摘要(英) |
The industry and supply chain involved in mobile devices is very extensive .The shipments of mobile devices represent the overall development of information technology industry. Along with the development of the global information and communication industry, the shipments of mobile devices on the international market are expected to rise.
In this research, the smart phones and tablets which represent the largest volume of shipments and the trend of development were taken as the research subjects. Given that their great influence, it is necessary to systematically analyze the trend of mobile devices shipments. Facing such a huge business opportunity, this study has developed effective forecasting models that explore the market trends of mobile devices. The aim of this study is to establish an excellent predictive model that must be easy to use, accuracy and cost-effective. For the related industries with forecasting demand, this study can be used as a reference with the practical value.
The research methods in this study were the time series models, including Decomposition, Holt-Winters, Moving Average models and the grey theory of GM(1,1) method. In addition, the shipments of 20 quarters as training period from 2010 to 2014; the 4 quarters of 2015 as validation period.
The results of study are as follows: 1. all the models have a good predictive effect during the training period. In particular, the model prediction ability can reach high precision state in smart phone shipments. 2. The decline in shipments of the tablet and the growth of smart phone slowed down that interfere with the accuracy of the forecast models in the validation period 3. Since the tablet shipments in the 2015 verification period is more significant decline with shipments fluctuations, this study via the forecasting combination model which can enhance the accuracy of the forecast results greatly. The predicted ratio of forecasting combination model is better than each predicted ratio of single model as well.
|
參考文獻 |
ㄧ.中文文獻
[1] 林聰明,吳水丕,指數平滑法之選擇與應用,華泰書局,1981。
[2] 春日井博,需求預測入門,書泉出版社, 1988。
[3] 林茂文,時間數列與預測,華泰書局,1992。
[4] 鄭志剛,「運用灰色論理GM(1,1)模式預測裝備零附件之計畫備料」,國防管理學院後勤管理研究所,碩士論文,2004。
[5] 劉代華,「訂單需求預測-以時間序列分析研究」,國立清華大學工業工程管理系,碩士論文,2005。
[6] 邱妍菁,「高速公路短期交通資訊之灰預測模型」,逢甲大學交通工程與管理研究所,碩士論文,2006。
[7] 畢威寧,劉亮成,「灰色預測在台灣地區電力需求上之應用研究」,科學與工程技術期刊,第三卷第二期,11~18頁,2007。
[8] 陳力行,「NAND型Flash價格與交運量預測在風險分析下之決策模式」,國立中央大學工業管理研究所,碩士論文,2007。
[9] 陳治廷,「國軍武器修製零附件年度需求預測與資訊系統建構之研究」,國防管理學院資訊管理研究所,碩士論文,2007。
[10] 吳國榮,「灰色預測GM(1,1) 模型之改善與應用」,國防大學後勤管理研究所,碩士論文,2008。
[11] 黃錫鴻,「應用灰色理論預測半導體設備消耗性零件需求量」,國立中央大學工業管理研究所,碩士論文,2008。
[12] 羅志明,詹宗學,黃營芳,「應用灰色預測理論、迴歸分析、指數平滑法於預測臺灣TFT-LCD出口值」,工程科技與教育學刊,第五卷第一期,120~140頁,2008。
[13] 陳威志,「應用灰色理論於台灣行動電話銷售量之預測」,義守大學工業工程與管理學系,碩士論文,2011。
[14] 黃馨玫,黃營芳,黃士滔,「應用灰色理論預測台灣糖果產業銷售量之研究」,商業現代化學刊,第七卷第二期,243~258頁,2013。
[15] 蔡宗憲、李治綱,「一個混合時間序列法與指數平滑法的預測流程:列車旅運需求預測之應用」,運輸學刊,第二十四卷第一期,99~118頁,2012。
[16] 羅翎,「運用時間數列分解法建構創新區域行銷組合差異化之研究」,國立臺北大學企業管理學系,碩士論文,2014。
[17] 趙淑君,「結合時間序列與擴散模型預測創新產品銷售量之研究-以智慧型手機為例」,國立成功大學工業與資訊管理學系,碩士論文,2015。
[18] 李浩禎,「以灰色預測模式預測飛機未來之使用量」,中華科技大學航空運輸研究所,碩士論文,2016。
二. 英文文獻
[19] Wikipedia, https://en.wikipedia.org/wiki/Exponential_smoothing
[20] John C. Chambers, Satinder K. Mullick, Donald D. Smith, “How to choose the right forecasting technique”, Harvard Business Review 1971.
[21] George E. P. Box, Gwilym M. Jenkins, Gregory C. Reinsel, “Time Series Analysis: Forecasting and Control, 4th Edition”, Holden-Day, San Franscisco, 1976.
[22] Lewis, C.D, “Industrial and Business Forecasting Method”, London, Butterworths Scientific, 1982.
[23] J. L., Deng, “Introduction to Grey System Theory”, Journal of Grey System, Vol. 1, pp. 1-24,1989.
[24] Alber W.L. Yao, S.C. Chi, J.H. Chen, “An improved Grey-based approach for electricity demand forecasting ”,Electric Power Systems Research,Vol.67,No.3,pp.217-224,2003.
[25] S.J. Huang, K.R. Shih, “Short-term load forecasting via ARMA model identification including non-Gaussian process considerations”, IEEE Transactions on Power Systems,Vol.18 ,No.2,pp.673-679,2003.
[26] Ruey S. Tsay, “Analysis of Financial Time Series”, Wiley-Inter science, 2005.
[27] P.Y. Hu, “Using A Grey Multipurpose Decision System for Car Purchasing”, The Journal of Grey Systems, Vol.7, No.1, pp.11-14, 2004.
[28] T. S., Chang, C. Y., Ku &H. P. Fu, “Grey theory analysis of online population and online game industry revenue in Taiwan”, Technological Forecasting and Social Change, Vol.80, No.1, pp.175-185, 2013.
|