參考文獻 |
1. Dahm, R., Friedrich Miescher and the discovery of DNA. Developmental Biology, 2005. 278(2): p. 274-288.
2. Watson, J.D. and F.H. Crick, Molecular structure of nucleic acids. JAMA, 1953. 269(15): p. 1966-7.
3. Consortium. and I.H.G.S., Initial sequencing and analysis of the human genome. Nature, 2001. 409(6822): p. 860-921.
4. Leslie, A., et al., Polymorphism of DNA double helices. Journal of molecular biology, 1980. 143(1): p. 49-72.
5. Lee, R.C., R.L. Feinbaum, and V. Ambros, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. cell, 1993. 116(2): p. 281-297.
6. Kloosterman, W.P. and R.H.A. Plasterk, The Diverse Functions of MicroRNAs in Animal Development and Disease. Developmental Cell, 2006. 11(4): p. 441-450.
7. Kim, J., et al., Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(1): p. 360-365.
8. Palmer, S., et al., New Real-Time Reverse Transcriptase-Initiated PCR Assay with Single-Copy Sensitivity for Human Immunodeficiency Virus Type 1 RNA in Plasma. Journal of Clinical Microbiology, 2003. 41(10): p. 4531-4536.
9. Chen, C., et al., Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res, 2005. 33(20): p. e179.
10. Kellokoski, J.K., et al., Southern blot hybridization and PCR in detection of oral human papillomavirus (HPV) infections in women with genital HPV infections. Journal of Oral Pathology & Medicine, 1992. 21(10): p. 459-464.
11. Flores-D??az, M., et al., Cellular UDP-glucose deficiency caused by a single point mutation in the UDP-glucose pyrophosphorylase gene. Journal of Biological Chemistry, 1997. 272(38): p. 23784-23791.
12. Peterson, A.W., L.K. Wolf, and R.M. Georgiadis, Hybridization of mismatched or partially matched DNA at surfaces. Journal of the American Chemical Society, 2002. 124(49): p. 14601-14607.
13. Kushon, S.A., et al., Effect of secondary structure on the thermodynamics and kinetics of PNA hybridization to DNA hairpins. Journal of the American Chemical Society, 2001. 123(44): p. 10805-10813.
14. Koole, L.H. and H.M. Buck. Enhanced stability of a Watson & Crick DNA duplex structure by methylation of the phosphate groups in one strand. in Proc. K. Ned. Acad. Wet. 1987.
15. Yguerabide, J. and A. Ceballos, Quantitative fluorescence method for continuous measurement of DNA hybridization kinetics using a fluorescent intercalator. Analytical biochemistry, 1995. 228(2): p. 208-220.
16. Denison, C. and T. Kodadek, Small-molecule-based strategies for controlling gene expression. Chemistry & biology, 1998. 5(6): p. R129-R145.
17. Dervan, P.B., Molecular recognition of DNA by small molecules. Bioorganic & medicinal chemistry, 2001. 9(9): p. 2215-2235.
18. Demidov, V.V. and M.D. Frank-Kamenetskii, Two sides of the coin: affinity and specificity of nucleic acid interactions. Trends in biochemical sciences, 2004. 29(2): p. 62-71.
19. Obika, S., et al., Synthesis of 2′-O, 4′-C-methyleneuridine and-cytidine. Novel bicyclic nucleosides having a fixed C 3,-endo sugar puckering. Tetrahedron Letters, 1997. 38(50): p. 8735-8738.
20. Bondensgaard, K., et al., Structural studies of LNA: RNA duplexes by NMR: conformations and implications for RNase H activity. Chemistry-A European Journal, 2000. 6(15): p. 2687-2695.
21. Tomac, S., et al., Ionic effects on the stability and conformation of peptide nucleic acid complexes. Journal of the American Chemical Society, 1996. 118(24): p. 5544-5552.
22. Koppelhus, U. and P.E. Nielsen, Cellular delivery of peptide nucleic acid (PNA). Advanced drug delivery reviews, 2003. 55(2): p. 267-280.
23. Egholm, M., et al., PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. NATURE, 1993. 365: p. 566-568.
24. Zhang, G.-J., et al., Label-free direct detection of MiRNAs with silicon nanowire biosensors. Biosensors and Bioelectronics, 2009. 24(8): p. 2504-2508.
25. Hahm, J.-i. and C.M. Lieber, Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano letters, 2004. 4(1): p. 51-54.
26. Cattani-Scholz, A., et al., Organophosphonate-based PNA-functionalization of silicon nanowires for label-free DNA detection. ACS nano, 2008. 2(8): p. 1653-1660.
27. Zhang, G.-J., et al., Highly sensitive measurements of PNA-DNA hybridization using oxide-etched silicon nanowire biosensors. Biosensors and Bioelectronics, 2008. 23(11): p. 1701-1707.
28. Li, Z., et al., Silicon nanowires for sequence-specific DNA sensing: device fabrication and simulation. Applied Physics A, 2005. 80(6): p. 1257-1263.
29. Gao, Z., et al., Silicon nanowire arrays for label-free detection of DNA. Analytical Chemistry, 2007. 79(9): p. 3291-3297.
30. Cai, B., et al., Ultrasensitive label-free detection of PNA–DNA hybridization by reduced graphene oxide field-effect transistor biosensor. ACS nano, 2014. 8(3): p. 2632-2638.
31. Obika, S., et al., Stability and structural features of the duplexes containing nucleoside analogues with a fixed N-type conformation, 2′-O,4′-C-methyleneribonucleosides. Tetrahedron Letters, 1998. 39(30): p. 5401-5404.
32. Bhagat, T.D., et al., miR-21 mediates hematopoietic suppression in MDS by activating TGF-β signaling. Blood, 2013. 121(15): p. 2875-2881.
33. Wang, Q., et al., LNA real-time PCR probe quantification of hepatitis B virus DNA. Exp Ther Med, 2012. 3(3): p. 503-508.
34. Latorra, D., K. Arar, and J. Michael Hurley, Design considerations and effects of LNA in PCR primers. Molecular and Cellular Probes, 2003. 17(5): p. 253-259.
35. Levin, J.D., et al., Position-dependent effects of locked nucleic acid (LNA) on DNA sequencing and PCR primers. Nucleic Acids Research, 2006. 34(20): p. e142-e142.
36. Marin, V., et al., Effect of LNA Modifications on Small Molecule Binding to Nucleic Acids. Journal of Biomolecular Structure and Dynamics, 2004. 21(6): p. 841-850.
37. Latorra, D., et al., Enhanced Allele-Specific PCR Discrimination in SNP Genotyping Using 30 Locked Nucleic Acid (LNA) Primers. HUMAN MUTATION, 2003. 22: p. 79^85.
38. Daniel A. Di, G. and K. Garry C., Strong positional preference in the interaction of LNA oligonucleotides with DNA polymerase and proofreading exonuclease activities. Nucleic Acids Research, 2004. 32.
39. Hughesman, C.B., R.F.B. Turner, and C.A. Haynes, Role of the Heat Capacity Change in Understanding and Modeling Melting Thermodynamics of Complementary Duplexes Containing Standard and Nucleobase-Modified LNA. Biochemistry, 2011. 50(23): p. 5354-5368.
40. Doench, J.G. and P.A. Sharp, Specificity of microRNA target selection in translational repression. Genes & Development, 2004. 18(5): p. 504-511.
41. Summerton, J. and D. WELLER, Morpholino antisense oligomers: design, preparation, and properties. Antisense and Nucleic Acid Drug Development, 1997. 7(3): p. 187-195.
42. Summerton, J., Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1999. 1489(1): p. 141-158.
43. Zhang, G.-J., et al., Morpholino-functionalized silicon nanowire biosensor for sequence-specific label-free detection of DNA. Biosensors and Bioelectronics, 2010. 25(11): p. 2447-2453.
44. Koole, L.H., et al., Synthesis of phosphate-methylated DNA fragments using 9-fluorenylmethoxycarbonyl as transient base protecting group. The Journal of Organic Chemistry, 1989. 54(7): p. 1657-1664.
45. Kuijpers, W., et al., Synthesis of well-defined phosphate-methylated DNA fragments: the application of potassium carbonate in methanol as deprotecting reagent. Nucleic acids research, 1990. 18(17): p. 5197-5205.
46. van Genderen, M.H., L.H. Koole, and H.M. Buck, Hybridization of phosphate?methylated DNA and natural oligonucleotides. Implications for protein?induced DNA duplex destabilization. Recueil des Travaux Chimiques des Pays-Bas, 1989. 108(1): p. 28-35.
47. Coenen, A., et al., Optimization of the separation of the Rp and Sp diastereomers of phosphate-methylated DNA and RNA dinucleotides. Journal of Chromatography A, 1992. 596(1): p. 59-66.
48. Miller, P.S., et al., Syntheses and properties of adenine and thymine nucleoside alkyl phosphotriesters, the neutral analogs of dinucleoside monophosphates. Journal of the American Chemical Society, 1971. 93(24): p. 6657.
49. Miller, P.S., L.T. Braiterman, and P.O. Ts′o, Effects of a trinucleotide ethyl phosphotriester, Gmp (Et) Gmp (Et) U, on mammalian cells in culture. Biochemistry, 1977. 16(9): p. 1988-1996.
50. Buck, H.M., A conformational BZ DNA study monitored with phosphatemethylated DNA as a model for epigenetic dynamics focused on 5-(hydroxy) methylcytosine. 2013.
51. 陳奕儒, 探討中性 DNA 與一般 DNA 雜交反應熱力學 與結合機制之研究, 2016, 國立中央大學.
52. 林仲恩, 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢, 2016, 國立中央大學.
53. 蔡致勤, 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究, 2016, 國立中央大學.
54. Rogers, Y. and H. Muller, A framework for designing sensor-based interactions to promote exploration and reflection in play. International Journal of Human-Computer Studies, 2006. 64(1): p. 1-14.
55. Wu, P., S.-i. Nakano, and N. Sugimoto, Temperature dependence of thermodynamic properties for DNA/DNA and RNA/DNA duplex formation. European Journal of Biochemistry, 2002. 269(12): p. 2821-2830.
56. Kurreck, J., et al., Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Research, 2002. 30(9): p. 1911-1918.
57. Kaur, H., J. Wengel, and S. Maiti, Thermodynamics of DNA?RNA Heteroduplex Formation:? Effects of Locked Nucleic Acid Nucleotides Incorporated into the DNA Strand. Biochemistry, 2008. 47(4): p. 1218-1227.
58. Kumar, N. and S. Maiti, Role of Locked Nucleic Acid Modified Complementary Strand in Quadruplex/Watson?Crick Duplex Equilibrium. The Journal of Physical Chemistry B, 2007. 111(42): p. 12328-12337.
59. Sugimoto, N., et al., Thermodynamic Parameters To Predict Stability of RNA/DNA Hybrid Duplexes. Biochemistry, 1995. 34(35): p. 11211-11216.
60. Koshkin, A.A., et al., LNA (locked nucleic acid): an RNA mimic forming exceedingly stable LNA: LNA duplexes. Journal of the American Chemical Society, 1998. 120(50): p. 13252-13253.
61. McTigue, P.M., R.J. Peterson, and J.D. Kahn, Sequence-dependent thermodynamic parameters for locked nucleic acid (LNA)-DNA duplex formation. Biochemistry, 2004. 43(18): p. 5388-5405.
62. Kierzek, E., et al., Contributions of stacking, preorganization, and hydrogen bonding to the thermodynamic stability of duplexes between RNA and 2′-O-methyl RNA with locked nucleic acids. Biochemistry, 2009. 48(20): p. 4377-4387.
63. Zippelius, A., et al., Analytical Variables of Reverse Transcription-Polymerase Chain Reaction-based Detection of Disseminated Prostate. Clinical Cancer Research, 2000. 6: p. 2741–2750.
64. Cline, J., J.C. Braman, and H.H. Hogrefe, PCR fidelity of pfu DNA polymerase and other thermostable DNA polymerases. Nucleic Acids Research, 1996. 24(18): p. 3546-3551.
65. Rolfs, A., et al., PCR principles and reaction components., in PCR: Clinical Diagnostics and Research1992, Springer-Verlag: New York:. p. 1-21.
66. Stoneking, M., Single nucleotide polymorphisms: From the evolutionary past. Nature, 2001. 409(6822): p. 821-822.
67. Mandelkern, M., et al., The dimensions of DNA in solution. Journal of molecular biology, 1981. 152(1): p. 153-161.
68. Ugozzoli, L.A., et al., Real-time genotyping with oligonucleotide probes containing locked nucleic acids. Analytical Biochemistry, 2004. 324(1): p. 143-152.
69. Chakravarti, A., Single nucleotide polymorphisms:... to a future of genetic medicine. Nature, 2001. 409(6822): p. 822-823.
70. Chou, L., et al., Unlabeled oligonucleotide probes modified with locked nucleic acids for improved mismatch discrimination in genotyping by melting analysis. Biotechniques, 2005. 39(5): p. 644.
71. Du, H., et al., Sensitivity and specificity of metal surface-immobilized “molecular beacon” biosensors. Journal of the American Chemical Society, 2005. 127(21): p. 7932-7940.
72. You, Y., et al., Design of LNA probes that improve mismatch discrimination. Nucleic Acids Res, 2006. 34(8): p. e60.
73. Clanton-Arrowood, K., J. McGurk, and S.J. Schroeder, 3′ Terminal Nucleotides Determine Thermodynamic Stabilities of Mismatches at the Ends of RNA Helices?. Biochemistry, 2008. 47(50): p. 13418-13427.
74. Ohmichi, T., et al., Long RNA Dangling End Has Large Energetic Contribution to Duplex Stability. Journal of the American Chemical Society, 2002. 124(35): p. 10367-10372.
75. Johnson, S.J. and L.S. Beese, Structures of mismatch replication errors observed in a DNA polymerase. Cell, 2004. 116(6): p. 803-816.
76. Xiang-jun, H., et al., Increasing specificity of real time PCR to detect microRNA through primer design and annealing temperature increase. journal of Peking University (Health Science), 2009. 41: p. 691-698.
77. Boyerinas, B., et al., The role of let-7 in cell differentiation and cancer. Endocrine-related cancer, 2010. 17(1): p. F19-F36.
78. Rychlik, W., W.J. Spencer, and R.E. Rhoads, Optimization of the annealing temperature for DNA amplification in vitro. Nucleic Acids Research, 1990. 18(21): p. 6409-6412.
79. Johnson, L.A., et al., Optimizing a PCR protocol for cpn60-based microbiome profiling of samples variously contaminated with host genomic DNA. BMC Research Notes, 2015. 8(1): p. 1-9.
80. Choi, H., et al., Highly Specific Detection of Five Exotic Quarantine Plant Viruses using RT-PCR. The Plant Pathology Journal, 2013. 29(1): p. 99-104.
81. Ventura, A., et al., Targeted deletion reveals essential and overlapping functions of the miR-17~92 family of miRNA clusters. Cell, 2008. 132(5): p. 875-886.
|