參考文獻 |
[1] J. D. Joannopoulos, R. D. Meade, and J. N. Winn, "Photonic crystals — Molding the flow of light." (Princeton University Press, New Jersey, 1995).
[2] J. W. S. Rayleigh, "On the remarkable phenomenon of crystalline reflexion described by Prof. Stokes," Phil. Mag. 26, 256 (1887).
[3] E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059 (1987).
[4] S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486 (1987).
[5] C. C. Cheng, V. Arbet-Engels, A. Scherer, and E. Yablonovitch, "Nanofabricated three-dimensional photonic crystal operating at optical wavelengths," Phys. Scripta T68 (1996).
[6] R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, "Novel applications of photonic band gap materials: Low-loss bends and high Q cavities," J. Appl. Phys. 75, 4753 (1994).
[7] I. N. Stranski and L. Krastanow, "Sitzungsberichte d. Akad. D. Wissenschaften in Wien," Akad. Wiss Wien Math.-Natur. IIb 146, 797 (1937).
[8] K. J. Vahala, "Optical microcavities," Nature (London) 424, 839 (2003).
[9] E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).
[10] D. Kleppner, "Inhibited spontaneous emission," Phys. Rev. Lett. 47, 233 (1981).
[11] L. C. Andreani, G. Panzarini, and J.-M. Gérard, "Strong-coupling regime for quantum boxes in pillar microcavities: Theory," Phys. Rev. B 60, 13276 (1999).
[12] J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity," Phys. Rev. Lett. 81, 1110 (1998).
[13] B. Gayral, J. M. Gérard, A. Lemaître, C. Dupuis, L. Manin, and J.-L. Pelouard, "High-Q wet-etched GaAs microdisks containing InAs quantum boxes," Appl. Phys. Lett. 75, 1908 (1999).
[14] A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoğlu, Lidong Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, "Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure," Appl. Phys. Lett. 78, 3932 (2001).
[15] O. Painter and K. Srinivasan, "Polarization properties of dipolelike defect modes in photonic crystal nanocavities," Opt. Lett. 27, 339 (2002).
[16] O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819 (1999).
[17] R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, "Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths," Appl. Phys. Lett. 74, 1522 (1999).
[18] T. D. Happ, I. I. Tartakovskii, V. D. Kulakovskii, J.-P. Reithmaier, and M. Kamp, and A. Forchel, "Enhanced light emission of InxGa1-xAs quantum dots in a two-dimensional photonic-crystal defect microcavity," Phys. Rev. B 66, 041303 (2002).
[19] H. Y. Ryu and M. Notomi, "Enhancement of spontaneous emission from the resonant modes of a photonic crystal slab single-defect cavity," Opt. Lett. 28, 2390 (2003).
[20] W.-H. Chang, W.-Y. Chen, H.-S. Chang, T. M. Hsu, T.-P. Hsieh, and J.-I. Chyi, "Optical emission from individual InGaAs quantum dots in single-defect photonic crystal nanocavity," J. Appl. Phys. 98, 034306 (2005).
[21] W.-Y. Chen, W.-H. Chang, H.-S. Chang, T. M. Hsu, C.-C. Lee, C.-C. Chen, P. G. Luan, J.-Y. Chang, T.-P. Hsieh, and J.-I. Chyi, "Enhanced light emission from InAs quantum dots in single-defect photonic crystal microcavities at room temperature," Appl. Phys. Lett. 87 071111 (2005).
[22] J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65 016608 (2001).
[23] J. Vučković and Y. Yamamoto, "Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot," Appl. Phys. Lett. 82, 2374 (2003).
[24] O. Painter, J. Vučković, and A. Scherer, "Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab," J. Opt. Soc. Am. B 16, 275 (1999).
[25] C. Reese, B. Gayral, B. D. Gerardot, A. Imamoğlu, P. M. Petroff, and E. Hu, "High-Q photonic crystal microcavities fabricated in a thin GaAs membrane," J. Vac. Sci. Technol. B 19, 2749 (2001).
[26] C. Reese, C. Becher, A. Imamoğlu, E. Hu, B. D. Gerardot, and P. M. Petroff, "Photonic crystal microcavities with self-assembled InAs quantum dots as active emitters," Appl. Phys. Lett. 78, 2279 (2001).
[27] S. L. McCall, P. M. Platzman, R. Dalichaouch, D. Smith, and S. Schultz, "Microwave propagation in two-dimensional dielectric lattices," Phys. Rev. Lett. 67, 2017 (1991).
[28] J. M. Gérard and B. Gayral, "Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities," J. Lightwave Technol. 17, 2089 (1999).
[29] A. Tafove, "Computational Electrodybamics - The finite-difference time-domain method." (Artech house, Masachussetts, 1995).
[30] 葛德彪 and 閆玉波, "電磁波時域有限差分方法." (西安電子科技大學出版社, 西安, 2001).
[31] K. S. Yee, "numerical solution to initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propagat. 14, 302 (1966).
[32] D. F. Walls and G. J. Milburn, "Quantum optics." (Springer, New York, 1994).
[33] J. S. Peng and G. X. Li, "Introduction to modern quantum optics." (World scientific publishing, Singapore, 1998).
[34] C. Cohen-Tannoudji and and F. Laloe B. Diu, "Quantum Mechanics." (John Wiley & Sons, Inc., New York, 1977).
[35] A. Yariv, "Quantum Electronics." (John Wiley & Sons, New York, 1989).
[36] H. Benisty, H. De Neve, and C. Weisbuch, "Impact of planar microcavity effects on light extraction - part I: basic concepts and analytical trends," IEEE J. Quantum Electron. 34, 1612 (1998).
[37] H. Y. Ryu, Y. H. Lee, R. L. Sellin, and D. Bimberg, "Over 30-fold enhancement of light extraction from free-standing photonic crystal slabs with InGaAs quantum dots at low temperature," Appl. Phys. Lett. 79, 3573 (2001).
[38] J. K. Hwang, H. Y. Ryu, and Y. H. Lee, "Spontaneous emission rate of an electric dipole in a general microcavity," Phys. Rev. B 60, 4688 (1999).
[39] J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, "Optimization of the Q factor in photonic crystal microcavities," IEEE J. Quantum Electron. 38, 850 (2002).
[40] J. W. Goodman, "Introduction to fourier optics." (McGraw-Hill Book Co., Singapore, 1996).
[41] Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, "Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes," Appl. Phys. Lett. 82, 1661 (2003).
[42] K. Sakoda, "optical properties of photinic crystals." (Springer-Vwelag, New York, 2001).
[43] E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, "Donor and acceptor modes in photonic band structure " Phys. Rev. Lett. 24, 3380 (1991).
[44] K. Sakoda, "Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices," Phys. Rev. B 52, 7982 (1995).
[45] S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751 (1999).
[46] C. Sauvan, P. Lalanne, and J. P. Hugonin, "Slow-wave effect and mode-profile matching in photonic crystal microcavities," Phys. Rev. B 71, 165118 (2005).
[47] Y. Akahane, M. Mochizuki, T. Asano, Y. Tanaka, and S. Noda, "Design of a channel drop filter by using a donor-type cavity with high-quality factor in a two-dimensional photonic crystal slab," Appl. Phys. Lett. 82, 1341 (2003).
[48] Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944 (2003).
[49] Z. Zhang and M. Qiu, "Influence of structural variations on high-Q microcavities in two-dimensional photonic crystal slabs," Opt. Lett. 30, 1713 (2005).
[50] G. S. Solomon, M. Pelton, and Y. Yamamoto, "Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity," Phys. Rev. Lett. 86, 3903 (2001).
[51] A. Kress, F. Hofbauer, N. Reinelt, M. Kaniber, H. J. Krenner, R. Meyer, G. Böhm, and J. J. Finley, "Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals," Phys. Rev. B 71, 241304(R) (2005).
[52] K. Matsuda, T. Saiki, H. Saito, and K. Nishi, "Room-temperature photoluminescence spectroscopy of self-assembled In0.5Ga0.5As single quantum dots by using highly sensitive near-field scanning optical microscope," Appl. Phys. Lett. 76, 73 (2000).
[53] H. Y. Ryu, J. K. Hwang, D. S. Song, I. Y. Han, Y. H. Lee, and D. H. Jang, "Effect of nonradiative recombination on light emitting properties of two-dimensional photonic crystal slab structures," Appl. Phys. Lett. 78, 1174 (2001).
[54] L. Landin, M. S. Miller, M.-E. Pistol, C. E. Pryor, and L. Samuelson, "Optical studies of individual InAs quantum dots in GaAs: few-particle effects," Science 280, 262 (1998).
[55] M. Bayer, O. Stern, P. Hawrylak, S. Fafard, and A. Forchel, "Hidden symmetries in the energy levels of excitonic 'artificial atoms," Nature (London) 405, 923 (2000).
[56] H. J. Kimble, M. Dagenais, and L. Mandel, "Photon antibunching in resonance fluorescence " Phys. Rev. Lett. 39, 691 (1977).
[57] F. Diedrich and H. Walther, "Nonclassical radiation of a single stored ion," Phys. Rev. Lett. 58, 203 (1987).
[58] P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, "A quantum dot single-photon turnstile device," Science 290, 2282 (2000).
[59] E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, "Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities," Appl. Phys. Lett. 79, 2865 (2001).
[60] P. Lodahl, A. F. van Drie, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, "Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals," Nature (London) 430, 654 (2004).
[61] C. H. Bennett and G. Brassard, in Proc. of the IEEE Int. Conf. on Computers, Systems & Signal Processing (Bangalore, India, 1984), p. 175.
[62] D. Bouwmeester, A. Ekert, and A. Zeilinger., "The physics of quantum information." (Springer, Berlin, 2000).
[63] R. H. Brown and R. Q. Twiss, "The question of correlation between photons in coherent light rays," Nature (London) 178, 1447 (1956).
[64] T.-P. Hsieh, H.-S. Chang, W.-Y. Chen, W.-H. Chang, T. M. Hsu, N.-T. Yeh, W.-J. Ho, P.-C. Chiu, and J.-I. Chyi, "Growth of low density InGaAs quantum dots for single photon sources by metal-organic chemical vapour deposition," Nanotechnology 17, 512-515 (2006).
[65] Z. G. Xie and G. S. Solomon, "Spatial ordering of quantum dots in microdisks," Appl. Phys. Lett. 87, 093106 (2005).
[66] A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158 (2005).
[67] T.-P. Hsieh, J.-I. Chyi, H.-S. Chang, W.-Y. Chen, T. M. Hsu, and W.-H. Chang, "Single photon emission from an InGaAs quantum dot precisely positioned on a nanoplane," Appl. Phys. Lett. 90, 073105 (2007).
[68] S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Scanning a photonic crystal slab nanocavity by condensation of xenon," Appl. Phys. Lett. 87, 141105 (2005).
[69] K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamoğlu, "Tuning photonic nanocavities by atomic force microscope nano-oxidation," Appl. Phys. Lett. 89, 041118 (2006).
[70] C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, "Single-photon generation with InAs quantum dots," New J. Phys. 6, 89 (2004).
[71] I. Robert, E. Moreau, M. Gallart, J. M. Gérard, and I. Abram, "Solid-state triggered single photon sources," Physica E 16, 51 (2003).
[72] W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T. M. Hsu, "Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities," Phys. Rev. Lett. 96, 117401 (2006).
[73] J. D. Jackson, "Classical electrodynamics." (Wiley, New York, 1999). |