. 2230-223, 2010.
[43] P. Tiwari, S. Basu, Performance studies of electrolyte-supported solid oxide fuel cell with Ni–YSZ and Ni–TiO2–YSZ as anodes, Journal of Solid State Electrochemical, Vol. 18, pp. 805-812, 2014.
[44] J. Laurencin, G. Delette, O. Sicardy, S. Rosini, F. Lefebvre-Joud, Impact of redox cycles on performances of solid oxide fuel cells: Case of the electrolyte supported cells, Journal of Power Sources, Vol. 195, pp. 2747-2753, 2010.
[45] Y. Patcharavorachot, A. Arpornwichanop, A. Chuachuensuk, Electrochemical study of a planar solid oxide fuel cell: Role of support structures, Journal of Power Sources, Vol. 177, pp. 254-261, 2008.
[46] Y.D. Hsieh, Y.H. Chan, S.S. Shy, Effects of pressurization and temperature on power generating characteristics and impedances of anode-supported and electrolyte-supported planar solid oxide fuel cells, Journal of Power Sources, Vol. 299, pp. 1-10, 2015.
[47] T. Chen, W.G. Wang, H. Miao, T. Li, C. Xu, Evaluation of carbon deposition behavior on the nickel/yttrium-stabilized zirconia anode-supported fuel cell fueled with simulated syngas, Journal of Power Sources, Vol. 196, pp. 2461-2468, 2011.
[48] E.J. Carins, A.D. Tevebaugh, CHO Gas Phase Compositions in Equilibrium with Carbon, and Carbon Deposition Boundaries at One Atmosphere, Journal of chemical and engineering data, Vol. 9, pp. 453-462, 1964.
[49] J. Xiao, Y. Xie, J. Liu, M. Liu, Deactivation of nickel-based anode in solid oxide fuel cells operated on carbon-containing fuels, Journal of Power Sources, Vol. 268, pp. 508-516, 2014.
[50] V. Alzate-Restrepo, J.M. Hill, Carbon deposition on Ni/YSZ anodes exposed to CO/H2 feeds, Journal of Power Sources, Vol. 195, pp. 1344-1351, 2010.
[51] X.F. Ye, S.R. Wang, J. Zhou, F.R. Zeng, H.W. Nie, T.L. Wen, Assessment of the performance of Ni-yttria-stabilized zirconia anodes in anode-supported Solid Oxide Fuel Cells operating on H2–CO syngas fuels, Journal of Power Sources, Vol. 195, pp. 7264–7267, 2010
[52] H. J. Grabke, Thermodynamics, mechanisms and kinetics of metal dusting, Materials and Corrosion, Vol. 49, pp. 303-308, 1998.
[53] J. Nielsen, M. Mogensen, SOFC LSM:YSZ cathode degradation induced by moisture: An impedance spectroscopy study, Solid State Ionics, Vol. 189, pp. 74-81, 2011.
[54] S. Primdahl, M. Mogensen, Gas conversion impedance: A test geometry effect in characterization of solid oxide fuel cell anodes, Journal of The Electrochemical Society, Vol. 145, pp. 2431-2438, 1998.
[55] S. Primdahl, M. Mogensen, Gas diffusion impedance in characterization of solid oxide fuel cell anodes, Journal of The Electrochemical Society, Vol. 146, pp. 2827-2833, 1999.
指導教授 施聖洋 審核日期 2016-11-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明